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Abstract. Numerous Mircea Puta’s papers were dedicated to the study
of Maxwell - Bloch equations. The main purpose of this paper is to present
several types of fractional Maxwell - Bloch equations.
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1 Introduction

It is well known that many dynamical systems turned out to be Hamilton - Poisson
systems. Among other things, an important role is played by the Maxwell - Bloch
equations from laser - matter dynamics. More details can be found in [1], [4] and M.
Puta [5].

In this paper the revised and the dynamical systems associated to Maxwell - Bloch
equations on a Leibniz algebroid are discussed.

Derivatives of fractional order have found many applications in recent studies in
mechanics, physics and economics. Some classes of fractional differentiable systems
have studied in [3]. In this paper we present some fractional Maxwell- Bloch equations
associated to Hamilton - Poisson systems or defined on a fractional Leibniz algebroid.

2 The revised Maxwell - Bloch equations

Let C°°(M) be the ring of smooth functions on a n - dimensional smooth manifold
M. A Leibniz bracket on M is a bilinear map [-,-] : C®°(M) x C*®(M) — C*(M)
such that it is a derivation on each entry, that is, for all f, g, h € C*°(M) the following
relations hold:

(1) [fg,h] = [f,hlg + flg,h] and [f,gh] = g[f,h] + [f,glh.
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We will say that the pair (M, [, ]) is a Leibniz manifold. If the bilinear map [-, ]
verify only the first equality in (1), we say that [-,-] is a left Leibniz bracket and
(M, [-,]) is an almost Leibniz manifold.

Let P and g be two contravariant 2 - tensor fields on M. We define the map
[ ()] £ C(M) x (C(M) x C(M)) — C*>(M) by:

(2) [f, (ha, ho)] = P(df,dh1) + g(df,dh2), forall f,hi,hy € C(M).

We consider the map [[-,]] : C®°(M) x C*°(M) — C*°(M) defined by:

() [f2hl] = [f, (b 1) = P(f, dR) + g(df, dh), for all f,h € C=(A1).

It is easy to prove that (M, P, g,[[-,-]]) is a Leibniz manifold.

A Leibniz manifold (M, P, g, [[-,*]]) such that P and g is a skew - symmetric resp.
symmetric tensor field is called almost metriplectic manifold.

Let (M, P,g,][-,-]] be an almost metriplectic manifold. If there exists hy, hy €

C* (M) such that P(df,dhs) = 0 and g(df,dh;1) =0 for all f € C*(M), then:

(4) [[f, b1 + ho]] = [f, (h1, ho)],  for all f e C>(M).

In this case, we have:

(5) [[f, h1 + ho]] = P(df,dhy) + g(df,dhs), for all fe C®(M).

If (z°),i = 1,n are local coordinates on M, the differential system given by:

6) @' =" +ha)] = PGS + g5, i j=Tn

with P¥ = P(dx',dz?) and ¢g¥ = g(dz’,dx?), is called the almost metriplectic
system on (M, P, g, [[-,-]]) associated to hy, he € C°°(M) which satisfies the conditions
P(df,dhs) = 0 and g(df,dhy) =0 for all f € C*°(M).

Let be a Hamilton-Poisson system on M described by the Poisson tensor P = (P)
and the Hamiltonian hy € C*°(M) with the Casimir hy € C°(M) (i.e. P92 =0
for 4,7 = 1,n ). The differential equations of the Hamilton-Poisson system are the
following:

(1) =PIl i=Tn.

We determine the matrix g = (¢*) such that g% % =0 where:

iy Ohy ijrn _ Ohi Ohy o
(8) 9" (x) = k:;k#(axk) . g (x) = D D for i j.

The revised system of the Hamilton - Poisson system (7) is:

(9)  qt=PUou y giidhy Ty,

Oz Oz
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The real valued 3- dimensional Maxwell-Bloch equations from laser - matter dy-
namics are usually written as:

(10) il(t) = 22(t), %) =2 (t)23(t), @3(t) = —2'(t)23(t), t€R.

The dynamics (10) is described by the Poisson tensor P; and the Hamiltonian hq 1
given by:

B 0 —z3 22
(11) P =(P’)= x3 0 0 . hia(z) = %(ajl)2 + 23,
—z? 0 0

or by the Poisson tensor P, and the Hamiltonian hy ; given by:

0 1 0
(12) Po=(P)=| -1 0 a' |, hoa(z)=3(2?)*+ (%)%
0 -zt 0

The dynamics (10) can be written in the matrix form:

(13)  @(t) = Pu(x(t) - Vi (e(t), or i(t) = Pa(z(t)) - Vhoa(2(1)),

where i(t) = (i1(t),#2(t),#3(t))T and Vh(x(t)) is the gradient of h with respect
to the canonical metric on R>.

The dynamics (10) has the Hamilton-Poisson formulation (R®, Py, hy 1), with
the Casimir hy o € C®(R?) given by:

(14)  hip(z) = 5[(@%)% + (@)%,

Applying (8) for P = Py, hi(z) = hy1(x) and ha(x) = hy 2(z) we obtain the sym-
metric tensor g7 which is given by the matrix:

—1 0 xt
a=| 0 —(')?-1 0
2 0 —(z1)?

Using (9) for the Hamilton- Poisson system (R?’, Pi,hi1), h12 and g1 we obtain
the revised Mazwell-Bloch equations associated to (Pi,h11,h12):

(15) @t =2+ 22, i? =atad — (2)22? — 22, @3 = —ala? — (21)225.

Also, the Hamilton-Poisson formulation (R®) P, hg 1) of the dynamics (10) has
the Casimir hy o € C®(R?) given by:

(16) hgg(l‘) = %(Z‘l)Q + 333

and its associated symmetric tensor g, given by the matrix:

—(22)? — (23)? 0 0
go = 0 (@) a%2®
0 22 —(2?)?
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In this case, for the Hamilton- Poisson system (R?’, Py, ho.1), ha o and go we obtain
the revised Mazwell-Bloch equations associated to (Pa,ha1,h22):

(17) @t =22 -2l (2?)? — 2l (2®)?, 3% = 2led 4+ 2223, i3 = —axla? — (2?)2.

3 The dynamical system associated to Maxwell -
Bloch equations on a Leibniz algebroid

In this section we refer to the dynamical systems on Leibniz algebroids. For more
details can be consult the paper [2].

A Leibniz algebroid structure on a vector bundle 7 : E — M is given by a bracket
( bilinear operation ) [-,-] on the space of sections Sec(w) and two vector bundle
morphisms p1,p2 : B — TM ( called the left resp. right anchor ) such that for all
01,02 € Sec(m) and f,g € C°(M), we have:

(18) [fo1,902] = fpi(o1)(g)o2 — gpa(o2)(f)o1 + fglo1, o2].

A vector bundle 7 : E — M endowed with a Leibniz algebroid structure on F , is
called Leibniz algebroid over M and denoted by (E, [, ], p1, p2)-

In the paper [2], it proved that a Leibniz algebroid structure on a vector bundle
m: E — M is determined by a linear contravariant 2- tensor field on manifold E* of
the dual vector bundle n* : E* — M. More precisely , if A is a linear 2 - tensor field
on E* then the bracket [-,]a of functions is given by:

(19) [f,9la = A(df, dg).

Let (z'),i = 1,n be a local coordinate system on M and let {ej,...,en} be a
basis of local sections of E. We denote by {e!, ..., e™} the dual basis of local sections
of E* and (x%,y%) ( resp., (x%,&,) ) the corresponding coordinates on E ( resp., E* ).
Locally, the linear 2 - tensor A has the form:

(20) A =Chuzg ® 55 + Plase; © 507 — Prader @ e
with C% pi., pb, € C®°(M), i =1,n, a,b,d=T1,m.

We call a dynamical system on Leibniz algebroid m : E — M , the dynamical
system associated to vector field X, with h € C°°(M) given by:

(21)  Xu(f) = A(df,dh), forall fe C>®(M).

Locally, the dynamical system (21) is given by:

(22) o= [Ca, h]n = Chlafd + pladie, @' = [2",h]a = —ph,5¢-.

Let the vector bundle 7 : E = R* x R* — R® and 7* : E* = R® x (R*)* — R® its
dual. We consider on E* the linear 2 - tensor field A , the anchors py, ps : Sec(m) —
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T(R?) and the function h given by:

0 —&3x3  &oa? 0 —z3 22
(23) P= &3 0 —&2t cop=| 2° 0 0
—&a? ot 0 -2 0 0
0 -1 0
(24) pp=1|1 0 -2t and h(x,§) = 22& + 23€3.
0 zt 0

Proposition 3.1.([2]) The dynamical system (22) on the Leibniz algebroid (R x
R® P, p1, p2) associated to function h, where P, py, pa, h are given by (23) and (24) is:

& o= 2@ - 1)& —a?(2® - 1) it = a?
(25) & = - 55151 ) i = z'a?
& = 2% ¥’ = —axla?

The dynamical system (25) is called the Mazwell - Bloch equations on the Leibniz
algebroid 7 : E = R® x R® — R>.

4  The fractional Maxwell - Bloch equations

Let f :[a,b] = R and a € R, > 0. The Riemann - Liouville fractional derivative
at to left of a is the function f — D f , where:

DEF0) = ey =) | =97 70 = Faas.

with m € N* such that m — 1 < a < m,T' is the Euler gamma function and
(%)m = % o % o. %. Clearly, if o« — 1 then D f(t) = %.
We have ( see, [3] ):

(i) If f(t) = ¢, (V)¢ € [a, 0], DFf(t) =0.

(i) If f2(t) = £, (V) € [a,b], then D§ fy(t) = rro2lstr—e.

(i) Dg(ufi(t) +vfa(t)) = uDg fi(t) + vDy fa(t), for all u,v € R.

For @« € R,a > 0 and a manifold M, let (T*(M),n*, M) the fractional tan-
gent bundle to M ( see [3] ). Locally, if zg € U and ¢ : I — M is a curve
given by z¢ = z'(t), (V )t € I, on (m*)~Y(U) € T*(M), the coordinates of the class
([cg,) € TQ(M) are (2, y"(®), where:

(26) 't =x'(0), ¢y = Dxi(t),i =1, n.

(1+ )

Let D*(U) the module of 1 - forms on U. The fractional exterior derivative
d*: C>®(U) - D), f— d*(f) (see [3]), is given by:

(27) d*(f) = d(z")*D%(f), where

a ' af(zt,..., a2t sttt z"
(28) D3 f(x) = T(- (x)f L dat ) tayads.
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We denote by X*(U) the module of fractional vector fields generated by {D2;, i =

[e3

n}. The fractional differentiable equations associated to X € X*(U), where

al

1,
X =X D% with X €C(U) is defined by:

at

(29)  Dfai(t) = X (x(t)), i =T,n.

Let f—f’ resp. 3 be a skew-symmetric resp. symmetric fractional 2— tensor field on
M. We define the bracket [, (+,-)]* : C®°(M) x (C®(M) x C>*(M)) — C>®(M) by:

(30)  [f, (b, ho)]* = P(d*f,dhy) + 9(d* f,d"ha), (V)f,h1,ha € C(M).
The fractional vector field )a( hih, defined by

31) X = [f, (he, h2)]®,  (9)f € C=(M).

is called the fractional almost Leibniz vector field.
(0%
Locally, the fractional almost Leibniz system associated to (P,g, hi,he) on M is

(03
the differential system associated to Xp,p,, that is:
. ot aij
(32) Dgat(t) =P DShy+g DS hs.
(0% o « «
Proposition 4.1. The fractional almost Leibniz system associated to (P, g, hy, ha)

[0 [e3% . «@
on R®, where P = Py, g =g,, hy = L(ah) o4 (2%)™ and hy = (2?) T4 1 (23)1He
18:

D¢zt = T(1+a)z?+ 02+ a)zta®
(33) Dga? = A2+ a)z'a® — (21)22? — 2?]
Dga® = IT(2+ a)[—z'z? — (z1)%2?]

Proof. The equations (32) are written in the following matrix form:

D?;pl o Dglhl Dg1h2

(34) Dz® | =P | pohy [ +9]| D%hy
D?xig o a a

D% hy D% hy

[}

We have D%hy = 30(2+ a)z!, D%hy =0, D%hy = T(1+a), D%hy =
0, Dfhe=3T(2+a)a?, Dihy = 3T(2+ a)a?,
With P; given by (11) and g4, k1, he , the system (34) becomes:
D¢t 0 -z 22 %F(Z + o)zt

Dex? | = x3 0 0 0 +
D¢ a? -2 0 0 I'l+a)

8
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-1 0 x! 0
+ 0 —(@H)?-1 0 %P(2 + a)x?
x! 0 —(z1)? ;02 + a)a?
By direct computation we obtain the equations (33). O

Similarly we prove the following proposition.
[e% « «
Proposition 4.2. The fractional almost Leibniz system associated to (P, 3, hi,ho)
(0% « «
on R, where P = Py, = g5, hy = 5(«*)" 45 (%) and hy = 5(2") 4 (2%)"
18:

Dzt = A2+ a)z? — 21 (2?)? — 21 (2®)]
(35) Dga? = 12+ a)z'a® +T(1 + a)z?s?
Dfxd = —iT(2+ a)z'a® —T(1 + a)(2?)?

The differential system (33) resp.(35) is called the revised fractional Mazwell-Bloch
equations associated to Hamilton-Poisson realization (R*, Py, h1,1) resp. (R, Py, ha1).

If in (33) resp. (35), we take @ — 1, then one obtain the revised Maxwell-Bloch
equations (15) resp. (17).

5 The fractional Maxwell - Bloch equations on a
fractional Leibniz algebroid

If E is a Leibniz algebroid over M then, in the description of fractional Leibniz
algebroid , the role of the tangent bundle is played by the fractional tangent bundle
T*M to M. For more details about this subject see [3].

A fractional Leibniz algebroid structure on a vector bundle 7 : E — M is given
by a bracket [-,-]* on the space of sections Sec(w) and two vector bundle morphisms

D1, po : B — T*M ( called the left resp. right fractional anchor) such that for all
01,09 € Sec(m) and f,g € C*°(M) we have:

[eav eb]a = gbec
(36) o o
[fo1,902] = fpi(o1)(9)o2 — gpa(02)(f)or + fyglor, o2] .
A vector bundle 7 : E — M endowed with a fractional Leibniz algebroid structure

on E , is called fractional Leibniz algebroid over M and denoted by (E, [-,-]%, Py, ps)-
A fractional Leibniz algebroid structure on a vector bundle 7 : E — M is deter-

mined by a linear fractional 2 - tensor field K on the dual vector bundle 7* : E* — M
(' see [3]). Then the bracket [-, -]X is defined by:

of
(37) [f:9)es = A (@7, d*Fg), (V) [f.g € C=(E),

where

(38)  dPf =d(a")*D f +d(&)PDL f = d*(f) + d°(f).
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If (z%), (2% y®) resp., (z,&,) for i = 1,n, a = 1,m are coordinates on M, E resp.

e
E*, then the linear fractional tensor A on E* has the form:

af 8 g, o 8 ol B8
(39) A =Ch&Dg, @ Dg, + p1oDg, @ D — pya D3 @ DY

We call a fractional dynamical system on (E,[-,-]%, py, py), the fractional system

B
«
associated to vector field X, with h € C°°(E*) given by:

10)  Xo(f) =K (@8F,d0h), forall [eC(E")

Locally, the dynamical system (40) reads:

Dty = [6ar hlos = CLEDZ h+ py, Do

(41) R e
Dyt = [a,h] s = o, DL h

>0

If PP = (C4¢,), p1 = (%lla) and pg = (%;a) then the dynamical system (41) can
be written in the matrix form:

Dl Dglh D% Dot D¢ h
(42) D¢, | =PP| Dh |+pi | D%h |, | Dfa® | =—pa| Dgh
D& Dy, Dgsh Dy’ Dlh

Proposition 5.1.Let the dual 7 : E* = R® x (R*)* — R® of the vector bundle

m:E=R**xR*— R>and o> 0,0 > 0. Let K defined by the matriz P® and %1,%2,h
given by:

0 —&323 Eyx? 0 -z 22
PO=| &a® 0 —qat | p=| 2 0 0 |,
—€2$2 flxl 0 —z? 0 0
0 -1 0
pp=1 1 0 —a' | ‘&= (2*)&)" + (=) (&)"
0 ! 0

The fractional dynamical system (41) on the fractional Leibniz algebroid (R® x
R3. P, p1, p2) associated to the function h is :

DJ& =T (1+ B)(—&s(2?)%a® + &a?(a®)*)+
+T(1 + a)(—23(&2)° + 2%(&)P)

DJ& = ~T(1+ B)z' (a%)&,

DJ& =T(1+ B)a'(a?)€

Diz' =T(1+ f)(x?)”

D&a? =T(1 4+ Bzt (z3)

D¢a? = —T(1 + B)x! (2?)
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The fractional dynamical system (43) is the (o, 8)— fractional dynamical system
associated to fractional Maxwell - Bloch equations.

If « — 1,8 — 1, the fractional system (43) reduces to the Maxwell - Bloch
equations (25) on the Leibniz algebroid 7 : E = R* x R® — R®. Conclusion. The
numerical integration of the fractional Maxwell- Bloch systems presented in this paper
will be discussed in future papers.
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