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Abstract. In this work we use symplectic (para-)tt*-bundles to obtain
a geometric construction of (para-)pluriharmonic maps into the pseudo-
Riemannian symmetric space GL(2r,R)/Sp(R?"). We prove, that these
(para-)pluriharmonic maps are exactly the admissible (para-)pluriharmonic
maps. Moreover, we construct symplectic (para-)tt*-bundles from
(para-)harmonic bundles and analyse the related (para-)pluriharmonic
maps.
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1 Introduction

The first motivation of this work is the study of metric (para-)tt*-bundles (E, D, S, g)
over a (para-)complex manifold (M, J¢) and their relation to admissible (para-)pluri-
harmonic maps from M into the space of (pseudo-)metrics. Roughly speaking there
exists a correspondence between these objects. For metric ¢t*-bundles (with positive
definite metric) on the tangent bundle of a complex manifold this result was shown by
Dubrovin [8]. In [17, 19] we generalised it to the case of metric ¢t*-bundles on abstract
vector bundles with metrics of arbitrary signature and to para-complex geometry. So-
lutions of (metric) (para-)tt*-bundles are for example given by special (para-)complex
and special (para-)K&hler manifolds (cf. [3, 19]) and by (para-)harmonic bundles
[18, 22]. The related (para-)pluriharmonic maps are described in the given references.
The analysis [20, 21] of tt*-bundles (E = TM, D, S) on the tangent bundle of an
almost (para-)complex manifold (M, J€) shows that there exists a second interesting
class of (para-)tt*-bundles (F = TM, D, S,w), carrying symplectic forms w instead of
metrics g. These will be called symplectic (para-)tt*-bundles. Examples are given by
Levi-Civita flat nearly (para-)Kéahler manifolds (Here non-integrable (para-)complex
structures appear.) and by (para-)harmonic bundles which are discussed later in this
work. A constructive classification of Levi-Civita flat nearly (para-)Kéhler manifolds
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is subject of [4, 5].

In the context of the above mentioned correspondence it arises the question if one can
use these techniques to construct (para-)pluriharmonic maps out of symplectic (pa-
ra-)tt*-bundles and if one can characterise the obtained (para-)pluriharmonic maps.
In this paper we answer positively to this question: We associate an admissible (cf.
definition 4) (para-)pluriharmonic map from M into GL(2r, R)/Sp(R?") to a symplec-
tic (para-)tt*-bundle and show that an admissible (para-)pluriharmonic map induces
a symplectic (para-)tt*-bundle on E = M x R?". This is the analogue of the correspon-
dence discussed in the first paragraph. In other words we characterise in a geometric
fashion the class of admissible (para-)pluriharmonic maps into GL(2r,R)/Sp(R?"). In
the sequel we construct symplectic (para-)tt*-bundles from (para-)harmonic bundles
and analyse the relation between the (para-)pluriharmonic maps which are obtained
from these symplectic (para-)tt*-bundles and the (para-)pluriharmonic maps which
were found in [18, 22]. We restrict to simply connected manifolds M, since the case
of general fundamental group can be obtained like in [17, 19]. In the general case
all (para-)pluriharmonic maps have to be replaced by twisted (para-)pluriharmonic
maps.

2 Para-complex differential geometry

We shortly recall some notions and facts of para-complex differential geometry. For a
more complete source we refer to [2].

In para-complex geometry one replaces the complex structure J with J? = —1 (on a
finite dimensional vector space V') by the para-complex structure 7 € End(V) satisfying
72 = 1 and one requires that the +1-eigenspaces have the same dimension. An almost
para-complex structure on a smooth manifold M is an endomorphism-field 7, which is
a point-wise para-complex structure. If the eigen-distributions T+ M are integrable
7 is called para-complex structure on M and M is called a para-complex manifold. As
in the complex case, there exists a tensor, also called Nijenhuis tensor, which is the
obstruction to the integrability of the para-complex structure.

The real algebra, which is generated by 1 and by the para-complex unit e with e? = 1,
is called the para-complex numbers and denoted by C. For all z = x + ey € C with
z,y € R we define the para-complex conjugation as = : C — C,x + ey — = — ey and
the real and imaginary parts of z by R(z) := =, $(z) := y. The free C-module C" is a
para-complex vector space where its para-complex structure is just the multiplication
with e and the para-complex conjugation of C' extends to ~: C™ — C™, v — ©.

Note, that 2z = 22 — 2. Therefore the algebra C is sometimes called the hypercomplex
numbers. The circle S! = {z = 2 + iy € C|x? + y? = 1} is replaced by the four
hyperbolas {z = z + ey € C'| 22 — y* = +1}. We define S to be the hyperbola given
by the one parameter group {z(f) = cosh(f) + esinh(0) | § € R}.

A para-complex vector space (V,7) endowed with a pseudo-Euclidean metric g is
called para-hermitian vector space, if ¢ is T-anti-invariant, i.e. 7*g = —¢g. The para-
unitary group of V is defined as the group of automorphisms

UT(V):=Aut(V,1,9) :={L € GL(V)|[L,7] =0 and L*g = g}

and its Lie-algebra is denoted by u™(V). For C" = R"™ @ eR"™ the standard para-
hermitian structure is defined by the above para-complex structure and the metric
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g = diag(1,—1) (cf. Example 7 of [2]). The corresponding para-unitary group is given
by (cf. Proposition 4 of [2]):

Ur(Ccm") = {< ;31 i > | A, B € End(R"),ATA-B"B=1,, ATB-BTA= o} :

There exist two bi-gradings on the exterior algebra: The one is induced by the splitting

in T*M and denoted by A*FT*M = @ APT9 T*M and induces an obvious bi-
k=p+q
grading on exterior forms with values in a vector bundle E. The second is induced

by the decomposition of the para-complexified tangent bundle TM¢ = T M &g C into
the subbundles Tpl’OM and TI?’lM which are defined as the +e-eigenbundles of the
para-complex linear extension of 7. This induces a bi-grading on the C-valued exterior
forms noted AFT*MC¢ = @ AP?T*M and finally on the C-valued differential forms
k=p+q
on M Q&(M) = k@ QP-2(M). In the case (1,1) and (1+,1-) the two gradings
=p+q

induced by 7 coincide, in the sense that A1 T*M = (A1~ T*M)® C. The bundles
AP2T*M are para-complex vector bundles in the following sense: A para-complex
vector bundle of rank r over a para-complex manifold (M, 7) is a smooth real vector
bundle 7 : E — M of rank 2r endowed with a fiber-wise para-complex structure
7F € T(End (E)). We denote it by (E, 7). In the following text we always identify
the fibers of a para-complex vector bundle E of rank r with the free C-module C".
One has a notion of para-holomorphic vector bundles, too. These were extensively
studied in a common work with M.-A. Lawn-Paillusseau [14].

Let us transfer some notions of hermitian linear algebra (cf. [22]) : A para-hermitian
sesquilinear scalar product is a non-degenerate sesquilinear form h : C" x C" — C| i.e.
it satisfies (i) h is non-degenerate: Given w € C" such that for all v € C" h(v,w) = 0,
then it follows w = 0, (ii) h(v,w) = h(w,v), V v,w € C", and (iii) h(Av,w) =
Ah(v,w), VA € C; v,w € C". The standard para-hermitian sesquilinear scalar product
is given by

r
(z,w)or :=2-w = Zziwi, for z = (2%,...,2"),w= (w',...,w") € C".

The para-hermitian conjugation is defined by C' +— C" = C! for C € End(C") =
Endc(CT) and C is called para-hermitian if and only if C" = C. We denote by
herm(C") the set of para-hermitian endomorphisms and by Herm(C™) = herm(C") N
GL(r,C). We remark, that there is no notion of para-hermitian signature, since from
h(v,v) = —1 for an element v € C" we obtain h(ev,ev) = 1.

Proposition 1.  Given an element C of End(C") then it holds (Cz,w)cr =
(z,C"w)cr, Yz,w € C". The set herm(C™) is a real vector space. There is a bijective
correspondence between Herm(C™) and para-hermitian sesquilinear scalar products h
on C" given by H — h(-,-) := (H-,")or.

A para-hermitian metric h on a para-complex vector-bundle F over a para-complex
manifold (M, 1) is a smooth fiber-wise para-hermitian sesquilinear scalar product.

To unify the complex and the para-complex case we introduce some notations:
First we note J¢ where J? = €l with € € {#1}. The ecomplex unit is denoted by i,
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ie.i:=e, fore =1, and i = i, for e = —1. Further we introduce C, with C; = C
and C_; = C and S! with S} = §' and S' | = S'. In the rest of this work we extend
our language by the following e-notation: If a word has a prefix € with e € {£1}, i.e.
is of the form eX, this expression is replaced by

X X, for e = —1,
para-X, for e = 1.
The eunitary group and its Lie-algebra are

U(p,q) = or(er), fore=1, and u(p, q) = u(C7), for e =1,
U(p7 q)7 for e =—1 u(pv Q)v for e = _].v

where in the complex case (p, q) for r = p + ¢ is the hermitian signature.
Further we use the notation

Herm(C");e =1,
Hermy, ((C");e = —1,

herm(C");e =1,

Herm? (CI) :=
erm o(Co) { herm,, ,(C");e = —1,

herm;,  (C7) := {

where, for p + ¢ = r, Herm, ,(C") are the hermitian matrices of hermitian signa-
ture (p,q) and herm, ,(C") are the hermitian matrices with respect to the stan-
dard hermitian product of hermitian signature (p, ¢) on C". The standard ehermitian

sesquilinear scalar product is (z,w)cr == z-w = Y;_, z'w’, for z = (2., 27w =

(w',...,w") € C’ and we note

cose(z) = cos(x), for e = —1, and sin,(z) = sin(zx), for e = —1,
77 | cosh(x), for e =1 o sinh(z), for e = 1.

3 tt*-bundles

For the convenience of the reader we recall the definition of an ett*-bundle given in
[3, 17, 19] and the notion of a symplectic ett*-bundle [20, 21]:

Definition 1. An ett*-bundle (E, D, S) over an ecomplex manifold (M, J¢) is a real
vector bundle E — M endowed with a connection D and a section S € I'(T*M ®
End F) satisfying the ett*-equation

(3.1) R =0 forall §eR,
where R? is the curvature tensor of the connection D? defined by
(3.2) D% := Dx + cos.(0)Sx +sin.(0)Syex forall X € TM.

A symplectic ett*-bundle (E, D, S,w) is an ett*-bundle (E,D,S) endowed with the
structure of a symplectic vector bundle! (E,w), such that w is D-parallel and S is
w-symmetric, i.e. for all p € M

(3.3) w(Sx-,+) =w(-,Sx-) forall X eT,M.

Isee D. Mc Duff and D. Salamon [15]
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Remark 1.
1) It is obvious that every ett*-bundle (E,D,S) induces a family of ett*-bundles
(E, D, S%), for 6 € R, with

(3.4) S%:= D’ — D = cos.(0)S +sin.(0) S .

The same remark applies to symplectic ett*-bundles.
2) Notice that a symplectic ett*-bundle (E, D, S,w) of rank 2r carries a D-parallel
volume given by w A ... Aw.

—_———

r times

The next proposition gives explicit equations for D and S, such that (E, D, S) is
an ett*-bundle.

Proposition 2. (c¢f. [17, 19]) Let E be a real vector bundle over an ecomplex
manifold (M, J¢) endowed with a connection D and a section S € I'(T*M ® End E).
Then (E, D, S) is an ett*-bundle if and only if D and S satisfy the following equations:

(35) RP+SAS=0, SASisoftype (1,1), d®S=0 and d”S; =0.

4 Pluriharmonic maps into GL(2r,R)/Sp(R*")

In this section we present the notion of epluriharmonic maps and some properties of
epluriharmonic maps into the target space S = S(2r) := GL(2r,R)/Sp(R?").

The following notion was introduced in [1] for holomorphic and in [14] for para-
holomorphic vector bundles.

Definition 2. Let (M, J¢) be an ecomplex manifold. A connection D on TM is
called adapted if it satisfies

(4.1) DjyX =JDyX
for all vector fields which satisfy £x.J¢ = 0 (i.e. for which X +€i.J¢X is eholomorphic).

Definition 3. Let (M, J¢) be an ecomplex manifold and (N, h) a pseudo-Riemannian
manifold with Levi-Civita connection V”, D an adapted connection on M and V the
connection on T*M ® f*TN which is induced by D and V" and consider o = Vdf €
NT*M @T*M @ f*TN). Then f is epluriharmonic if and only if « is of type (1,1),
ie.

a(X,)Y) —ea(JX,JY)=0
forall X,Y € TM.

Remark 2.
1. Note, that an equivalent definition of epluriharmonicity is to say, that f is epluri-

harmonic if and only if f restricted to every ecomplex curve is harmonic. For a
short discussion the reader is referred to [3, 17, 19].

2. One knows, that every ecomplex manifold (M,J¢) can be endowed with a
torsion-free ecomplex connection D (cf. [12] in the complex and [19] Theorem 1
for the para-complex case), i.e. D is torsion-free and satisfies DJ¢ = 0. Such a
connection is adapted. In the rest of the paper, we assume, that the connection
D on (M, J¢) is also torsion-free.
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The harmonic analogue of the following proposition is well-known.

Proposition 3. Let (M, J¢) be an ecomplex manifold, X, Y be pseudo-Riemannian
manifolds and ¥ : X — Y a totally geodesic immersion. Then a map f: M — X is
epluriharmonic if and only if Vo f: M — Y is epluriharmonic.

The epluriharmonic maps obtained by our construction are exactly the admissible
epluriharmonic maps in the sense of the following general definition:

Definition 4. Let (M, J¢) be an ecomplex manifold and G/K be a locally symmetric
space with associated Cartan-decomposition g =€¢@p. A map f: (M,J¢) —» G/K is
called admissible if the ecomplex linear extension of its differential df maps TV°M to
an Abelian subspace of pCe.

Let wp be the standard symplectic form of R?", i.e. wy = 22:1 e; N ejy, where
(e;)2", is the dual of the standard basis of R?". Then we define

(4.2) Sym(wo) == {A € GL(2r,R) |wo(A-, ) = wo(-, A)}.

The adjoint of g € GL(2r,R) with respect to wy will be denoted by gf. Hence Sym(wp)
are the elements A € GL(2r, R) which satisfy AT = A.
Every element A € Sym(wp) defines a symplectic form wy on R?" by wa(-,:) =
wo(A-, ). To this interpretation corresponds an action

GL(2r,R) x Sym(wo) — Sym(wo), (g,4) — (g~ )TAg™".

This action is used to identify S(2r) and Sym(wp) by a map ¥ in the following
proposition.

Proposition 4. Let ¥ be the canonical map U : S(2r) = Sym(wy) C GL(2r,R)
where GL(2r,R) carries the pseudo-Riemannian metric induced by the Ad-invariant
trace-form. Then W is a totally geodesic immersion and a map f from an ecomplex
manifold (M, J¢) to S(2r) is epluriharmonic, if and only if the map Yo f : M —
Sym(wo) C GL(2r,R) is epluriharmonic.

Proof. The proof is done by relating the map ¥ to the well-known Cartan-immersion.
Additional information can be found in [10, 7, 9, 12].

1. First we study the identification S(2r) =Sym(wp).
GL(2r,R) operates on Sym(wg) via

GL(2r,R) x Sym(wo) — Sym(wo), (9,B)—g-B:=(g~")'Bg~".

The stabiliser of the 1g, is Sp(R?") and the action is seen to be transitive
by choosing a symplectic basis. Using the orbit-stabiliser theorem we get by
identifying orbits and rest-classes a diffeomorphism

U S(2r) SSym(wo), gSpR*) = g- Lo = (g7 ) larg™" = (97" Tg™"

2. We recall some results about symmetric spaces (see: [7, 13]). Let G be a Lie-
group and ¢ : G — G a group-homomorphism with 02 = Idg. Let K denote



92 Lars Schafer

the subgroup K = G% = {g € G |o(g) = g}. The Lie-algebra g of G decomposes
ing=bhep with dorg,(h) = b, dora,(p) = —p. One has the following
information: The map ¢ : G/K — G with ¢ : [gK] — go(g~!) defines a totally
geodesic immersion called the Cartan-immersion.

We want to utilise this in the case G = GL(2r,R) and K = Sp(R?"). In this
spirit we define ¢ : GL(2r,R) — GL(2r,R), g + (¢~ !)7. The map o is
obviously a homomorphism and an involution with GL(2r,R)? = Sp(R?").

By a direct calculation one gets dorq, = —h! and hence

b= {h € gl (R) | ' = —h} =sp(R™), p = {h € gly,(R)| " = h} =: sym(wo).

Thus we end up with ¢ : S(2r) — GL(2r,R), g ~ go(g7') = gg' = Vo
A(g). Here A is the map induced by A : G — G, h + (h™1)T. This map is an
isometry of the invariant metric. Hence ¥ is a totally geodesic immersion. Using
proposition 3 the proof is finished. O

Remark 3. Above we have identified S(2r) with Sym(wo) via .

Let us choose o = eSp(R?") as base point and suppose that ¥ is chosen to map
0 to 1g,. By construction ¥ is GL(2r, R)-equivariant. We identify the tangent-space
T.,Sym(wp) at w € Sym(wp) with the (ambient) vector space of wy-symmetric matrices

in 9[27‘ (R)
(4.3) T,,Sym(wg) = sym(wp).

For & € S(2r) such that ¥(&) = w, the tangent space T;S5(2r) is canonically identified
with the vector space of w-symmetric matrices:

(4.4) T5S(2r) = sym(w) := {A € gl,, (R)|ATw = wA}.
Note that sym(1s,) = sym(wp).
Proposition 5.  The differential of ¢ := V™1 at w € Sym(wy) is given by
(4.5) sym(wp) 2 X — —%wilX € wlsym(wp) = sym(w) .
Using this proposition we relate now the differentials
(4.6) dfy : Te M — sym(wp)
of amap f: M — Sym(wy) at x € M and
(4.7) df, - T,M — sym(f(x))
of amap f = o f: M — S@r): df, = dpdf, = 1 f(x)"df.
We interpret the one-form A = —2df = f~'df with values in gl,, (R) as connection
form on the vector bundle E = M x R?". We note, that the definition of A is the

pure gauge, i.e. A is gauge-equivalent to A’ = 0. Since for A’ = 0 one has A =
f~YA f + f~1df = f~'df, the curvature vanishes. This yields the next proposition:
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Proposition 6. Let f : M — GL(2r,R) be a C*™®°-mapping and A = f=1df :
TM — gl,,.(R). Then the curvature of A vanishes, i.e. for X, Y € T(TM) it is

(4.8) Y(Ax) — X(Ay) + [Ay, Ax] + Ax y] = 0.

In the next proposition we recall the equations for epluriharmonic maps from an
ecomplex manifold to GL(2r,R):

Proposition 7.  (¢f. [17, 19]) Let (M, J¢) be an ecomplex manifold, f : M —
GL(2r,R) a C*®-map and A defined as in proposition 6.
The epluriharmonicity of f is equivalent to the equation

1 1
(4.9) Y(Ax) + i[AYvAX] —eJV(Ayex) — Ei[AJE%AJeX] =0,

for all XY e T(TM).
With a similar argument as in proposition 4 we have shown in [18, 22]:

Proposition 8. Let (M, J¢) be an ecomplex manifold. A map
¢ : M — GL(r,Cc)/U(p, q),

where the target-space is carrying the (pseudo-)metric induced by the trace-form on
GL(r,C,), is epluriharmonic if and only if

Yp=V0¢: M— GL(r,Cc)/U(p,q)~Herm, ,(C{) C GL(r,C,)
s epluriharmonic.

To be complete we mention the related symmetric decomposition:

h={Aegl(C)lA"=-A} =u(p.q), p={A€gl(C)|A" = A} = herm; (C7).

5 tt*-geometry and pluriharmonic maps

In this section we are going to state and prove the main results. Like in section 4 one
regards the mapping A = f~!df as a map A: TM — gl,,.(R).

Theorem 1. Let (M, J¢) be a simply connected ecomplex manifold. Let (E, D, S, w)
be a symplectic ett*-bundle where E has rank 2r and M dimension n.
The matriz representation f : M — Sym(wo) of w in a D-flat frame of E induces

an admissible epluriharmonic map f : M EN Sym(wo) = S(2r), where S(2r) carries
the (pseudo-Riemannian) metric induced by the trace-form on GL(2r,R). Let s’ be
another D?-flat frame. Then s’ = s-U for a constant matriz and the epluriharmonic
map associated to s’ is f' = UT fU.

Proof. Thanks to remark 1.1) we can restrict to the case § = 7 for e = —1 and § =0
for e = 1.

Let 5 := (s1,...,582,) be a D’-flat frame of E (i.e. Ds = —eSs), f the matrix
w(sk, s1) and further S° the matrix-valued one-form representing the tensor S in the
frame s. For X € T'(T'M) we get:
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X(f) = Xw(s,s)=w(Dxs,s)+w(s,Dxs)
—€lw(Sxs, s) +w(s,Sxs)]
= —2ew(Sxs,s) = —2f-S%.

It follows Ax = —2eS%. We now prove the epluriharmonicity using
(5.1) d”S(X,Y) = Dx(Sy)— Dy(Sx)— Sixy] =0,
(5.2) dPS;(X,Y) = Dx(Ssey) — Dy(Ssex) — Syeix,y) = 0.

The equation (5.2) implies

0= dDSJe (JEX, Y) = DJeX(SJeY) - EDy(Sx) _SJE[JeX,Y]
———

e(Dx (Sy)—Six,v1)
= DJsx(SJey) _GDX(SY)—i—GS[X,Y] _SJG[JEX,Y]'

(5.1)

In local eholomorphic coordinate fields X, Y on M we get in the frame s
JX(SGey) — eX(Sy) + [S%, Sv] — €[STex, Siey] = 0.

Now A = —2eS* gives equation (4.9) and proves the epluriharmonicity of f.

Using Ax = —2eS% = —2df(X), we find the property of the differential, as S A S is
of type (1,1) by the ett*-equations, see proposition 2. The last statement is obvious.
O

Theorem 2. Let (M,J) be a simply connected ecomplex manifold and put
E = M x R*. Then an epluriharmonic map f : M — S(2r) gives rise to an

epluriharmonic map f = M EN S(2r)=Sym(wo) < GL(2r,R).
If the map f is admissible, then the map f induces a symplectic ett*-bundle (E, D =
0—€S,5 =edf,w=uwo(f")) on M where 0 is the canonical flat connection on E.

Remark 4. We observe, that for eRiemannian surfaces M = ¥ every epluriharmonic
map is admissible, since T1°Y is one-dimensional.

Proof.
Let f: M — S(2r) be an epluriharmonic map. Then due to proposition 4 we know,

that f: M=Sym(wy) — GL(2r,R) is epluriharmonic.

Since E = M x R?", we want to regard sections of E as 2r-tuples of C°°(M,R)-
functions. )

As in section 4 we consider the one-form A = —2df = f~1df with values in gl,,.(R) as
a connection on E. The curvature of this connection vanishes (proposition 6). First,
the constraints on w are fulfilled:

Lemma 1. The connection D is compatible with the symplectic form w and S is
symmetric with respect to w.
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Proof. This is a direct computation with X € I'(TM) and v, w € T'(E):
Xw(v7 w) XwO(fvv ’U}) = wO(X(f)/U7 ’LU) + wo(f(XU), U}) + wO(f”? X’U})

= Swo(X (v w) + yen(v, X(F)w) +wolf(Xv),w) + wo(fo, Xuw)

= Senlf - XS w) + geolo, K )

+wo(fXv,w) + wo(fv, Xw)
= w(Xv—eSxv,w)+ww, Xw—eSxw) =w(Dxv,w) + w(v, Dxw).

S is w-symmetric, since for z € M df, takes by definition values in sym(f(z)). O
To finish the proof, we have to check the ett*-equations. The second ett*-equation

(5.3) —€[Sx, Sy] = [Syex, Syey]
for S follows from the assumption that the image of 7"°M under (df)% is Abelian.
In fact, this is equivalent to [df(J¢X),df(JY)] = —eldf(X),df(Y)| VX,Y € TM.
d”S(X,Y) = [Dx,Sy]—[Dy,Sx]— Sixy
= 0Ox(Sy)—0y(Sx) —2¢[Sx,Sy] — Sixy; =0
is equivalent to the vanishing of the curvature of A = —2¢S interpreted as a connection

on E (see proposition 6).
Finally one has for eholomorphic coordinate fields X, Y € I'(T M) :

dPS;(J¢X,Y) = [Djex,Sjy]— €Dy, Sx]
= [0jex —€Syex,Syey] — €|0y — €Sy, Sx]
O07ex(Syey) — €0y (Sx) — €[Syex, Syev] — [Sx, Sy]

(5:3) _%6 (Drex(Agey) — edy (Ax))

(42) _%6 (O5ex(Ayey) — €0x (Ay) — €[Ax, Ay])

(5.3) —%G{aJeX(AjéY) — edx(Ay)
—%G[AX,Ay] + %[AJEXa Ajev]}

(4.9)

This shows the vanishing of the tensor d” S .. It remains to show the curvature equa-
tion for D. We observe, that D+¢S = 0—eS+¢S = 9 and that the connection 0 is flat,

D qg__
to find 0 = RELS = RR \ +edPS(X,Y) + [Sx, Sy] “ £ RRy +[Sx,Sy]. O

In the situation of theorem 2 the two constructions are inverse.
Proposition 9.

1. Given a symplectic ett*-bundle (E, D, S,w) on an ecomplex manifold (M, J¢).
Let f be the associated admissible epluriharmonic map constructed to a D?-flat
frame s in theorem 1. Then the symplectic ett*-bundle (M x R", S, @) associated
to f of theorem 2 is the representation of (E, D, S,w) in the frame s.
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2. Given an admissible epluriharmonic map f : (M, J¢) — S(2r), then one obtains
via theorem 2 a symplectic ett*-bundle (M x R?", D, S, w). The epluriharmonic
map associated to this symplectic ett*-bundle is conjugated to the map f by a
constant matrizx.

Proof. Using again remark 1.1) we can set § = 7 in the complex and § = 0 in the
para-complex case.

1. The map f is obviously w in the frame s and in the computations of theorem
1 one gets A = —2df = f~'df = —2¢S°. From 0 = D’s = Ds + Ss we obtain
that the connection D in the frame s is just 9 — eS® =0 + %.

2. We have to find a D-flat frame s. It is D? = 0 — €S + €S = 0. Hence we can
take s as the standard-basis of R?" and we get f. Every other basis gives a
conjugated result. 0

6 Harmonic bundle solutions
In this section we use the notation H¢(p,q) := GL(r,C.)/U(p,q). As motivation for
considering eharmonic bundles we prove :

Proposition 10. The canonical inclusion
i: GL(r,C.)/U(p,q) — GL(2r,R)/Sp(R?")

is totally geodesic. Let further (M, J¢) be an ecomplex manifold, then a map o : M —
GL(r,C.)/U%(p,q) is epluriharmonic if and only if ioa : M — GL(2r,R)/Sp(R?") is
eplurtharmonic.

Proof. Looking at the inclusion of the symmetric decompositions
g[r((ce) = hermp,q((C:) D ue(p7 Q) C g[2rR = Sym(WO) S2) O(ka l)a
we see, that hermy, (C7) C sym(wp) is a Lie-triple system, i.e.

[herm;, ,(CY), [herm;, ,(C7), hermy, ,(C7)]] C hermy, ,(CY)

and that therefore the inclusion GL(r,C.)/U¢(p,q) SR GL(2r,R)/Sp(R?") is totally
geodesic. The second statement follows from proposition 3. O

In [18, 22] we related epluriharmonic maps from an ecomplex manifold (M, J€)
into H¢(p,q) = GL(r,C.)/U¢(p, q) with r = p+ ¢ to eharmonic bundles over (M, J€).
First we recall the definition of an eharmonic bundle:

Definition 5. An eharmonic bundle (E — M, D,C,C, h) consists of the following
data:
An ecomplex vector bundle E over an ecomplex manifold (M, J€), an ehermitian

metric h, a metric connection D with respect to h and two C*°-linear maps C' :
I'(E) - T(AYYT*M ®FE) and C : T'(E) — I(A%'T*M ® E), such that the connection

DY =D+ XC+)C
is flat for all A € S! and h(Cza,b) = h(a,Czb) with a,b € I'(E) and Z € T(T*°M).
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Remark 5. In the complex case with positive definite metric h this definition is
equivalent to the definition of a harmonic bundle in Simpson [23]. Equivalent struc-
tures in the complex case with metrics of arbitrary signature have been also regarded
in Hertling’s paper [11].

The relation of eharmonic bundles to epluriharmonic maps is stated in the following
theorem.

Theorem 3. (¢f. [18, 22])

(i) Let (E — M,D,C,C,h) be an eharmonic bundle over the simply connected
ecomplex manifold (M, .J¢). Then the representation of h in a D™ -flat frame
defines an epluriharmonic map ¢ : M — Herm;’q((cg). The map ¢, induces an

admissible epluriharmonic map ¢, = W€ o ¢y, : M — H¢(p,q) (cf. proposition 8
for Ue) .

(i) Let (M, J¢) be a simply connected ecomplex manifold and E = M x C.. Given
an admissible epluriharmonic map ¢p, : M — H¢(p,q), then (E,;D =0 — eC —
€C,C = e(dpp) 0, h = (én-,-)cr) defines an eharmonic bundle, where O is the
ecomplex linear extension on TMC< of the flat connection on E = M x CI.

In the complex case of signature (r,0) and (0,7) every pluriharmonic map on is
admissible.

The last theorem and proposition 10 yield epluriharmonic maps to GL(2r, R)/Sp(R?").
We are going to identify the related symplectic ett*-bundles. Therefore we construct
symplectic ett*-bundles from eharmonic bundles, via the next proposition.
Proposition 11.  Let (E — M,D,C,C,h) be an eharmonic bundle over the
ecomplex manifold (M, J¢), then (E,D,S,Q = Imh) with Sx = Cz + Cz for
X=Z+ZcTM and Z € T*°M is a symplectic ett*-bundle.
Proof. For A = cos.(a) + isinc(a) € S! we compute D) :
DY) = Dx +ACy+AC5 = Dx + cosc(a)(Cy + Cz) + sin (a)(iCy —iCy)
= Dx +cosc(a)Sx + sinc(a)(Cyez + Cjez)
= Dx +cosc(a)Sx +sinc(a)Sjex = D%.

Hence we see
(6.1) D = DY

and D is flat if and only if D™ is flat. -
Further we claim, that S is Q-symmetric. With X = Z + Z for Z € T*°M one finds

h(Sx~,~) = h(CZ + éZ'a ) = h(~,CZ Jréz') = h(',SX').

This yields the symmetry of S with respect to 2 = Imh.
Finally we show DQ =0
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2iXQ(e, f) = X.(h(e,f) = h(f,e)) =(Z+ Z).(h(e, f) = h(f,e))
h(Dze, f) + h(e, Dz f) + h(Dze, f) + h(e, Dz )
[W(Dzf,e) +h(f,Dze) +h(Dzf,e) + h(f,Dze)]
= h((Dz+Dgze, f)+hle,(Dz + Dz)f)

h(Dz + Dz)f,e) — h(f,(Dz + Dz)e)
= h(Dxe, f) = h(f,Dxe) + h(e,Dxf) — h(Dxfe)
2i(Q(Dxe, f) + e, Dx f)).

This proves, that (E, D, S,Q =Imh) is a symplectic ett*-bundle. 0
From theorem 1 one obtains the next corollary.

Corollary 1. Let (E — M,D,C,C,h) be an eharmonic bundle over the simply
connected ecomplex manifold (M, J¢), then the representation of Q = Imh in a D™ -
flat frame defines an epluriharmonic map ®q : M — GL(R?")/Sp(R?").

Proof. This follows from the identity (6.1), i.e. D()‘) D% for A = cos (a)+isin(a) €
S! and from proposition 11 and theorem 1. a

Our aim is to understand the relations between the epluriharmonic maps in theo-
rem 3 and corollary 1. Therefore we need to have a closer look at the map h +— Imh.
First, we identify C! with R" & iR” = R?". In this model the multiplication with
0 el,
1, 0
gl,.(C,)) are the elements in GL(2r,R) (respectively gl,,.(R)), which commute with
J.

An endomorphism C' € End(C?) decomposes in its real-part A and its imaginary part
B,ie.C = A+iB with A, B € End(R"). In the above model C is given by the matrix

L(c>_<g f).

The ecomplex conjugated C' = A—iB, the transpose C* = A'+iB* and the ehermitian
conjugated C" of C correspond to

wor=( 5 ) en= (g ) =—uen=( G )

We observe, that ((C*) = I.(C)TI¢ where -T is the transpose in End(R?") and

. (1L 0
I_<O —eILr>'

i coincides with the automorphism j¢ = and GL(r,C.) (respectively

The ehermitian matrices Herms, ,(C7) (of signature (p,q) for ¢ = —1, i.e. in the
complex case) coincide Wlth the subset of symmetric matrices H € Sym,c 1(R27),
which commute with j€, i.e. [H, j¢] = 0, where the pair (k,1) is

2p, 2q) f =-1
(1) = (2p, 2q) for e :
(ryr) for e = 1.
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Likewise, Ty, , Herms, ,(Cl) consists of symmetric matrices h € symy ;(R*"), which
commute with j¢, i.e. the ehermitian matrices in sym,, ;(R®") which we have denoted
by hermy, .(CY).

An ehermitian sesquilinear scalar product h (of signature (p,q) for e = —1) cor-
responds to an ehermitian matrix H € Herms, ,(C7) (of hermitian signature (p, q)
for e = —1) defined by h(-,-) = (H-,-)cr. The condition C" = C* = C, ie. C is
ehermitian, means in our model, that C' has the form

A eB
(C) = ( B A >
with A = At and B = —Bt.

Using this information we find the explicit representation of the map which cor-
responds to taking the imaginary part Imh of h. This is the map < satisfying
Imh = (S(H)-, )ger, where (-, -)ger is the Euclidean standard scalar product on R?".
With z,w € C, we define

1

=z w—-zZ-w
22'( )

B(z,w) == Im (2, w)cr =
and find Im h(z,w) = Im (Hz, w)cr = 2% [(Hz) -w— (Hz) w] = B(Hz,w). Further
we remark that 3(-,-) = Im(-,-)cr = (I, )g2, where (-,-)g2r is the Euclidean
standard scalar product on R?".

This yields Im h(z,w) = (I°jL(H)z, w)ger = —e(§IL(H )z, w)ger and for H = A+iB
with A, B € End(R") one obtains

A €B 0 1 A B B A
Cx — JE€j € — T —
sun=ri (5 %) =% §)(5 T)=(L &)
This map is easily seen to have maximal rank and to be equivariant with respect to
the following G L(r, C.)-action on Hermy,  (CY):
GL(r,C.) x Herm;, ,(C7) — Hermy, ,(C7), (g,H) (g HhrHg™!

and the GL(2r, R)-action on Sym(wp) which was considered in section 4. Summarising
we have the commutative diagram in which all maps apart & of the square were shown
to be totally geodesic:

GL(r,C.) [i] GL(2r,R)
(6.2) Te(p.0) Sp(Rer)
/
M ve N
\
Herm, ,(C) —— Sym(wp),

where [7] is induced by the inclusion i : GL(r,C.) — GL(2r,R). Hence  is totally
geodesic. Utilising this diagram we show the next proposition.
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Proposition 12. A map h : M — Herm,, ,(C{) is epluriharmonic, if and only if
Q= Imh: M — Sym(wo) is epluriharmonic.

Proof. As discussed above, the map < is a totally geodesic immersion and therefore
we are in the situation of proposition 3. O

From this proposition it follows:

Proposition 13. Let (E — M,D,C,C,h) be an eharmonic bundle over the
ecomplex manifold (M,:]e), (E,D,S,Q = Imh) the symplectic ett*-bundle constructed
in proposition 11 and ®q : M — GL(R?*")/Sp(R?") the epluriharmonic map given in

corollary 1. Then ®q = [i] o ®;, and these epluriharmonic maps are admissible.

Proof. This follows using the definition of (E, D, S, ) (cf. proposition 11) from corol-
lary 1 and proposition 12. For the second part one observes, that the differential of
[i] is a homomorphism of Lie-algebras. O

This describes the epluriharmonic maps coming from symplectic ett*-bundles in-
duced by eharmonic bundles. Conversely, this gives an Ansatz to construct eharmonic
bundles from epluriharmonic maps to GL(r,C.)/U¢(p, q). For metric ett*-bundles we
have gone this way in [18, 22| to obtain theorem 3.
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