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1 Introduction

It is well known that many dynamical systems turned out to be Hamilton - Poisson
systems. Among other things, an important role is played by the Maxwell - Bloch
equations from laser - matter dynamics. More details can be found in [1], [4] and M.
Puta [5].

In this paper the revised and the dynamical systems associated to Maxwell - Bloch
equations on a Leibniz algebroid are discussed.

Derivatives of fractional order have found many applications in recent studies in
mechanics, physics and economics. Some classes of fractional differentiable systems
have studied in [3]. In this paper we present some fractional Maxwell- Bloch equations
associated to Hamilton - Poisson systems or defined on a fractional Leibniz algebroid.

2 The revised Maxwell - Bloch equations

Let C∞(M) be the ring of smooth functions on a n - dimensional smooth manifold
M . A Leibniz bracket on M is a bilinear map [·, ·] : C∞(M) × C∞(M) → C∞(M)
such that it is a derivation on each entry, that is, for all f, g, h ∈ C∞(M) the following
relations hold:

(1) [fg, h] = [f, h]g + f [g, h] and [f, gh] = g[f, h] + [f, g]h.
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We will say that the pair (M, [·, ·]) is a Leibniz manifold. If the bilinear map [·, ·]
verify only the first equality in (1), we say that [·, ·] is a left Leibniz bracket and
(M, [·, ·]) is an almost Leibniz manifold.

Let P and g be two contravariant 2 - tensor fields on M . We define the map
[·, (·, ·)] : C∞(M)× (C∞(M)× C∞(M)) → C∞(M) by:

(2) [f, (h1, h2)] = P (df, dh1) + g(df, dh2), for all f, h1, h2 ∈ C∞(M).

We consider the map [[·, ·]] : C∞(M)× C∞(M) → C∞(M) defined by:

(3) [[f, h]] = [f, (h, h)] = P (df, dh) + g(df, dh), for all f, h ∈ C∞(M).

It is easy to prove that (M,P, g, [[·, ·]]) is a Leibniz manifold.
A Leibniz manifold (M, P, g, [[·, ·]]) such that P and g is a skew - symmetric resp.

symmetric tensor field is called almost metriplectic manifold.
Let (M, P, g, [[·, ·]] be an almost metriplectic manifold. If there exists h1, h2 ∈

C∞(M) such that P (df, dh2) = 0 and g(df, dh1) = 0 for all f ∈ C∞(M), then:

(4) [[f, h1 + h2]] = [f, (h1, h2)], for all f ∈ C∞(M).
In this case, we have:

(5) [[f, h1 + h2]] = P (df, dh1) + g(df, dh2), for all f ∈ C∞(M).

If (xi), i = 1, n are local coordinates on M, the differential system given by:

(6) ẋi = [[xi, h1 + h2]] = P ij ∂h1
∂xj + gij ∂h2

∂xj , i, j = 1, n

with P ij = P (dxi, dxj) and gij = g(dxi, dxj), is called the almost metriplectic
system on (M, P, g, [[·, ·]]) associated to h1, h2 ∈ C∞(M) which satisfies the conditions
P (df, dh2) = 0 and g(df, dh1) = 0 for all f ∈ C∞(M).

Let be a Hamilton-Poisson system on M described by the Poisson tensor P = (P ij)
and the Hamiltonian h1 ∈ C∞(M) with the Casimir h2 ∈ C∞(M) ( i.e. P ij ∂h2

∂xj = 0
for i, j = 1, n ). The differential equations of the Hamilton-Poisson system are the
following:

(7) ẋi = P ij ∂h1
∂xj , i, j = 1, n.

We determine the matrix g = (gij) such that gij ∂h1
∂xj = 0 where:

(8) gii(x) = −
n∑

k=1, k 6=i

(
∂h1

∂xk
)2, gij(x) =

∂h1

∂xi

∂h1

∂xj
for i 6= j.

The revised system of the Hamilton - Poisson system (7) is:

(9) ẋi = P ij ∂h1
∂xj + gij ∂h2

∂xj , i, j = 1, n.
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The real valued 3- dimensional Maxwell-Bloch equations from laser - matter dy-
namics are usually written as:

(10) ẋ1(t) = x2(t), ẋ2(t) = x1(t)x3(t), ẋ3(t) = −x1(t)x2(t), t ∈ R.

The dynamics (10) is described by the Poisson tensor P1 and the Hamiltonian h1,1

given by:

(11) P1 = (P ij
1 ) =




0 −x3 x2

x3 0 0
−x2 0 0


 , h1,1(x) = 1

2 (x1)2 + x3,

or by the Poisson tensor P2 and the Hamiltonian h2,1 given by:

(12) P2 = (P ij
2 ) =




0 1 0
−1 0 x1

0 −x1 0


 , h2,1(x) = 1

2 (x2)2 + 1
2 (x3)2.

The dynamics (10) can be written in the matrix form:

(13) ẋ(t) = P1(x(t)) · ∇h1,1(x(t)), or ẋ(t) = P2(x(t)) · ∇h2,1(x(t)),

where ẋ(t) = (ẋ1(t), ẋ2(t), ẋ3(t))T and ∇h(x(t)) is the gradient of h with respect
to the canonical metric on R3.

The dynamics (10) has the Hamilton-Poisson formulation (R3, P1, h1,1), with
the Casimir h1,2 ∈ C∞(R3) given by:

(14) h1,2(x) = 1
2 [(x2)2 + (x3)2].

Applying (8) for P = P1, h1(x) = h1,1(x) and h2(x) = h1,2(x) we obtain the sym-
metric tensor g1 which is given by the matrix:

g1 =



−1 0 x1

0 −(x1)2 − 1 0
x1 0 −(x1)2


 .

Using (9) for the Hamilton- Poisson system (R3, P1, h1,1), h1,2 and g1 we obtain
the revised Maxwell-Bloch equations associated to (P1, h1,1, h1,2):

(15) ẋ1 = x2 + x1x3, ẋ2 = x1x3 − (x1)2x2 − x2, ẋ3 = −x1x2 − (x1)2x3.

Also, the Hamilton-Poisson formulation (R3, P2, h2,1) of the dynamics (10) has
the Casimir h2,2 ∈ C∞(R3) given by:

(16) h2,2(x) = 1
2 (x1)2 + x3

and its associated symmetric tensor g2 given by the matrix:

g2 =



−(x2)2 − (x3)2 0 0

0 −(x3)2 x2x3

0 x2x3 −(x2)2


 .
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In this case, for the Hamilton- Poisson system (R3, P2, h2,1), h2,2 and g2 we obtain
the revised Maxwell-Bloch equations associated to (P2, h2,1, h2,2):

(17) ẋ1 = x2 − x1(x2)2 − x1(x3)2, ẋ2 = x1x3 + x2x3, ẋ3 = −x1x2 − (x2)2.

3 The dynamical system associated to Maxwell -
Bloch equations on a Leibniz algebroid

In this section we refer to the dynamical systems on Leibniz algebroids. For more
details can be consult the paper [2].

A Leibniz algebroid structure on a vector bundle π : E → M is given by a bracket
( bilinear operation ) [·, ·] on the space of sections Sec(π) and two vector bundle
morphisms ρ1, ρ2 : E → TM ( called the left resp. right anchor ) such that for all
σ1, σ2 ∈ Sec(π) and f, g ∈ C∞(M), we have:

(18) [fσ1, gσ2] = fρ1(σ1)(g)σ2 − gρ2(σ2)(f)σ1 + fg[σ1, σ2].

A vector bundle π : E → M endowed with a Leibniz algebroid structure on E , is
called Leibniz algebroid over M and denoted by (E, [·, ·], ρ1, ρ2).

In the paper [2], it proved that a Leibniz algebroid structure on a vector bundle
π : E → M is determined by a linear contravariant 2- tensor field on manifold E∗ of
the dual vector bundle π∗ : E∗ → M . More precisely , if Λ is a linear 2 - tensor field
on E∗ then the bracket [·, ·]Λ of functions is given by:

(19) [f, g]Λ = Λ(df, dg).

Let (xi), i = 1, n be a local coordinate system on M and let {e1, . . . , em} be a
basis of local sections of E. We denote by {e1, . . . , em} the dual basis of local sections
of E∗ and (xi, ya) ( resp., (xi, ξa) ) the corresponding coordinates on E ( resp., E∗ ).
Locally, the linear 2 - tensor Λ has the form:

(20) Λ = Cd
abξd

∂
∂ξa

⊗ ∂
∂ξb

+ ρi
1a

∂
∂ξa

⊗ ∂
∂xi − ρi

2a
∂

∂xi ⊗ ∂
∂ξa

,

with Cd
ab, ρ

i
1a, ρi

2a ∈ C∞(M), i = 1, n, a, b, d = 1,m.
We call a dynamical system on Leibniz algebroid π : E → M , the dynamical

system associated to vector field Xh with h ∈ C∞(M) given by:

(21) Xh(f) = Λ(df, dh), for all f ∈ C∞(M).

Locally, the dynamical system (21) is given by:

(22) ξ̇a = [ξa, h]Λ = Cd
abξd

∂h
∂ξb

+ ρi
1a

∂h
∂xi , ẋi = [xi, h]Λ = −ρi

2a
∂h
∂ξa

.

Let the vector bundle π : E = R3 ×R3 → R3 and π∗ : E∗ = R3 × (R3)∗ → R3 its
dual. We consider on E∗ the linear 2 - tensor field Λ , the anchors ρ1, ρ2 : Sec(π) →



54 Mihai Ivan, Gheorghe Ivan and Dumitru Opriş

T (R3) and the function h given by:

(23) P =




0 −ξ3x
3 ξ2x

2

ξ3x
3 0 −ξ1x

1

−ξ2x
2 ξ1x

1 0


 , ρ1 =




0 −x3 x2

x3 0 0
−x2 0 0




(24) ρ2 =




0 −1 0
1 0 −x1

0 x1 0


 and h(x, ξ) = x2ξ2 + x3ξ3.

Proposition 3.1.([2]) The dynamical system (22) on the Leibniz algebroid (R3 ×
R3, P, ρ1, ρ2) associated to function h, where P, ρ1, ρ2, h are given by (23) and (24) is:

(25)





ξ̇1 = x3(x2 − 1)ξ2 − x2(x3 − 1)ξ3

ξ̇2 = −x3x1ξ1

ξ̇3 = x1x2ξ1

,





ẋ1 = x2

ẋ2 = x1x3

ẋ3 = −x1x2

The dynamical system (25) is called the Maxwell - Bloch equations on the Leibniz
algebroid π : E = R3 ×R3 → R3.

4 The fractional Maxwell - Bloch equations

Let f : [a, b] → R and α ∈ R, α > 0. The Riemann - Liouville fractional derivative
at to left of a is the function f → Dα

t f , where:

Dα
t f(t) =

1
Γ(m− α)

(− d

dt
)m

∫ t

a

(t− s)m−α−1(f(s)− f(a))ds,

with m ∈ N∗ such that m − 1 ≤ α ≤ m, Γ is the Euler gamma function and
( d

dt )
m = d

dt ◦ d
dt ◦ ... ◦ d

dt . Clearly, if α → 1 then Dα
t f(t) = df

dt .
We have ( see, [3] ):

(i) If f(t) = c, (∀)t ∈ [a, b], Dα
t f(t) = 0.

(ii) If f1(t) = tγ , (∀)t ∈ [a, b], then Dα
t f1(t) = Γ(1+γ)

Γ(1+γ−α) t
γ−α.

(iii) Dα
t (uf1(t) + vf2(t)) = uDα

t f1(t) + vDα
t f2(t), for all u, v ∈ R.

For α ∈ R,α > 0 and a manifold M , let (Tα(M), πα, M) the fractional tan-
gent bundle to M ( see [3] ). Locally, if x0 ∈ U and c : I → M is a curve
given by xi = xi(t), (∀)t ∈ I, on (πα)−1(U) ∈ Tα(M), the coordinates of the class
([c]αx0

) ∈ Tα(M) are (xi, yi(α)), where:

(26) xi = xi(0), yi(α) = 1
Γ(1+α)D

α
t xi(t), i = 1, n.

Let Dα(U) the module of 1 - forms on U . The fractional exterior derivative
dα : C∞(U) → Dα(U), f → dα(f) ( see [3] ), is given by:

(27) dα(f) = d(xi)αDα
xi(f), where

(28) Dα
xif(x) = 1

Γ(1−α)

∫ xi

0
∂f(x1,...,xi−1,s,xi+1,...,xn)

∂xi
1

(xi−s)α ds.
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We denote by Xα(U) the module of fractional vector fields generated by {Dα
xi , i =

1, n}. The fractional differentiable equations associated to
α

X ∈ Xα(U), where
α

X =
α

X
i

Dα
xi with

α

X
i

∈ C∞(U) is defined by:

(29) Dα
t xi(t) =

α

X
i

(x(t)), i = 1, n.

Let
α

P resp.
α
g be a skew-symmetric resp. symmetric fractional 2− tensor field on

M . We define the bracket [·, (·, ·)]α : C∞(M)× (C∞(M)× C∞(M)) → C∞(M) by:

(30) [f, (h1, h2)]α =
α

P (dαf, dαh1) +
α
g(dαf, dαh2), (∀)f, h1, h2 ∈ C∞(M).

The fractional vector field
α

Xh1h2 defined by

(31)
α

Xh1h2 = [f, (h1, h2)]α, (∀)f ∈ C∞(M).

is called the fractional almost Leibniz vector field.

Locally, the fractional almost Leibniz system associated to (
α

P ,
α
g, h1, h2) on M is

the differential system associated to
α

Xh1h2 , that is:

(32) Dα
t xi(t) =

α

P
ij

Dα
xj h1 +

α
g

ij
Dα

xj h2.

Proposition 4.1. The fractional almost Leibniz system associated to (
α

P ,
α
g,

α

h1,
α

h2)

on R3, where
α

P = P1,
α
g = g1,

α

h1 = 1
2 (x1)1+α+(x3)α and

α

h2 = 1
2 (x2)1+α+ 1

2 (x3)1+α

is:

(33)





Dα
t x1 = Γ(1 + α)x2 + 1

2Γ(2 + α)x1x3

Dα
t x2 = 1

2Γ(2 + α)[x1x3 − (x1)2x2 − x2]

Dα
t x3 = 1

2Γ(2 + α)[−x1x2 − (x1)2x3]

Proof. The equations (32) are written in the following matrix form:

(34)




Dα
t x1

Dα
t x2

Dα
t x3


 =

α

P




Dα
x1

α

h1

Dα
x2

α

h1

Dα
x3

α

h1


 +

α
g




Dα
x1

α

h2

Dα
x2

α

h2

Dα
x3

α

h2


 .

We have Dα
x1

α

h1 = 1
2Γ(2 + α)x1, Dα

x2

α

h1 = 0, Dα
x3

α

h1 = Γ(1 + α), Dα
x1

α

h2 =

0, Dα
x2

α

h2 = 1
2Γ(2 + α)x2, Dα

x3

α

h2 = 1
2Γ(2 + α)x3,

With P1 given by (11) and g1,
α

h1,
α

h2 , the system (34) becomes:




Dα
t x1

Dα
t x2

Dα
t x3


 =




0 −x3 x2

x3 0 0
−x2 0 0







1
2Γ(2 + α)x1

0
Γ(1 + α)


 +
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+



−1 0 x1

0 −(x1)2 − 1 0
x1 0 −(x1)2







0
1
2Γ(2 + α)x2

1
2Γ(2 + α)x3


.

By direct computation we obtain the equations (33). 2

Similarly we prove the following proposition.

Proposition 4.2. The fractional almost Leibniz system associated to (
α

P ,
α
g,

α

h1,
α

h2)

on R3, where
α

P = P2,
α
g = g2,

α

h1 = 1
2 (x2)1+α+ 1

2 (x3)1+α and
α

h2 = 1
2 (x1)1+α+(x3)α

is:

(35)





Dα
t x1 = 1

2Γ(2 + α)[x2 − x1(x2)2 − x1(x3)2]

Dα
t x2 = 1

2Γ(2 + α)x1x3 + Γ(1 + α)x2x3

Dα
t x3 = − 1

2Γ(2 + α)x1x2 − Γ(1 + α)(x2)2

The differential system (33) resp.(35) is called the revised fractional Maxwell-Bloch
equations associated to Hamilton-Poisson realization (R3, P1, h1,1) resp. (R3, P2, h2,1).

If in (33) resp. (35), we take α → 1, then one obtain the revised Maxwell-Bloch
equations (15) resp. (17).

5 The fractional Maxwell - Bloch equations on a
fractional Leibniz algebroid

If E is a Leibniz algebroid over M then, in the description of fractional Leibniz
algebroid , the role of the tangent bundle is played by the fractional tangent bundle
TαM to M . For more details about this subject see [3].

A fractional Leibniz algebroid structure on a vector bundle π : E → M is given
by a bracket [·, ·]α on the space of sections Sec(π) and two vector bundle morphisms
α
ρ1,

α
ρ2 : E → TαM ( called the left resp. right fractional anchor) such that for all

σ1, σ2 ∈ Sec(π) and f, g ∈ C∞(M) we have:

(36)

{
[ea, eb]α = Cc

abec

[fσ1, gσ2]α = f
α
ρ1(σ1)(g)σ2 − g

α
ρ2(σ2)(f)σ1 + fg[σ1, σ2]α.

A vector bundle π : E → M endowed with a fractional Leibniz algebroid structure
on E , is called fractional Leibniz algebroid over M and denoted by (E, [·, ·]α,

α
ρ1,

α
ρ2).

A fractional Leibniz algebroid structure on a vector bundle π : E → M is deter-

mined by a linear fractional 2 - tensor field
α

Λ on the dual vector bundle π∗ : E∗ → M
( see [3]). Then the bracket [·, ·]α

Λ
is defined by:

(37) [f, g]α
Λ

β =
α

Λ
β

(dαβf, dαβg), (∀) f, g ∈ C∞(E∗),
where

(38) dαβf = d(xi)αDα
xif + d(ξa)βDβ

ξa
f = dα(f) + dβ(f).
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If (xi), (xi, ya) resp., (xi, ξa) for i = 1, n, a = 1,m are coordinates on M, E resp.

E∗, then the linear fractional tensor
α

Λ
β

on E∗ has the form:

(39)
α

Λ
β

= Cd
abξdD

β
ξa
⊗Dβ

ξb
+

α
ρ

i

1aDβ
ξa
⊗Dα

xi − α
ρ

i

2aDα
xi ⊗Dβ

ξa
.

We call a fractional dynamical system on (E, [·, ·]α,
α
ρ1,

α
ρ2), the fractional system

associated to vector field
α

X
β

h with h ∈ C∞(E∗) given by:

(40)
α

X
β

h(f) =
α

Λ
β

(dαβf, dαβh), for all f ∈ C∞(E∗).

Locally, the dynamical system (40) reads:

(41)





Dα
t ξa = [ξa, h]α

Λ
β = Cd

abξdD
β
ξb

h +
α
ρ

i

1aDα
xih

Dα
t xi = [xi, h]α

Λ
β = −α

ρ
i

2aDβ
ξa

h

If P β = (Cd
abξd), ρ1 = (

α
ρ

i

1a) and ρ2 = (
α
ρ

i

2a) then the dynamical system (41) can
be written in the matrix form:

(42)




Dβ
t ξ1

Dβ
t ξ2

Dβ
t ξ1


 = P β




Dβ
ξ1

h

Dβ
ξ2

h

Dβ
ξ3

h


+ρ1




Dα
x1h

Dα
x2h

Dα
x3h


 ,




Dα
t x1

Dα
t x2

Dα
t x3


 = −ρ2




Dβ
ξ1

h

Dβ
ξ2

h

Dβ
ξ1

h


 .

Proposition 5.1.Let the dual π∗ : E∗ = R3 × (R3)∗ → R3 of the vector bundle

π : E = R3×R3 → R3 and α > 0, β > 0. Let
α

Λ defined by the matrix P β and
α
ρ1,

α
ρ2, h

given by:

P β =




0 −ξ3x
3 ξ2x

2

ξ3x
3 0 −ξ1x

1

−ξ2x
2 ξ1x

1 0


 ,

α
ρ1 =




0 −x3 x2

x3 0 0
−x2 0 0


 ,

α
ρ2 =




0 −1 0
1 0 −x1

0 x1 0


 , h(x, ξ) = (x2)α(ξ2)β + (x3)α(ξ3)β .

The fractional dynamical system (41) on the fractional Leibniz algebroid (R3 ×
R3, P, ρ1, ρ2) associated to the function h is :

(43)





Dβ
t ξ1 = Γ(1 + β)(−ξ3(x2)αx3 + ξ2x

2(x3)α)+

+Γ(1 + α)(−x3(ξ2)β + x2(ξ3)β)
Dβ

t ξ2 = −Γ(1 + β)x1(x3)αξ1,

Dβ
t ξ3 = Γ(1 + β)x1(x2)αξ1

Dα
t x1 = Γ(1 + β)(x2)α

Dα
t x2 = Γ(1 + β)x1(x3)α

Dα
t x3 = −Γ(1 + β)x1(x2)α
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The fractional dynamical system (43) is the (α, β)− fractional dynamical system
associated to fractional Maxwell - Bloch equations.

If α → 1, β → 1, the fractional system (43) reduces to the Maxwell - Bloch
equations (25) on the Leibniz algebroid π : E = R3 × R3 → R3. Conclusion. The
numerical integration of the fractional Maxwell- Bloch systems presented in this paper
will be discussed in future papers.
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3 - 8, 2007, Iaşi, Romania, to appear.
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