H-convex Riemannian submanifolds
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Abstract. Having in mind the well known model of Euclidean convex
hypersurfaces [4], [5] and the ideas in [1], many authors defined and in-
vestigated the convex hypersurfaces of a Riemannian manifold. As it was
proved by the first author in [7], there follows the interdependence between
convexity and Gauss curvature of the hypersurface. This paper defines
and studies the H-convexity of a Riemannian submanifold of arbitrary
codimension, replacing the normal versor of a hypersurface with the mean
curvature vector of the submanifold. The main results include: some prop-
erties of H-convex submanifolds, a characterization of the Chen definition
of strictly H-convexity for submanifolds in real space forms [2], [3] and
examples.
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1 Convex hypersurfaces in Riemannian manifolds

Let (N, g) be a complete finite-dimensional Riemannian manifold and M be an ori-
ented hypersurface whose induced Riemannian metric is also denoted by g. We denote
by w the 1-form associated to the unit normal vector field £ on the hypersurface M.

Let « be a point in M C N and V a neighborhood of x in N such that exp, :
T,N — V is a diffeomorphism. The real-valued function defined on V' by

F(y) = wa(exp; ' (y))
has the property that the set
TGH, ={yeV| F(y)=0}

is a totally geodesic hypersurface at x, tangent to M at x. This hypersurface is the
common boundary of the sets

TGH,; ={yeV| F(y) <0}, TGHf ={y € V| F(y) > 0}.
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Definition. The hypersurface M is called convex at x € M if there exists an open
set U C V C N containing = such that M N U is contained either in TGH_ or in
TGH}.

A hypersurface M convex at x is said to be strictly conver at z if

MNUNTGH, = {z}.

In [7] it was obtained a necessary condition for a hypersurface of a Riemannian
manifold to be convex at a given point.

Theorem 1.1 If M is an oriented hypersurface in N, convex at x € M, then the
bilinear form

Qp T, M x T, M — R, Qr(Xa Y) = g(h(Xa Y)’€)7

where £ is the normal versor at x, and h is the second fundamental form of M, is
semidefinite.

The converse of Theorem 1.1 is not true. To show this, we consider the surface
M : 2® = (21)? + (22)% in R®. One observes that 0 € M, £(0) = (0,0,1) and TGH, :
23 = 0 is the plane tangent to M at the origin. On the other hand, if

c: 1 — M, c(t) = (x'(t),2%(t), 2> (1))

is a C? curve such that 0 € I and ¢(0) = 0, then (23)”(0) = 2((2')’(0))? and hence
the function
f I — Ra f(t) - <C(t) - 075(0»
satisfies the relations f(t) = x3(¢) and f”(0) = ()" (0) = 2((2')’(0))?.
Since Qo(¢ (0),¢ (0)) = f”(0), and ¢ is an C? arbitrary curve, one gets that (g
is positive semidefinite. However M is not convex at the origin because the tangent
plane TGHy : 22 = 0 cuts the surface along the semicubic parabola

23 =0,z + (2% =0

and consequently in any neighborhood of the origin there exist points of the surface
placed both below the tangent plane and above the tangent plane.

If the bilinear form 2 is definite at the point z € M, then the hypersurface M is
strictly convex at x.

The next results [7] establish a connection between the Riemannian manifolds
admitting a function whose Hessian is positive definite and their convex hypersurfaces.

Theorem 1.2 Suppose that the Riemannian manifold (N, g) supports a function
f: N — R with positive definite Hessian. On each compact oriented hypersurface M
in N there exists a point x € M such that the bilinear form Q(x) is definite.

Theorem 1.3 If the Riemannian manifold (N, g) supports a function f: N — R
with positive definite Hessian, then

1) there is no compact minimal hypersurface in N;

2) if the hypersurface M is connected and compact and its Gauss curvature is
nowhere zero, then M is strictly convex.

Theorem 1.4 Let (N, g) be a connected and complete Riemannian manifold and
f: N — R a function with positive definite Hessian. If xg is a critical point of f and
ao = f(xo), then for any real number a € Im f\{ao}, the hypersurface M, = f~*{a}
is strictly conver.
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2 H-convex Riemannian submanifolds

Having in mind the model of convex hypersurfaces in Riemannian manifolds, we define
the H-convexity of a Riemannian submanifold of arbitrary codimension, replacing the
normal versor of a hypersurface with the mean curvature vector of the submanifold.

Let (N,g) be a complete finite-dimensional Riemannian manifold and M be a
submanifold in N of dimension n whose induced Riemannian metric is also denoted
by g. Let & be a point in M C N, with H, # 0 and V a neighborhood of z in N such
that exp, : T, N — V is a diffeomorphism. We denote by w the 1-form associated to
the mean curvature vector H of M.

The real-valued function defined on V' by

F(y) = wa(exp; ()
has the property that the set
TGH, ={yeV| F(y) =0}

is a totally geodesic hypersurface at x, tangent to Mat x. This hypersurface is the
common boundary of the sets

TGH, ={yeV| F(y) <0}, TGHS ={ye V| F(y) > 0}.

Definition. The submanifold M is called H-conver at x € M if there exists an
open set U C V C N containing x such that M NU is contained either in TGH_ or
in TGH}.

A submanifold M, which is H-convex at z, is called strictly H-convex at x if

MNUNTGH, = {x}.

The next result is a necessary condition for a submanifold of a Riemannian man-
ifold to be H-convex at a given point.

Theorem 2.1 If M is a submanifold in N, H-convex at x € M, then the bilinear
form

where h is the second fundamental form of M, is positive semidefinite.

Proof. We suppose that there is a open set U C V C N which contains the point
x such that M NU C TGH}.

For an arbitrary vector X € T, M, let ¢c: I — M NU be a C? curve, where I is a
real interval such that 0 € I and ¢(0) =z, ¢ (0) = X. Asc(I) C MNU C TGH,' the
function f = Foc: I — R satisfies

(2.1) f(t)>0, Vel

It follows that 0 is a global minimum point for f, and hence

’

(2.2) 0= f(0) = wa(dexp; ' (c(0)))(¢ (0)) = wa(X),

(2.3) 0 < f(0) = wy(d? exp; ' (¢(0))) (¢ (0), ¢ (0))
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+wz(dexpy t(¢(0))) (€ (0)) = we (€ (0) = Qu (X, X).
Since X € T, M is an arbitrary vector, we obtain that €2, is positive semidefinite.

Remark. We consider {ej,es, ..., €, } an orthonormal frame in 7, M. Since

n

Trace(Q),) = g(z h(es,e;), Hy) = ng(Hy, Hy) > 0,
i=1

the quadratic form €2, cannot be negative semidefinite, therefore M N U cannot be
contained in TGH . So, if the submanifold M is H-convex at the point z, then there
exists an open set U C V C N containing x such that M NU is contained in TGH,.

In the sequel, we prove that if the bilinear form €2, is positive definite, then the
submanifold M is strictly H-convex at the point x. For this purpose we introduce a
function similar to the height function used in the study of the hypersurfaces of an
Euclidean space.

We fix £ € M C N and a neighborhood V of x for which exp, : TN — V is a
diffeomorphism. The function

Fo,:V =R, F,, (y) = ws(exp; ' (y)

has the property that it is affine on geodesics radiating from .
We consider an arbitrary vector X € T, M and a curve c¢: I — V such that 0 € I,
¢(0) =z, ¢ (0) = X. The function f = F,,_ oc: I — R satisfies

F(0) = waldexp; (€(0))( (0)) = wa (¢ (0)) = wa(X) = g(H, X) = 0

and hence x € M is a critical point of F,_.

Theorem 2.2 Let M be a submanifold in N. If the bilinear form Q, is positive
definite, then M is strictly H-convex at the point x.

Proof. The point x € M is a critical point of F,, and F,_ (z) = 0. On the other
hand one observes that

Hess" F,, = Hess™ F,, —dF, (QH).

As F,,, is affine on each geodesic radiating from z, it follows Hess™¥ F,_ = 0. It remains
that
HessM F,, (z) = Q.

and hence Hess™ F,_ is positive definite at the point z. In this way = is a strict local
minimum point for F,,, in M NV, i.e., the submanifold M is strictly H-convex at x.

Remark. 1) The bilinear form (2, is positive (semi)definite if and only if the
Weingarten operator Ay is positive (semi)definite.

2) If M is an hypersurface in N, z is a point in M with H, # 0, then M is
H-convex at z if and only if M is convex at x.

A class of strictly H-convex submanifolds into a Riemannian manifold is made
from the curves which have the mean curvature nonzero.

Theorem 2.3 Let (N,g) be a Riemannian manifold and ¢ : I — N a regular
curve which have the mean curvature nonzero, where I is an real interval. Then c is
a strictly H-convex submanifold of N.
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Proof. We fix t € I. As T,;yc =Sp{c (1)}, we obtain

h(é (1), &
Hy = ME @ 0)

| @)

Since Q(c (t),¢ (t)) = g(h(c (t),c (1)), Hewy) = ||c (t)”2 HHc(t)H2 > 0, the quadratic
form € is positive definite. It follows that the curve c is a strictly H-convex subman-
ifold of N.

3 H-convex Riemannian submanifolds
in real space forms

Let us consider (M, g) a Riemannian manifold of dimension n. We fix € M and
k € 2,n. Let L be a vector subspace of dimension k in T, M. If X € L is a unit vector,
and {€/, €5, ..., e, } is an orthonormal frame in L, with €] = X, we denote

k
Ric,(X) = k(ej A¢)),

=2

where k(ej A €}) is the sectional curvature given by Sp{ef,e}}. We define the Ricci
curvature of k-order at the point x € M,

Op(z) = —— min Ricp(X).
k=1 [ dimL =k,
Xel|X|=1

B. Y. Chen showed [2], [3] that the eigenvalues of the Weingarten operator of a
submanifold in a real space form and the Ricci curvature of k-order satisfies the next
inequality.

Theorem 3.1 Let (M(c),@ be a real space form of dimension m and M C M(c)
a submanifold of dimension n, and k € 2,n. Then

(i) Ag > =10 (z) — c) I,

(i) If O (x) # ¢, then the previous inequality is strict.

Corollary 3.2 If M is a submanifold of dimension n in the real space form M(c)
of dimension m, x € M and there is a natural number k € 2,n such that 0y (z) > ¢,
then M s strictly H-convex at the point x.

The converse of previous corollary is also true in the case of hypersurfaces in a
real space form.

Theorem 3.3 If M is a hypersurface of dimension n of a real space form M(c)
and M is strictly H-convex at a point x, then

Or(z) > ¢, YV k €2,n.

Proof. Let x be a point in M, let H be the mean curvature of M and 7 a 2-plane
in T, M. We consider {X,Y} an orthonormal frame in 7 and §{ = ngl\' The second
fundamental form of the submanifold M satisfies the relation
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(3.1) WU, V) = QHgfjl‘I/)g YU,V € T, M.

On the other hand, the Gauss equation can be written

(32) R(X,Y,X.Y)=R(X,Y,X,Y) = g(h(X, X), h(Y,Y)) + g(h(X,Y), (X, Y)).

Using the relation (3.1) and the fact that M (¢) has the sectional curvature ¢, we
obtain

(3.3) R(X,Y,X,Y) =c+ (R (X, X)Q(Y,Y) - (X, Y)?).

2
|| He ||

On the other hand, €, is positive definite because M is strictly H-convex at
the point x. From the Cauchy inequality, using the fact that X and Y are linear
independent vectors, it follows

(3.4) Q. (X, X)Q,(V,Y) - Q(X,Y)? > 0.
From (3.3) and (3.4) we find
(3.5) R(X,)Y,X,Y) > ¢,

which means that the sectional curvature of M at the point z is strictly greater than
c. Using the definition of Ricci curvatures, it follows that

Or(x) > ¢, Vke2n.

Let M be a submanifold of dimension n in the m dimensional sphere S™ C R™ 1!
We denote with ( , ) the metrics induced on S™ and M by the standard metric of
R™*1 with V, V/ and V the Levi-Civita connections on M, S™ and R™+! and with
h the second fundamental form of M in R™+1 with R’ the second fundamental form
of M in S™and with h the second fundamental form of S™ in R™*1.

Let X,Y be two vector fields tangents to M. The Gauss formula gives

(3.6) VyY = VxY + 1 (X,Y)

and

(3.7) VxY = VY +h(X,Y) = VxY + 1 (X,Y) +h(X,Y).
Therefore

(3.8) hX,Y)=h'(X,Y)+h(X,Y).

We fix a point € M and an orthonormal frame {ey, e, ...,e,} in T, M. From the
relation (3.8), one gets

(39) h(ez—,ei) = h’(ei, ei) +E(€i, ei),Vi € 1,771

and hence
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1~

3.10 H=0H - h iy61)

(3.10) DI

where H is the mean curvature vector field of M < R™! and H' is the mean
curvature vector field of S™ C R™*!. We introduce the quadratic forms

Q, Q0 :T,MxT,M — R,

QX,Y) = (W(X,Y),H), Q(X,Y)= (K (X,Y),H).
From (3.8) and (3.10), we obtain

(3.11)  QX,Y) = (h(X,Y),H) = (b (X,Y)+h(X,Y), H + % zn:ﬁ(ei, e:)).

Using the fact that h'(X, Y) and H' are tangent vectors at S™, and %(X,Y) and
>oi i h(ei,e;) are normal vectors at S™, one gets

(3.12) X, Y) = (W (X, V), H) + (h(X,Y), % S Rler,en)
=1
:Q,(X,Y) %Xn: hei,e;))

Based on these considerations, we formulate the next

Theorem 3.4 We consider a point x € M.

(i) If M is a submanifold in S™, H-convex at x, then M is strictly H-convez at
x, as submanifold in R™*1.

(ii) If the Weingarten operator Ag of M C R™*! satisfies the inequality Ag > I,
then M is a submanifold in S™, strictly H-convez at x.

Proof. We denote with X the position vector field of S™. The second fundamental
form of S™ C R™*! is given by

(3.13) h(X,Y) = (h(X,Y), X)X = (VxY, X)X

= —(V,VxX)X = —(X,Y)X, VX,Y € X(M).
Using (3.13), we find

n

1
3.14 - is z =
(3.14) nz €i5 €

=1

n
g e, ei) X .

From (3.12), (3.13), (3.14) and VX,Y € T, M, one gets

:\'—‘

(3.15) QX,Y)=Q(X,Y)+ (X, V)X, X) = Q(X,Y) + (X,Y)

We read (3.15) in two ways: (i) If M is a submanifold in S™, H-convex at x, then
Q'(x) is positive semidefinite. Using the fact that (, ) is positive definite, it follows
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that Q(z) is positive definite, therefore M is a strictly H-convex submanifold in R™*1
at . (i) If Ay > I, then (Ag X, X) > || X||*, V X € T, M. Therefore

(X, X) =X, X) - | X|]” = (h(X,X),H) — | X]|”

= (AgX, X) — | X|° > 0,VX € T, M.
Consequently M is a submanifold in S™, strictly H-convex at x.

Corollary 3.5 If M is a minimal submanifold in S™, then M is strictly H-convex
at x as submanifold in R™1.

Proof. Using the fact that M is minimal in S™, one gets ' = 0, therefore
QX,Y)=(X,Y),V X,Y € X(M). Consequently € is positive definite.
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