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Abstract. The classification of curves up to affine transformations in a
finite dimensional space was studied by some different methods. In this
paper, we obtain the exact formulas of affine invariants via the equivalence
problem in view of Cartan’s theorem and then, we state a necessary and
sufficient condition for the classification of n–Curves.
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1 Introduction

This paper devoted to the study of curve invariants in an arbitrary finite dimensional
space, under the action of special affine transformations. This work was done before in
some different methods. Furthermore, these invariants were just pointed out by Spivak
[6], in the method of Cartan’s theorem, but they were not explicitly determined. Now,
we will exactly determine these invariants in view of Cartan’s theorem and of the
equivalence problem.

An affine transformation in an n−dimensional space, is generated by the action of
the general linear group GL(n,R) and then, of the translation group Rn. If we restrict
GL(n,R) to the special linear group SL(n,R) of matrices with determinant equal to
1, we have a special affine transformation. The group of special affine transformations
has n2 + n − 1 parameters. This number coincides with the dimension of the Lie
algebra of the Lie group of special affine transformations. The natural condition of
differentiability is Cn+2.

In the next section, we state some preliminaries about the Maurer–Cartan forms,
Cartan’s theorem for the equivalence problem, and a theorem about the number of
invariants in a space. In section three, we obtain the invariants and then, by them,
we classify the n−curves of the space.

2 Preliminaries

Let G ⊂ GL(n,R) be a matrix Lie group with Lie algebra g and let P : G → Mat(n×
n) be a matrix-valued function which embeds G into Mat(n×n), the vector space of
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n× n matrices with real entries. Its differential is dPB : TBG → TP (B)Mat(n× n) '
Mat(n× n).

Definition 2.1 The following form of G is called Maurer-Cartan form:

ωB = {P (B)}−1 . dPB

that it is often written ωB = P−1 . dP . The Maurer-Cartan form is the key to classi-
fying maps into homogeneous spaces of G, and this process needs the following result
(for the proof we refer to [2]):

Theorem 2.2 (Cartan) Let G be a matrix Lie group with Lie algebra g and
Maurer-Cartan form ω. Let M be a manifold on which there exists a g−valued 1-
form φ satisfying d φ = −φ∧φ. Then for any point x ∈ M there exists a neighborhood
U of x and a map f : U → G such that f∗ ω = φ. Moreover, any two such maps f1, f2

must satisfy f1 = LB ◦ f2 for some fixed B ∈ G (LB is the left action of B on G).

Corollary 2.3 Given the maps f1, f2 : M → G, then f∗1 ω = f∗2 ω, that is, this
pull-back is invariant, if and only if f1 = LB ◦ f2 for some fixed B ∈ G.

The next section is devoted to the study of some properties of n−curves invariants,
under the special affine transformations group. The number of essential parameters
(the dimension of the Lie algebra) is n2 + n− 1. The natural assumption of differen-
tiability is Cn+2.

We obtain all the invariants of an n−curve with respect to special affine transfor-
mations, and by theorem 2.2, two n−curves in Rn will be equivalent under special
affine transformations, if they differ by a left action introduced by an element of
SL(n,R) and then by a translation.

3 Classification of n−curves

Let C : [a, b] → Rn be a curve of class Cn+2 in the finite dimensional space Rn,
n−space, which satisfies the condition

det(C ′, C ′′, · · · , C(n)) 6= 0;(3.1)

we call this curve as n−curve. The condition (3.1) guarantees that C ′, C ′′, · · ·, and
C(n) are independent, and therefore, the curve does not turn into the lower dimen-
sional cases. Also, we may assume that

det(C ′, C ′′, · · · , C(n)) > 0,(3.2)

for avoiding the absolute value for its computation.
For the n−curve C, we define a new curve αC(t) : [a, b] → SL(n,R) of the following

form

αC(t) :=
(C ′, C ′′, · · · , C(n))

n
√

det(C ′, C ′′, · · · , C(n))
.(3.3)
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Obviously, this is well-defined on [a, b]. We can study this new curve with respect
to special affine transformations, that is the action of affine transformations on first,
second, ..., and nth differentiation of C. For A, the special affine transformation,
there is a unique representation A = τ ◦ B, where B is an element of SL(n,R) and
τ is a translation in Rn. If two n−curves C and C̄ coincide mod some special affine
transformation, that is, C̄ = A ◦ C, then from [4], we have

C̄ ′ = B ◦ C ′, C̄ ′′ = B ◦ C ′′, ... , C̄(n) = B ◦ C(n).(3.4)

We can relate the determinants of these curves as follows

det(C̄ ′, C̄ ′′, · · · , C̄(n)) = det(B ◦ C ′, B ◦ C ′′, · · · , B ◦ C̄(n))
= det(B ◦ (C ′, C ′′, · · · , C(n)))(3.5)
= det(C ′, C ′′, · · · , C(n)).

Hence we conclude that αC̄(t) = B ◦ αC(t) and thus αC̄ = LB ◦ αC that LB is a left
translation by B ∈ SL(n,R).

This condition is also necessary because when C and C̄ are two curves in Rn such
that for an element B ∈ SL(n,R), we have αC̄ = LB ◦ αC , thus we can write

αC̄(t) = det(C̄ ′, C̄ ′′, · · · , C̄(n))−1/n(C̄ ′, C̄ ′′, · · · , C̄(n))
= det(B ◦ (C ′, C ′′, · · · , C(n)))−1/nB ◦ (C ′, C ′′, · · · , C(n))(3.6)
= det(C ′, C ′′, · · · , C(n))−1/nB ◦ (C ′, C ′′, · · · , C(n)).

Therefore, we have C̄ ′ = B ◦C ′, and hence there exists a translation τ such that A =
τ ◦B, and so, we have C̄ = A◦C where A is an n−dimensional affine transformation.
Therefore, we have

Theorem 3.1 Two n−curves C and C̄ in Rn coincide mod some special affine
transformations that is, C̄ = A ◦ C, with A = τ ◦ B for a translation τ in Rn and
B ∈ SL(n,R), if and only if, αC̄ = LB ◦ αC , where LB is left translation by B.

From Cartan’s theorem, a necessary and sufficient condition for αC̄ = LB ◦αC by
B ∈ SL(n,R), is that for any left invariant 1-form ωi on SL(n,R) we have α∗̄

C
(ωi) =

α∗C(ωi), that is equivalent with α∗̄
C

(ω) = α∗C(ω), for natural sl(n,R)-valued 1-form
ω = P−1 . dP , where P is the Maurer–Cartan form.

Thereby, we must compute α∗C(P−1.dP ), which is invariant under special affine
transformations, that is, its entries are invariant functions of the n−curve. This n×
n matrix form consists of arrays that are coefficients of dt.Since α∗C(P−1 . dP ) =

α−1
C . dαC , for finding the invariants, it is sufficient to calculate the matrix αC(t)−1.

dαC(t). Thus, we compute α∗C(P−1 . dP ). We have

α−1
C = n

√
det(C ′, C ′′, · · · , C(n)) . (C ′, C ′′, · · · , C(n))−1.(3.7)

We assume that C is in the form (C1 C2 · · · Cn)T . By differentiating of determinant,
we have
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[det(C ′, C ′′, · · · , C(n))]′ = det(C ′′, C ′′, · · · , C(n))
+det(C ′, C ′′′, · · · , C(n))
...(3.8)
+det(C ′, C ′′, · · · , C(n−1), C(n+1))

= det(C ′, C ′′, · · · , C(n−1), C(n+1)) .

Thus, we conclude that

α′C = {det(C ′, C ′′, · · · , C(n))}−1/n ·




C ′′1 C ′′′1 · · · C
(n)
1

C ′′2 C ′′′2 · · · C
(n)
2

...
...

...
C ′′3 C ′′′3 · · · C

(n)
n )




(3.9)

− 1
n

det(C ′, C ′′, C ′′′)}−(n+1)/n ·




C ′1 C ′′1 · · · C
(n)
1

C ′2 C ′′2 · · · C
(n)
2

...
...

...
C ′3 C ′′3 · · · C

(n)
3




.

Therefore, we have α−1
C · dαC as the following matrix multiplied with dt:




a 0 · · · 0 0
1 a · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 a
0 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣

M . C(n+1) +




0
0
...
a







(3.10)

where the latest column, M . C(n+1) + (0, 0, · · · , a)T , is multiple of M by C(n+1)

added by the transpose of (0, 0, · · · , a), where M is the inverse of the matrix
(C ′, C ′′, · · · , C(n)) and also, we assumed that

a = −det(C ′, C ′′, · · · , C(n−1), C(n+1))
n det(C ′, C ′′, · · · , C(n))

.(3.11)

Using Crammer’s law, we compute M . C(n+1). If M . C(n+1) = X = (X1, X2, · · · , Xn)T ,
then M−1.X = C(n+1). Therefore, for each i = 1, 2, · · · , n we conclude that

Xi =
det(C ′, C ′′, · · · , C(i−1), C(n+1), C(i+1), · · · , C(n))

det(C ′, C ′′, · · · , C(n))
(3.12)

Finally, α−1
C · dαC is the following multiple of dt:
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


a 0 · · · 0 0 (−1)n−1 det(C′′,···,C(n+1))
det(C′,C′′,···,C(n))

1 a · · · 0 0 (−1)n−2 det(C′,C′′′,···,C(n))
det(C′,C′′,···,C(n))

...
...

. . .
...

...
...

o 0 · · · 1 a −det(C′,···,C(n−2),C(n),C(n+1))
det(C′,C′′,···,C(n))

0 0 · · · 0 1 n−1
n

det(C′,···,C(n−1),C(n+1))
det(C′,C′′,···,C(n))




,(3.13)

where the coefficient (−1)i−1 for the ith entry of the last column is provided by the
translation of C(n+1) to the nth column of the matrix

(C ′, C ′′, · · · , C(i−1), C(n+1), C(i+1), · · · , C(n)).(3.14)

Clearly, the trace of the matrix (3.13) is zero. The entries of α∗C(P−1 . dP ), and hence
the arrays of the matrix (3.13) are invariants of the group action.

Two n−curves C, C̄ : [a, b] → Rn coincide mod a special affine transformations, if
we have

det(C ′′(t), · · · , C(n+1)(t))
det(C ′(t), C ′′(t), · · · , C(n)(t))

=
det(C̄ ′′(t), · · · , C̄(n+1)(t))

det(C̄ ′(t), C̄ ′′(t), · · · , C̄(n)(t))

det(C ′(t), C ′′′(t), · · · , C(n+1)(t))
det(C ′(t), C ′′(t), · · · , C(n)(t))

=
det(C̄ ′(t), C̄ ′′′(t), · · · , C̄(n+1)(t))
det(C̄ ′(t), C̄ ′′(t), · · · , C̄(n)(t))

...(3.15)

det(C ′(t), · · · , C(n−1)(t), C(n+1))
det(C ′(t), C ′′(t), · · · , C(n)(t))

=
det(C̄ ′(t), · · · , C̄(n−1)(t), C̄(n+1))

det(C̄ ′(t), C̄ ′′(t), · · · , C̄(n)(t))
.

We may use of a proper parametrization γ : [a, b] → [0, l], such that the parameterized
curve, γ = C ◦ σ−1, satisfies in condition

det(γ′(s), γ′′(s), · · · , γ(n−1)(s), γ(n+1)(s)) = 0,(3.16)

then, the arrays on the main diagonal of α∗γ(dP . P−1) will be zero. But the last
determinant is given by the differentiation of det(γ′(s), γ′′(s), · · · , γ(n)(s)), and thus
it is sufficient to assume that

det(γ′(s), γ′′(s), · · · , γ(n)(s)) = 1.(3.17)

On the other hand, we have

C ′ = (γ ◦ σ)′ = σ′.(γ′ ◦ σ)
C ′′ = (σ′)2.(γ′′ ◦ σ) + σ′′.(γ′ ◦ σ)

...(3.18)
C(n) = (σ′)(n).(γ(n) ◦ σ) + nσ(n−1)σ′.(γ(n−1) ◦ σ)

+
n(n− 1)

2
σ(n−2)σ′′.(γ(n−2) ◦ σ) + · · ·+ σ(n).(γ′ ◦ σ)
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Therefore, the C(i)s for 1 ≤ i ≤ n, are some expressions in terms of γ(j)◦σ, 1 ≤ j ≤ n.
We conclude that

det(C ′, C ′′, · · · , C(n)) = det(σ′.(γ′ ◦ σ) , (σ′)2.(γ′′ ◦ σ) + σ′′.(γ′ ◦ σ) ,

· · · , (σ′)(n).(γ(n) ◦ σ) + nσ(n−1)σ′.(γ(n−1) ◦ σ)

+
n(n− 1)

2
σ(n−2)σ′′.(γ(n−2) ◦ σ) + · · ·+ σ(n).(γ′ ◦ σ))(3.19)

= det(σ′.(γ′ ◦ σ) , (σ′)2.(γ′′ ◦ σ) , · · · , (σ′)n.(γ(n) ◦ σ))

= σ′
n(n−1)

2 .det(γ′ ◦ σ , γ′′ ◦ σ , · · · , γ(n) ◦ σ)

= σ′
n(n−1)

2 ,

The last expression signifies σ. Therefore, we define the special affine arc length as
follows

σ(t) :=
∫ t

a

{
det(C ′(u), C ′′(u), · · · , C(n)(u))

} 2
n(n−1)

du.(3.20)

So, σ is the natural parameter for n−curves under the action of special affine trans-
formations, that is, when C is parameterized with σ, then for each special affine
transformation A, A ◦ C will also be parameterized with the same σ. Furthermore,
every n−curve parameterized with σ with respect to special affine transformations,
will lead to the following invariants

χ1 = (−1)n−1 det(C ′′, · · · , C(n+1))
χ2 = (−1)n−2 det(C ′, C ′′′, · · · , C(n))

...(3.21)
χn−1 = det(C ′, · · · , C(n−2), C(n), C(n+1)).

We call χ1, χ2, · · · , and χn−1 as (respectively) the first, second, ..., and n − 1th

special affine curvatures. In fact, we proved the following

Theorem 3.2 A curve of class Cn+2 in Rn which satisfies the condition (3.1), up
to special affine transformations has n− 1 invariants χ1, χ2, ..., and χn−1, the first,
second, ..., and n− 1th affine curvatures that are defined in formulas (3.3).

Theorem 3.3 Two n−curves C, C̄ : [a, b] → Rn of class Cn+2, that satisfy in
the condition (3.1), are special affine equivalent, if and only if, χC

1 = χC̄
1 , · · ·, and

χC
n−1 = χC̄

n−1.

Proof: The proof is completely similar to the three dimensional case [5]. The first part
of the theorem was proved above. For the other part, we assume that C and C̄ are
n−curves of class Cn+2 satisfying the conditions (resp.):

det(C ′, C ′′, · · · , C(n)) > 0, det(C̄ ′, C̄ ′′, · · · , ¯C(n)) > 0,(3.22)

this meaning that they are not (n − 1)–curves. Also, we suppose that they have the
same same χ1, · · ·, and χn−1.
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By changing the parameter to the natural parameter (σ) discussed above, we
obtain two new curves γ and γ̄ resp. that the determinants (3.22) will be equal to 1.
We prove that γ and γ̄ are special affine equivalent, so there exists a special affine
transformation A, such that γ̄ = A ◦ γ, and then we have C̄ = A ◦ C, and the proof
will be complete.

First, we replace the curve γ with δ := τ(γ) properly, in which case δ intersects
γ̄, and τ is a translation defined by translating one point of γ to one point of γ̄. We
correspond t0 ∈ [a, b], to the intersection point of δ and γ̄; thus, δ(t0) = γ̄(t0). One
can find a unique element B of the general linear group GL(n,R), such that this
maps the basis {δ′(t0), δ′′(t0), · · · , δ(n)(t0)} of the tangent space Tδ(t0)R

3 to its basis
{γ̄′(t0), γ̄′′(t0), · · · , γ̄(n)(t0)}. So, we have B ◦ δ′(t0) = γ̄′(t0), B ◦ δ′′(t0) = γ̄′′(t0), · · ·,
and B ◦ δ(n)(t0) = γ̄(n)(t0). B also is an element of the special linear group, SL(n,R),
since we have

det(γ′(t0), γ′′(t0), · · · , γ(n)(t0)) =
= det(δ′(t0), δ′′(t0), · · · , δ(n)(t0)),(3.23)

and

det(δ′(t0), δ′′(t0), · · · , δ(n)(t0)) =

det
(
B ◦ (γ̄′(t0), γ̄′′(t0), · · · , γ̄(n)(t0))

)
,(3.24)

so, det(B) = 1. If we denote η := B ◦ δ as equal to γ̄ on [a, b], then by choosing
A = τ ◦B, the claim follows.

For the curves η and γ̄ we have (resp.)

(η′, η′′, · · · , η(n))′ =

= (η′, η′′, · · · , η(n)).




0 0 · · · 0 0 χη
1

1 0 · · · 0 0 −χη
2

0 1 · · · 0 0 χη
3

...
...

. . .
...

...
...

0 0 · · · 1 0 (−1)(n−2)χη
n−1

0 0 · · · 0 1 0




,(3.25)

and

(γ̄′, γ̄′′, · · · , γ̄(n))′ =

= (γ̄′, γ̄′′, · · · , γ̄(n)).




0 0 · · · 0 0 χγ̄
1

1 0 · · · 0 0 −χγ̄
2

0 1 · · · 0 0 χγ̄
3

...
...

. . .
...

...
...

0 0 · · · 1 0 (−1)(n−2)χγ̄
n−1

0 0 · · · 0 1 0




,(3.26)

Since, χ1, · · ·, and χn−1, are invariant under special affine transformations so, we have

χη
i = χγ

i = χγ̄
i , (i = 1, · · · , n− 1).(3.27)
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Therefore, we conclude that η and γ̄ are solutions of the ordinary differential equation
of degree n + 1:

Y n+1 + (−1)n−1χn−1Y
(n) + · · ·+ χ2 Y ′′ − χ1 Y ′ = 0,

where, Y depends on the parameter t. Due to having identical initial conditions

η(i)(t0) = B ◦ δ(t0) = γ̄(i)(t0),(3.28)

for i = 0, · · · , n, and to the generalization of the existence and uniqueness theorem of
solutions, we have η = γ̄ in a neighborhood of t0, that can be extended to all [a, b]. ut

Corollary 3.4 The number of invariants of the special affine transformations group
acting on Rn is n− 1.

This coincides with the results provided by other methods (e.g., see [1]).
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