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Abstract. In this work we use symplectic (para-)tt∗-bundles to obtain
a geometric construction of (para-)pluriharmonic maps into the pseudo-
Riemannian symmetric space GL(2r,R)/Sp(R2r). We prove, that these
(para-)pluriharmonic maps are exactly the admissible (para-)pluriharmonic
maps. Moreover, we construct symplectic (para-)tt∗-bundles from
(para-)harmonic bundles and analyse the related (para-)pluriharmonic
maps.
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1 Introduction

The first motivation of this work is the study of metric (para-)tt∗-bundles (E,D, S, g)
over a (para-)complex manifold (M,Jε) and their relation to admissible (para-)pluri-
harmonic maps from M into the space of (pseudo-)metrics. Roughly speaking there
exists a correspondence between these objects. For metric tt∗-bundles (with positive
definite metric) on the tangent bundle of a complex manifold this result was shown by
Dubrovin [8]. In [17, 19] we generalised it to the case of metric tt∗-bundles on abstract
vector bundles with metrics of arbitrary signature and to para-complex geometry. So-
lutions of (metric) (para-)tt∗-bundles are for example given by special (para-)complex
and special (para-)Kähler manifolds (cf. [3, 19]) and by (para-)harmonic bundles
[18, 22]. The related (para-)pluriharmonic maps are described in the given references.
The analysis [20, 21] of tt∗-bundles (E = TM, D, S) on the tangent bundle of an
almost (para-)complex manifold (M, Jε) shows that there exists a second interesting
class of (para-)tt∗-bundles (E = TM, D, S, ω), carrying symplectic forms ω instead of
metrics g. These will be called symplectic (para-)tt∗-bundles. Examples are given by
Levi-Civita flat nearly (para-)Kähler manifolds (Here non-integrable (para-)complex
structures appear.) and by (para-)harmonic bundles which are discussed later in this
work. A constructive classification of Levi-Civita flat nearly (para-)Kähler manifolds
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is subject of [4, 5].
In the context of the above mentioned correspondence it arises the question if one can
use these techniques to construct (para-)pluriharmonic maps out of symplectic (pa-
ra-)tt∗-bundles and if one can characterise the obtained (para-)pluriharmonic maps.
In this paper we answer positively to this question: We associate an admissible (cf.
definition 4) (para-)pluriharmonic map from M into GL(2r,R)/Sp(R2r) to a symplec-
tic (para-)tt∗-bundle and show that an admissible (para-)pluriharmonic map induces
a symplectic (para-)tt∗-bundle on E = M×R2r. This is the analogue of the correspon-
dence discussed in the first paragraph. In other words we characterise in a geometric
fashion the class of admissible (para-)pluriharmonic maps into GL(2r,R)/Sp(R2r). In
the sequel we construct symplectic (para-)tt∗-bundles from (para-)harmonic bundles
and analyse the relation between the (para-)pluriharmonic maps which are obtained
from these symplectic (para-)tt∗-bundles and the (para-)pluriharmonic maps which
were found in [18, 22]. We restrict to simply connected manifolds M, since the case
of general fundamental group can be obtained like in [17, 19]. In the general case
all (para-)pluriharmonic maps have to be replaced by twisted (para-)pluriharmonic
maps.

2 Para-complex differential geometry

We shortly recall some notions and facts of para-complex differential geometry. For a
more complete source we refer to [2].
In para-complex geometry one replaces the complex structure J with J2 = −1 (on a
finite dimensional vector space V ) by the para-complex structure τ ∈ End(V ) satisfying
τ2 = 1 and one requires that the ±1-eigenspaces have the same dimension. An almost
para-complex structure on a smooth manifold M is an endomorphism-field τ, which is
a point-wise para-complex structure. If the eigen-distributions T±M are integrable
τ is called para-complex structure on M and M is called a para-complex manifold. As
in the complex case, there exists a tensor, also called Nijenhuis tensor, which is the
obstruction to the integrability of the para-complex structure.
The real algebra, which is generated by 1 and by the para-complex unit e with e2 = 1,
is called the para-complex numbers and denoted by C. For all z = x + ey ∈ C with
x, y ∈ R we define the para-complex conjugation as ·̄ : C → C, x + ey 7→ x − ey and
the real and imaginary parts of z by R(z) := x, =(z) := y. The free C-module Cn is a
para-complex vector space where its para-complex structure is just the multiplication
with e and the para-complex conjugation of C extends to ·̄ : Cn → Cn, v 7→ v̄.
Note, that zz̄ = x2−y2. Therefore the algebra C is sometimes called the hypercomplex
numbers. The circle S1 = {z = x + iy ∈ C |x2 + y2 = 1} is replaced by the four
hyperbolas {z = x + ey ∈ C |x2 − y2 = ±1}. We define S̃1 to be the hyperbola given
by the one parameter group {z(θ) = cosh(θ) + e sinh(θ) | θ ∈ R}.
A para-complex vector space (V, τ) endowed with a pseudo-Euclidean metric g is
called para-hermitian vector space, if g is τ -anti-invariant, i.e. τ∗g = −g. The para-
unitary group of V is defined as the group of automorphisms

Uπ(V ) := Aut(V, τ, g) := {L ∈ GL(V )|[L, τ ] = 0 and L∗g = g}
and its Lie-algebra is denoted by uπ(V ). For Cn = Rn ⊕ eRn the standard para-
hermitian structure is defined by the above para-complex structure and the metric
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g = diag(1,−1) (cf. Example 7 of [2]). The corresponding para-unitary group is given
by (cf. Proposition 4 of [2]):

Uπ(Cn) =
{(

A B
B A

)
|A,B ∈ End(Rn), AT A−BT B = 1n, AT B −BT A = 0

}
.

There exist two bi-gradings on the exterior algebra: The one is induced by the splitting
in T±M and denoted by ΛkT ∗M =

⊕
k=p+q

Λp+,q−T ∗M and induces an obvious bi-

grading on exterior forms with values in a vector bundle E. The second is induced
by the decomposition of the para-complexified tangent bundle TMC = TM ⊗R C into
the subbundles T 1,0

p M and T 0,1
p M which are defined as the ±e-eigenbundles of the

para-complex linear extension of τ. This induces a bi-grading on the C-valued exterior
forms noted ΛkT ∗MC =

⊕
k=p+q

Λp,q T ∗M and finally on the C-valued differential forms

on M Ωk
C(M) =

⊕
k=p+q

Ωp,q(M). In the case (1, 1) and (1+, 1−) the two gradings

induced by τ coincide, in the sense that Λ1,1 T ∗M = (Λ1+,1− T ∗M)⊗C. The bundles
Λp,q T ∗M are para-complex vector bundles in the following sense: A para-complex
vector bundle of rank r over a para-complex manifold (M, τ) is a smooth real vector
bundle π : E → M of rank 2r endowed with a fiber-wise para-complex structure
τE ∈ Γ(End (E)). We denote it by (E, τE). In the following text we always identify
the fibers of a para-complex vector bundle E of rank r with the free C-module Cr.
One has a notion of para-holomorphic vector bundles, too. These were extensively
studied in a common work with M.-A. Lawn-Paillusseau [14].

Let us transfer some notions of hermitian linear algebra (cf. [22]) : A para-hermitian
sesquilinear scalar product is a non-degenerate sesquilinear form h : Cr ×Cr → C, i.e.
it satisfies (i) h is non-degenerate: Given w ∈ Cr such that for all v ∈ Cr h(v, w) = 0,
then it follows w = 0, (ii) h(v, w) = h(w, v), ∀ v, w ∈ Cr, and (iii) h(λv,w) =
λh(v, w), ∀ λ ∈ C; v, w ∈ Cr. The standard para-hermitian sesquilinear scalar product
is given by

(z, w)Cr := z · w̄ =
r∑

i=1

ziw̄i, for z = (z1, . . . , zr), w = (w1, . . . , wr) ∈ Cr.

The para-hermitian conjugation is defined by C 7→ Ch = C̄t for C ∈ End(Cr) =
EndC(Cr) and C is called para-hermitian if and only if Ch = C. We denote by
herm(Cr) the set of para-hermitian endomorphisms and by Herm(Cr) = herm(Cr)∩
GL(r, C). We remark, that there is no notion of para-hermitian signature, since from
h(v, v) = −1 for an element v ∈ Cr we obtain h(ev, ev) = 1.

Proposition 1. Given an element C of End(Cr) then it holds (Cz,w)Cr =
(z, Chw)Cr , ∀z, w ∈ Cr. The set herm(Cr) is a real vector space. There is a bijective
correspondence between Herm(Cr) and para-hermitian sesquilinear scalar products h
on Cr given by H 7→ h(·, ·) := (H·, ·)Cr .

A para-hermitian metric h on a para-complex vector-bundle E over a para-complex
manifold (M, τ) is a smooth fiber-wise para-hermitian sesquilinear scalar product.

To unify the complex and the para-complex case we introduce some notations:
First we note Jε where Jε2 = ε1 with ε ∈ {±1}. The εcomplex unit is denoted by î,



A geometric construction of (para-)pluriharmonic maps 89

i.e. î := e, for ε = 1, and î = i, for ε = −1. Further we introduce Cε with C1 = C
and C−1 = C and S1

ε with S1
1 = S̃1 and S1

−1 = S1. In the rest of this work we extend
our language by the following ε-notation: If a word has a prefix ε with ε ∈ {±1}, i.e.
is of the form εX, this expression is replaced by

εX :=

{
X, for ε = −1,

para-X, for ε = 1.

The εunitary group and its Lie-algebra are

U ε(p, q) :=

{
Uπ(Cr), for ε = 1,

U(p, q), for ε = −1
and uε(p, q) :=

{
uπ(Cr), for ε = 1,

u(p, q), for ε = −1,

where in the complex case (p, q) for r = p + q is the hermitian signature.
Further we use the notation

Hermε
p,q(Cr

ε) :=

{
Herm(Cr); ε = 1,

Hermp,q(Cr); ε = −1,
hermε

p,q(Cr
ε) :=

{
herm(Cr); ε = 1,

hermp,q(Cr); ε = −1,

where, for p + q = r, Hermp,q(Cr) are the hermitian matrices of hermitian signa-
ture (p, q) and hermp,q(Cr) are the hermitian matrices with respect to the stan-
dard hermitian product of hermitian signature (p, q) on Cr. The standard εhermitian
sesquilinear scalar product is (z, w)Cr

ε
:= z · w̄ =

∑r
i=1 ziw̄i, for z = (z1, . . . , zr), w =

(w1, . . . , wr) ∈ Cr
ε and we note

cosε(x) :=

{
cos(x), for ε = −1,

cosh(x), for ε = 1
and sinε(x) :=

{
sin(x), for ε = −1,

sinh(x), for ε = 1.

3 tt∗-bundles

For the convenience of the reader we recall the definition of an εtt∗-bundle given in
[3, 17, 19] and the notion of a symplectic εtt∗-bundle [20, 21]:

Definition 1. An εtt∗-bundle (E,D, S) over an εcomplex manifold (M, Jε) is a real
vector bundle E → M endowed with a connection D and a section S ∈ Γ(T ∗M ⊗
EndE) satisfying the εtt∗-equation

(3.1) Rθ = 0 for all θ ∈ R ,

where Rθ is the curvature tensor of the connection Dθ defined by

(3.2) Dθ
X := DX + cosε(θ)SX + sinε(θ)SJεX for all X ∈ TM .

A symplectic εtt∗-bundle (E, D, S, ω) is an εtt∗-bundle (E, D, S) endowed with the
structure of a symplectic vector bundle1 (E, ω), such that ω is D-parallel and S is
ω-symmetric, i.e. for all p ∈ M

(3.3) ω(SX ·, ·) = ω(·, SX ·) for all X ∈ TpM .

1see D. Mc Duff and D. Salamon [15]
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Remark 1.
1) It is obvious that every εtt∗-bundle (E, D, S) induces a family of εtt∗-bundles
(E, D, Sθ), for θ ∈ R, with

(3.4) Sθ := Dθ −D = cosε(θ)S + sinε(θ)SJε .

The same remark applies to symplectic εtt∗-bundles.
2) Notice that a symplectic εtt∗-bundle (E,D, S, ω) of rank 2r carries a D-parallel
volume given by ω ∧ . . . ∧ ω︸ ︷︷ ︸

r times

.

The next proposition gives explicit equations for D and S, such that (E,D, S) is
an εtt∗-bundle.

Proposition 2. (cf. [17, 19]) Let E be a real vector bundle over an εcomplex
manifold (M,Jε) endowed with a connection D and a section S ∈ Γ(T ∗M ⊗ EndE).
Then (E, D, S) is an εtt∗-bundle if and only if D and S satisfy the following equations:

(3.5) RD + S ∧ S = 0, S ∧ S is of type (1,1), dD S = 0 and dD SJε = 0.

4 Pluriharmonic maps into GL(2r,R)/Sp(R2r)

In this section we present the notion of εpluriharmonic maps and some properties of
εpluriharmonic maps into the target space S = S(2r) := GL(2r,R)/Sp(R2r).

The following notion was introduced in [1] for holomorphic and in [14] for para-
holomorphic vector bundles.

Definition 2. Let (M, Jε) be an εcomplex manifold. A connection D on TM is
called adapted if it satisfies

(4.1) DJεY X = JεDY X

for all vector fields which satisfy LXJε = 0 (i.e. for which X+ ε̂iJεX is εholomorphic).

Definition 3. Let (M, Jε) be an εcomplex manifold and (N, h) a pseudo-Riemannian
manifold with Levi-Civita connection ∇h, D an adapted connection on M and ∇ the
connection on T ∗M ⊗ f∗TN which is induced by D and ∇h and consider α = ∇df ∈
Γ(T ∗M ⊗ T ∗M ⊗ f∗TN). Then f is εpluriharmonic if and only if α is of type (1, 1),
i.e.

α(X, Y )− εα(JεX, JεY ) = 0

for all X, Y ∈ TM.

Remark 2.
1. Note, that an equivalent definition of εpluriharmonicity is to say, that f is εpluri-

harmonic if and only if f restricted to every εcomplex curve is harmonic. For a
short discussion the reader is referred to [3, 17, 19].

2. One knows, that every εcomplex manifold (M, Jε) can be endowed with a
torsion-free εcomplex connection D (cf. [12] in the complex and [19] Theorem 1
for the para-complex case), i.e. D is torsion-free and satisfies DJε = 0. Such a
connection is adapted. In the rest of the paper, we assume, that the connection
D on (M,Jε) is also torsion-free.
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The harmonic analogue of the following proposition is well-known.

Proposition 3. Let (M, Jε) be an εcomplex manifold, X, Y be pseudo-Riemannian
manifolds and Ψ : X → Y a totally geodesic immersion. Then a map f : M → X is
εpluriharmonic if and only if Ψ ◦ f : M → Y is εpluriharmonic.

The εpluriharmonic maps obtained by our construction are exactly the admissible
εpluriharmonic maps in the sense of the following general definition:

Definition 4. Let (M, Jε) be an εcomplex manifold and G/K be a locally symmetric
space with associated Cartan-decomposition g = k⊕ p. A map f : (M,Jε) → G/K is
called admissible if the εcomplex linear extension of its differential df maps T 1,0M to
an Abelian subspace of pCε .

Let ω0 be the standard symplectic form of R2r, i.e. ω0 =
∑r

i=1 ei ∧ ei+r where
(ei)2r

i=1 is the dual of the standard basis of R2r. Then we define

(4.2) Sym(ω0) := {A ∈ GL(2r,R) |ω0(A·, ·) = ω0(·, A·)}.

The adjoint of g ∈ GL(2r,R) with respect to ω0 will be denoted by g†. Hence Sym(ω0)
are the elements A ∈ GL(2r,R) which satisfy A† = A.
Every element A ∈ Sym(ω0) defines a symplectic form ωA on R2r by ωA(·, ·) =
ω0(A·, ·). To this interpretation corresponds an action

GL(2r,R)× Sym(ω0) → Sym(ω0), (g, A) 7→ (g−1)†Ag−1.

This action is used to identify S(2r) and Sym(ω0) by a map Ψ in the following
proposition.

Proposition 4. Let Ψ be the canonical map Ψ : S(2r) →̃ Sym(ω0) ⊂ GL(2r,R)
where GL(2r,R) carries the pseudo-Riemannian metric induced by the Ad-invariant
trace-form. Then Ψ is a totally geodesic immersion and a map f from an εcomplex
manifold (M, Jε) to S(2r) is εpluriharmonic, if and only if the map Ψ ◦ f : M →
Sym(ω0) ⊂ GL(2r,R) is εpluriharmonic.

Proof. The proof is done by relating the map Ψ to the well-known Cartan-immersion.
Additional information can be found in [10, 7, 9, 12].

1. First we study the identification S(2r) →̃Sym(ω0).
GL(2r,R) operates on Sym(ω0) via

GL(2r,R)× Sym(ω0) → Sym(ω0), (g, B) 7→ g ·B := (g−1)†Bg−1.

The stabiliser of the 12r is Sp(R2r) and the action is seen to be transitive
by choosing a symplectic basis. Using the orbit-stabiliser theorem we get by
identifying orbits and rest-classes a diffeomorphism

Ψ : S(2r) →̃Sym(ω0), g Sp(R2r) 7→ g · 12r = (g−1)†12rg
−1 = (g−1)†g−1.

2. We recall some results about symmetric spaces (see: [7, 13]). Let G be a Lie-
group and σ : G → G a group-homomorphism with σ2 = IdG. Let K denote
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the subgroup K = Gσ = {g ∈ G |σ(g) = g}. The Lie-algebra g of G decomposes
in g = h ⊕ p with dσIdG

(h) = h, dσIdG
(p) = −p. One has the following

information: The map φ : G/K → G with φ : [gK] 7→ gσ(g−1) defines a totally
geodesic immersion called the Cartan-immersion.
We want to utilise this in the case G = GL(2r,R) and K = Sp(R2r). In this
spirit we define σ : GL(2r,R) → GL(2r,R), g 7→ (g−1)†. The map σ is
obviously a homomorphism and an involution with GL(2r,R)σ = Sp(R2r).
By a direct calculation one gets dσIdG

= −h† and hence

h = {h ∈ gl2r(R) |h† = −h} = sp(R2r), p = {h ∈ gl2r(R) |h† = h} =: sym(ω0).

Thus we end up with φ : S(2r) → GL(2r,R), g 7→ gσ(g−1) = gg† = Ψ ◦
Λ(g). Here Λ is the map induced by Λ : G → G,h 7→ (h−1)†. This map is an
isometry of the invariant metric. Hence Ψ is a totally geodesic immersion. Using
proposition 3 the proof is finished.

Remark 3. Above we have identified S(2r) with Sym(ω0) via Ψ.
Let us choose o = eSp(R2r) as base point and suppose that Ψ is chosen to map
o to 12r. By construction Ψ is GL(2r,R)-equivariant. We identify the tangent-space
TωSym(ω0) at ω ∈ Sym(ω0) with the (ambient) vector space of ω0-symmetric matrices
in gl2r(R)

(4.3) TωSym(ω0) = sym(ω0).

For ω̃ ∈ S(2r) such that Ψ(ω̃) = ω, the tangent space Tω̃S(2r) is canonically identified
with the vector space of ω-symmetric matrices:

(4.4) Tω̃S(2r) = sym(ω) := {A ∈ gl2r(R)|A†ω = ωA} .

Note that sym(12r) = sym(ω0).

Proposition 5. The differential of ϕ := Ψ−1 at ω ∈ Sym(ω0) is given by

(4.5) sym(ω0) 3 X 7→ −1
2
ω−1X ∈ ω−1sym(ω0) = sym(ω) .

Using this proposition we relate now the differentials

(4.6) dfx : TxM → sym(ω0)

of a map f : M → Sym(ω0) at x ∈ M and

(4.7) df̃x : TxM → sym(f(x))

of a map f̃ = ϕ ◦ f : M → S(2r): df̃x = dϕ dfx = − 1
2f(x)−1dfx.

We interpret the one-form A = −2df̃ = f−1df with values in gl2r(R) as connection
form on the vector bundle E = M × R2r. We note, that the definition of A is the
pure gauge, i.e. A is gauge-equivalent to A′ = 0. Since for A′ = 0 one has A =
f−1A′f + f−1df = f−1df, the curvature vanishes. This yields the next proposition:
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Proposition 6. Let f : M → GL(2r,R) be a C∞-mapping and A := f−1df :
TM → gl2r(R). Then the curvature of A vanishes, i.e. for X, Y ∈ Γ(TM) it is

(4.8) Y (AX)−X(AY ) + [AY , AX ] + A[X,Y ] = 0.

In the next proposition we recall the equations for εpluriharmonic maps from an
εcomplex manifold to GL(2r,R):

Proposition 7. (cf. [17, 19]) Let (M,Jε) be an εcomplex manifold, f : M →
GL(2r,R) a C∞-map and A defined as in proposition 6.
The εpluriharmonicity of f is equivalent to the equation

(4.9) Y (AX) +
1
2
[AY , AX ]− εJεY (AJεX)− ε

1
2
[AJεY , AJεX ] = 0,

for all X,Y ∈ Γ(TM).

With a similar argument as in proposition 4 we have shown in [18, 22]:

Proposition 8. Let (M, Jε) be an εcomplex manifold. A map

φ : M → GL(r,Cε)/U ε(p, q),

where the target-space is carrying the (pseudo-)metric induced by the trace-form on
GL(r,Cε), is εpluriharmonic if and only if

ψ = Ψε ◦ φ : M → GL(r,Cε)/U ε(p, q)→̃Hermε
p,q(Cr

ε) ⊂ GL(r,Cε)

is εpluriharmonic.

To be complete we mention the related symmetric decomposition:

h = {A ∈ glr(Cε) |Ah = −A} = uε(p, q), p = {A ∈ glr(Cε) |Ah = A} =: hermε
p,q(Cr

ε).

5 tt∗-geometry and pluriharmonic maps

In this section we are going to state and prove the main results. Like in section 4 one
regards the mapping A = f−1df as a map A : TM → gl2r(R).

Theorem 1. Let (M, Jε) be a simply connected εcomplex manifold. Let (E,D, S, ω)
be a symplectic εtt∗-bundle where E has rank 2r and M dimension n.
The matrix representation f : M → Sym(ω0) of ω in a Dθ-flat frame of E induces

an admissible εpluriharmonic map f̃ : M
f→ Sym(ω0) →̃S(2r), where S(2r) carries

the (pseudo-Riemannian) metric induced by the trace-form on GL(2r,R). Let s′ be
another Dθ-flat frame. Then s′ = s · U for a constant matrix and the εpluriharmonic
map associated to s′ is f ′ = U†fU.

Proof. Thanks to remark 1.1) we can restrict to the case θ = π for ε = −1 and θ = 0
for ε = 1.

Let s := (s1, . . . , s2r) be a Dθ-flat frame of E (i.e. Ds = −εSs), f the matrix
ω(sk, sl) and further Ss the matrix-valued one-form representing the tensor S in the
frame s. For X ∈ Γ(TM) we get:



94 Lars Schäfer

X(f) = Xω(s, s) = ω(DXs, s) + ω(s, DXs)
= −ε[ω(SXs, s) + ω(s, SXs)]
= −2εω(SXs, s) = −2εf · Ss

X .

It follows AX = −2εSs
X . We now prove the εpluriharmonicity using

dDS(X,Y ) = DX(SY )−DY (SX)− S[X,Y ] = 0,(5.1)

dDSJε(X,Y ) = DX(SJεY )−DY (SJεX)− SJε[X,Y ] = 0.(5.2)

The equation (5.2) implies

0 = dDSJε(JεX,Y ) = DJεX(SJεY )− εDY (SX)︸ ︷︷ ︸
(5.1)
= ε(DX(SY )−S[X,Y ])

−SJε[JεX,Y ]

= DJεX(SJεY )− εDX(SY ) + εS[X,Y ] − SJε[JεX,Y ].

In local εholomorphic coordinate fields X, Y on M we get in the frame s

JεX(Ss
JεY )− εX(Ss

Y ) + [Ss
X , Ss

Y ]− ε[Ss
JεX , Ss

JεY ] = 0.

Now A = −2εSs gives equation (4.9) and proves the εpluriharmonicity of f.
Using AX = −2εSs

X = −2df̃(X), we find the property of the differential, as S ∧ S is
of type (1,1) by the εtt∗-equations, see proposition 2. The last statement is obvious.

Theorem 2. Let (M, Jε) be a simply connected εcomplex manifold and put
E = M × R2r. Then an εpluriharmonic map f̃ : M → S(2r) gives rise to an

εpluriharmonic map f : M
f̃→ S(2r)→̃Sym(ω0)

i
↪→ GL(2r,R).

If the map f̃ is admissible, then the map f induces a symplectic εtt∗-bundle (E, D =
∂ − εS, S = εdf̃ , ω = ω0(f ·, ·)) on M where ∂ is the canonical flat connection on E.

Remark 4. We observe, that for εRiemannian surfaces M = Σ every εpluriharmonic
map is admissible, since T 1,0Σ is one-dimensional.

Proof.
Let f̃ : M → S(2r) be an εpluriharmonic map. Then due to proposition 4 we know,

that f : M→̃Sym(ω0)
i

↪→ GL(2r,R) is εpluriharmonic.
Since E = M × R2r, we want to regard sections of E as 2r-tuples of C∞(M,R)-
functions.
As in section 4 we consider the one-form A = −2df̃ = f−1df with values in gl2r(R) as
a connection on E. The curvature of this connection vanishes (proposition 6). First,
the constraints on ω are fulfilled:

Lemma 1. The connection D is compatible with the symplectic form ω and S is
symmetric with respect to ω.



A geometric construction of (para-)pluriharmonic maps 95

Proof. This is a direct computation with X ∈ Γ(TM) and v, w ∈ Γ(E):

Xω(v, w) = Xω0(fv, w) = ω0(X(f)v, w) + ω0(f(Xv), w) + ω0(fv, Xw)

=
1
2
ω0(X(f)v, w) +

1
2
ω0(v,X(f)w) + ω0(f(Xv), w) + ω0(fv, Xw)

=
1
2
ω0(f · f−1(Xf)v, w) +

1
2
ω0(v, f · f−1(Xf)w)

+ω0(fXv, w) + ω0(fv, Xw)
= ω(Xv − εSXv, w) + ω(v, Xw − εSXw) = ω(DXv, w) + ω(v, DXw).

S is ω-symmetric, since for x ∈ M df̃x takes by definition values in sym(f(x)).
To finish the proof, we have to check the εtt∗-equations. The second εtt∗-equation

(5.3) −ε[SX , SY ] = [SJεX , SJεY ]

for S follows from the assumption that the image of T 1,0M under (df̃)Cε is Abelian.
In fact, this is equivalent to [df̃(JεX), df̃(JεY )] = −ε[df̃(X), df̃(Y )] ∀X, Y ∈ TM.

dDS(X, Y ) = [DX , SY ]− [DY , SX ]− S[X,Y ]

= ∂X(SY )− ∂Y (SX)− 2ε[SX , SY ]− S[X,Y ] = 0

is equivalent to the vanishing of the curvature of A = −2εS interpreted as a connection
on E (see proposition 6).
Finally one has for εholomorphic coordinate fields X, Y ∈ Γ(TM) :

dDSJε(JεX, Y ) = [DJεX , SJεY ]− ε[DY , SX ]
= [∂JεX − εSJεX , SJεY ]− ε[∂Y − εSY , SX ]
= ∂JεX(SJεY )− ε∂Y (SX)− ε[SJεX , SJεY ]− [SX , SY ]

(5.3)
= −1

2
ε (∂JεX(AJεY )− ε∂Y (AX))

(4.8)
= −1

2
ε (∂JεX(AJεY )− ε∂X(AY )− ε[AX , AY ])

(5.3)
= −1

2
ε{∂JεX(AJεY )− ε∂X(AY )

−1
2
ε[AX , AY ] +

1
2
[AJεX , AJεY ]}

(4.9)
= 0.

This shows the vanishing of the tensor dDSJε . It remains to show the curvature equa-
tion for D. We observe, that D+εS = ∂−εS+εS = ∂ and that the connection ∂ is flat,

to find 0 = RD+εS
X,Y = RD

X,Y + εdDS(X, Y ) + [SX , SY ] dDS=0= RD
X,Y + [SX , SY ].

In the situation of theorem 2 the two constructions are inverse.

Proposition 9.

1. Given a symplectic εtt∗-bundle (E,D, S, ω) on an εcomplex manifold (M, Jε).
Let f̃ be the associated admissible εpluriharmonic map constructed to a Dθ-flat
frame s in theorem 1. Then the symplectic εtt∗-bundle (M×Rr, S̃, ω̃) associated
to f̃ of theorem 2 is the representation of (E, D, S, ω) in the frame s.
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2. Given an admissible εpluriharmonic map f̃ : (M, Jε) → S(2r), then one obtains
via theorem 2 a symplectic εtt∗-bundle (M × R2r, D, S, ω). The εpluriharmonic
map associated to this symplectic εtt∗-bundle is conjugated to the map f̃ by a
constant matrix.

Proof. Using again remark 1.1) we can set θ = π in the complex and θ = 0 in the
para-complex case.

1. The map f is obviously ω in the frame s and in the computations of theorem
1 one gets A = −2df̃ = f−1df = −2εSs. From 0 = Dθs = Ds + εSs we obtain
that the connection D in the frame s is just ∂ − εSs = ∂ + A

2 .

2. We have to find a Dθ-flat frame s. It is Dθ = ∂ − εS + εS = ∂. Hence we can
take s as the standard-basis of R2r and we get f. Every other basis gives a
conjugated result.

6 Harmonic bundle solutions

In this section we use the notation Hε(p, q) := GL(r,Cε)/U ε(p, q). As motivation for
considering εharmonic bundles we prove :

Proposition 10. The canonical inclusion

i : GL(r,Cε)/U ε(p, q) ↪→ GL(2r,R)/Sp(R2r)

is totally geodesic. Let further (M, Jε) be an εcomplex manifold, then a map α : M →
GL(r,Cε)/U ε(p, q) is εpluriharmonic if and only if i ◦α : M → GL(2r,R)/Sp(R2r) is
εpluriharmonic.

Proof. Looking at the inclusion of the symmetric decompositions

glr(Cε) = hermp,q(Cr
ε)⊕ uε(p, q) ⊂ gl2rR = sym(ω0)⊕ o(k, l),

we see, that hermε
p,q(Cr

ε) ⊂ sym(ω0) is a Lie-triple system, i.e.

[hermε
p,q(Cr

ε), [hermε
p,q(Cr

ε), hermε
p,q(Cr

ε)]] ⊂ hermε
p,q(Cr

ε)

and that therefore the inclusion GL(r,Cε)/U ε(p, q)
i

↪→ GL(2r,R)/Sp(R2r) is totally
geodesic. The second statement follows from proposition 3.

In [18, 22] we related εpluriharmonic maps from an εcomplex manifold (M,Jε)
into Hε(p, q) = GL(r,Cε)/U ε(p, q) with r = p + q to εharmonic bundles over (M, Jε).
First we recall the definition of an εharmonic bundle:

Definition 5. An εharmonic bundle (E → M, D, C, C̄, h) consists of the following
data:
An εcomplex vector bundle E over an εcomplex manifold (M,Jε), an εhermitian
metric h, a metric connection D with respect to h and two C∞-linear maps C :
Γ(E) → Γ(Λ1,0T ∗M⊗E) and C̄ : Γ(E) → Γ(Λ0,1T ∗M⊗E), such that the connection

D(λ) = D + λC + λ̄C̄

is flat for all λ ∈ S1
ε and h(CZa, b) = h(a, C̄Z̄b) with a, b ∈ Γ(E) and Z ∈ Γ(T 1,0M).
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Remark 5. In the complex case with positive definite metric h this definition is
equivalent to the definition of a harmonic bundle in Simpson [23]. Equivalent struc-
tures in the complex case with metrics of arbitrary signature have been also regarded
in Hertling’s paper [11].

The relation of εharmonic bundles to εpluriharmonic maps is stated in the following
theorem.

Theorem 3. (cf. [18, 22])

(i) Let (E → M, D, C, C̄, h) be an εharmonic bundle over the simply connected
εcomplex manifold (M,Jε). Then the representation of h in a D(λ)-flat frame
defines an εpluriharmonic map φh : M → Hermε

p,q(Cr
ε). The map φh induces an

admissible εpluriharmonic map φ̃h = Ψε ◦ φh : M → Hε(p, q) (cf. proposition 8
for Ψε) .

(ii) Let (M, Jε) be a simply connected εcomplex manifold and E = M × Cr
ε . Given

an admissible εpluriharmonic map φ̃h : M → Hε(p, q), then (E, D = ∂ − εC −
εC̄, C = ε(dφ̃h)1,0, h = (φh·, ·)Cr

ε
) defines an εharmonic bundle, where ∂ is the

εcomplex linear extension on TMCε of the flat connection on E = M × Cr
ε .

In the complex case of signature (r, 0) and (0, r) every pluriharmonic map φ̃h is
admissible.

The last theorem and proposition 10 yield εpluriharmonic maps to GL(2r,R)/Sp(R2r).
We are going to identify the related symplectic εtt∗-bundles. Therefore we construct
symplectic εtt∗-bundles from εharmonic bundles, via the next proposition.

Proposition 11. Let (E → M, D, C, C̄, h) be an εharmonic bundle over the
εcomplex manifold (M, Jε), then (E, D, S, Ω = Imh) with SX := CZ + C̄Z̄ for
X = Z + Z̄ ∈ TM and Z ∈ T 1,0M is a symplectic εtt∗-bundle.

Proof. For λ = cosε(α) + î sinε(α) ∈ S1
ε we compute D(λ) :

D
(λ)
X = DX + λCZ + λ̄C̄Z̄ = DX + cosε(α)(CZ + C̄Z̄) + sinε(α)(̂iCZ − îC̄Z̄)

= DX + cosε(α)SX + sinε(α)(CJεZ + C̄JεZ̄)
= DX + cosε(α)SX + sinε(α)SJεX = Dα

X .

Hence we see

(6.1) Dα = D(λ)

and Dα is flat if and only if D(λ) is flat.
Further we claim, that S is Ω-symmetric. With X = Z + Z̄ for Z ∈ T 1,0M one finds

h(SX ·, ·) = h(CZ + C̄Z̄ ·, ·) = h(·, CZ + C̄Z̄ ·) = h(·, SX ·).

This yields the symmetry of S with respect to Ω = Imh.
Finally we show DΩ = 0 :
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2̂iXΩ(e, f) = X.(h(e, f)− h(f, e)) = (Z + Z̄).(h(e, f)− h(f, e))
= h(DZe, f) + h(e, DZ̄f) + h(DZ̄e, f) + h(e, DZf)
− [h(DZf, e) + h(f, DZ̄e) + h(DZ̄f, e) + h(f,DZe)]
= h((DZ + DZ̄)e, f) + h(e, (DZ̄ + DZ)f)
− h((DZ + DZ̄)f, e)− h(f, (DZ̄ + DZ)e)
= h(DXe, f)− h(f, DXe) + h(e,DXf)− h(DXf, e)
= 2̂i(Ω(DXe, f) + Ω(e,DXf)).

This proves, that (E,D, S, Ω = Im h) is a symplectic εtt∗-bundle.
From theorem 1 one obtains the next corollary.

Corollary 1. Let (E → M,D, C, C̄, h) be an εharmonic bundle over the simply
connected εcomplex manifold (M, Jε), then the representation of Ω = Imh in a D(λ)-
flat frame defines an εpluriharmonic map ΦΩ : M → GL(R2r)/Sp(R2r).

Proof. This follows from the identity (6.1), i.e. D
(λ)
X = Dα

X for λ = cosε(α)+î sinε(α) ∈
S1

ε and from proposition 11 and theorem 1.

Our aim is to understand the relations between the εpluriharmonic maps in theo-
rem 3 and corollary 1. Therefore we need to have a closer look at the map h 7→ Imh.
First, we identify Cr

ε with Rr ⊕ îRr = R2r. In this model the multiplication with

î coincides with the automorphism jε =
(

0 ε1r

1r 0

)
and GL(r,Cε) (respectively

glr(Cε)) are the elements in GL(2r,R) (respectively gl2r(R)), which commute with
jε.
An endomorphism C ∈ End(Cr

ε) decomposes in its real-part A and its imaginary part
B, i.e. C = A+ î B with A,B ∈ End(Rr). In the above model C is given by the matrix

ι(C) =
(

A εB
B A

)
.

The εcomplex conjugated C̄ = A−îB, the transpose Ct = At+îBt and the εhermitian
conjugated Ch of C correspond to

ι(C̄) =
(

A −εB
−B A

)
, ι(Ct) =

(
At εBt

Bt At

)
, ι(Ch) = ι(C̄t) =

(
At −εBt

−Bt At

)
.

We observe, that ι(C̄t) = Iει(C)T Iε where ·T is the transpose in End(R2r) and

Iε =
(
1r 0
0 −ε1r

)
.

The εhermitian matrices Hermε
p,q(Cr

ε) (of signature (p, q) for ε = −1, i.e. in the
complex case) coincide with the subset of symmetric matrices H ∈ Symk,l(R2r),
which commute with jε, i.e. [H, jε] = 0, where the pair (k, l) is

(k, l) =

{
(2p, 2q) for ε = −1,

(r, r) for ε = 1.
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Likewise, TIk,l
Hermε

p,q(Cr
ε) consists of symmetric matrices h ∈ symk,l(R2r), which

commute with jε, i.e. the εhermitian matrices in symk,l(R2r) which we have denoted
by hermε

p,q(Cr
ε).

An εhermitian sesquilinear scalar product h (of signature (p, q) for ε = −1) cor-
responds to an εhermitian matrix H ∈ Hermε

p,q(Cr
ε) (of hermitian signature (p, q)

for ε = −1) defined by h(·, ·) = (H·, ·)Cr
ε
. The condition Ch = C̄t = C, i.e. C is

εhermitian, means in our model, that C has the form

ι(C) =
(

A εB
B A

)

with A = At and B = −Bt.
Using this information we find the explicit representation of the map which cor-
responds to taking the imaginary part Imh of h. This is the map = satisfying
Im h = (=(H)·, ·)R2r , where (·, ·)R2r is the Euclidean standard scalar product on R2r.
With z, w ∈ Cr

ε we define

β(z, w) := Im (z, w)Cr
ε

=
1
2̂i

(z · w̄ − z̄ · w)

and find Im h(z, w) = Im (Hz, w)Cr
ε

= 1
2î

[
(Hz) · w̄ − (Hz) · w]

= β(Hz, w). Further
we remark that β(·, ·) = Im (·, ·)Cr

ε
= (Iεjε·, ·)R2r , where (·, ·)R2r is the Euclidean

standard scalar product on R2r.
This yields Im h(z, w) = (Iεjει(H)z, w)R2r = −ε(jεIει(H)z, w)R2r and for H = A+ îB
with A,B ∈ End(Rr) one obtains

=(H) = Iεjε

(
A εB
B A

)
= ε

(
0 1r

−1r 0

)(
A εB
B A

)
= ε

(
B A
−A −εB

)
.

This map is easily seen to have maximal rank and to be equivariant with respect to
the following GL(r,Cε)-action on Hermε

p,q(Cr
ε):

GL(r,Cε)×Hermε
p,q(Cr

ε) → Hermε
p,q(Cr

ε), (g,H) 7→ (g−1)hHg−1

and the GL(2r,R)-action on Sym(ω0) which was considered in section 4. Summarising
we have the commutative diagram in which all maps apart = of the square were shown
to be totally geodesic:

(6.2) GL(r,Cε)
Uε(p,q)

[i] //

Ψε

²²

GL(2r,R)
Sp(R2r)

Ψ

²²

M

h̃

99ttttttttttt

h
%%KKKKKKKKKKK

Hermε
p,q(Cr

ε)
= // Sym(ω0),

where [i] is induced by the inclusion i : GL(r,Cε) ↪→ GL(2r,R). Hence = is totally
geodesic. Utilising this diagram we show the next proposition.
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Proposition 12. A map h : M → Hermε
p,q(Cr

ε) is εpluriharmonic, if and only if
Ω = Imh : M → Sym(ω0) is εpluriharmonic.

Proof. As discussed above, the map = is a totally geodesic immersion and therefore
we are in the situation of proposition 3.

From this proposition it follows:

Proposition 13. Let (E → M, D, C, C̄, h) be an εharmonic bundle over the
εcomplex manifold (M,Jε), (E,D, S, Ω = Imh) the symplectic εtt∗-bundle constructed
in proposition 11 and Φ̃Ω : M → GL(R2r)/Sp(R2r) the εpluriharmonic map given in
corollary 1. Then Φ̃Ω = [i] ◦ Φ̃h and these εpluriharmonic maps are admissible.

Proof. This follows using the definition of (E, D, S, Ω) (cf. proposition 11) from corol-
lary 1 and proposition 12. For the second part one observes, that the differential of
[i] is a homomorphism of Lie-algebras.

This describes the εpluriharmonic maps coming from symplectic εtt∗-bundles in-
duced by εharmonic bundles. Conversely, this gives an Ansatz to construct εharmonic
bundles from εpluriharmonic maps to GL(r,Cε)/U ε(p, q). For metric εtt∗-bundles we
have gone this way in [18, 22] to obtain theorem 3.
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[3] V. Cortés and L. Schäfer, Topological-antitopological fusion equations, pluri-
harmonic maps and special Kähler manifolds, Progress in Mathematics 234,
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