Geometry of parallelizable manifolds in the context
of generalized Lagrange spaces
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Abstract. In this paper, we deal with a generalization of the geometry
of parallelizable manifolds, or the absolute parallelism (AP-) geometry,
in the context of generalized Lagrange spaces. All geometric objects de-
fined in this geometry are not only functions of the positional argument z,
but also depend on the directional argument y. In other words, instead of
dealing with geometric objects defined on the manifold M, as in the case
of classical AP-geometry, we are dealing with geometric objects in the
pullback bundle 7=1(T'M) (the pullback of the tangent bundle TM by
m: TM — M). Many new geometric objects, which have no counterpart
in the classical AP-geometry, emerge in this more general context. We
refer to such a geometry as generalized AP-geometry (GAP-geometry).
In analogy to AP-geometry, we define a d-connection in 7= (T M) having
remarkable properties, which we call the canonical d-connection, in terms
of the unique torsion-free Riemannian d-connection. In addition to these
two d-connections, two more d-connections are defined, the dual and the
symmetric d-connections. Our space, therefore, admits twelve curvature
tensors (corresponding to the four defined d-connections), three of which
vanish identically. Simple formulae for the nine non-vanishing curvatures
tensors are obtained, in terms of the torsion tensors of the canonical d-
connection. The different W-tensors admitted by the space are also calcu-
lated. All contractions of the h- and v-curvature tensors and the W-tensors
are derived. Second rank symmetric and skew-symmetric tensors, which
prove useful in physical applications, are singled out.
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1 Introduction

The geometry of parallelizable manifolds or the absolute parallelism geometry (AP-
geometry) ([5], [10], [14], [15]) has many advantages in comparison to Riemannian
geometry. Unlike Riemannian geometry, which has ten degrees of freedom (corre-
sponding to the metric components for n = 4), AP-geometry has sixteen degrees of
freedom (corresponding to the number of components of the four vector fields defin-
ing the parallelization). This makes AP-geometry a potential candidate for describing
physical phenomena other than gravity. Moreover, as opposed to Riemannian geome-
try, which admits only one symmetric linear connection, AP-geometry admits at least
four natural (built-in) linear connections, two of which are non-symmetric and three
of which have non-vanishing curvature tensors. Last, but not least, associated with
an AP-space, there is a Riemannian structure defined in a natural way. Thus, AP-
geometry contains within its geometrical structure all the mathematical machinery
of Riemannian geometry. Accordingly, a comparison between the results obtained in
the context of AP-geometry and general relativity, which is based on Riemannian
geometry, can be carried out.

In this paper, we study AP-geometry in the wider context of a generalized La-
grange space ([7], [9], [11], [12]). All geometric objects defined in this space are not only
functions of the positional argument x, but also depend on the directional argument
y. In other words, instead of dealing with geometric objects defined on the manifold
M, as in the case of classical AP-space, we are dealing with geometric objects in the
pullback bundle 7#=(T'M) (the pullback of the tangent bundle T'M by the projection
m: TM — M) [1]. Many new geometric objects, which have no counterpart in the
classical AP-space, emerge in this more general context. We refer to such a space as
a d-parallelizable manifold or a generalized absolute parallelism space (GAP-space).

The paper is organized in the following manner. In section 2, following the in-
troduction, we give a brief account of the basic concepts and definitions that will
be needed in the sequel, introducing the notion of a non-linear connection N,. In
section 3, we consider an n-dimensional d-parallelizable manifold M ([2], [11]) on
which we define a metric in terms of the n independent 7-vector fields A defining the

parallelization on 7=!(T'M). Thus, our parallelizable manifold becomes a generalized
Lagrange space, which is a generalization of the classical AP-space. We then define
the canonical d-connection D, relative to which the h- and v-covariant derivatives of
the vector fields A vanish. We end this section with a comparison between the classical
AP-space and the GAP-space. In section 4, commutation formulae are recalled and
some identities obtained. We then introduce, in analogy to the AP-space, two other
d-connections: the dual d-connection and the symmetric d-connection. The nine non-
vanishing curvature tensors, corresponding to the dual, symmetric and Riemannian
d-connections are then calculated, expressed in terms of the torsion tensors of the
canonical d-connection. In section 5, a summary of the fundamental symmetric and
skew symmetric second rank tensors is given, together with the symmetric second
rank tensors of zero trace. In section 6, all possible contractions of the h- and v-
curvature tensors are obtained and the contracted curvature tensors are expressed in
terms of the fundamental tensors given in section 5. In section 7, we study the differ-
ent W-tensors corresponding to the different d-connections defined in the space, again
expressed in terms of the torsion tensors of the canonical d-connection. Contractions
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of the different W-tensors and the relations between them are then derived. Finally,
we end this paper by some concluding remarks.

2 Fundamental preliminaries

Let M be a differential manifold of dimension n of class C*°. Let 7 : TM — M be
its tangent bundle. If (U, x#) is a local chart on M, then (7=1(U), (z*,y")) is the
corresponding local chart on T M. The coordinate transformation law on TM is given
by:

o =t (@), " =ply,

(pt') # 0.

Definition 2.1. A non-linear connection N on TM is a system of n? functions
Ng(x, y) defined on every local chart 7~Y(U) of TM which have the transformation
law

’ w!
where pt = %“; =

(2.1) Ng = p Py N§ +p2 Py s
ap , N2, €
€ 8’ __ 0 x
Whel"e pﬁ/ T Hne’ T 9zB oz

The non-linear connection N leads to the direct sum decomposition
T.(TM)=H,(TM)® V,(TM), YueTM=TM\ {0},

where H,(T M) is the horizontal space at u associated w1th N supplementary to the
vertical space V,,(T'M). If 6, := 9, — N e, where Oy azw 8 ayw then (8 ) is
the natural basis of Vu(TM) and (0,,) is the natural bas,1s of Hu(TM) adapted to N

Definition 2.2. A distinguished connection (d-connection) on M is a triplet D =
(NZ, I, C,), where N (z,y) is a non-linear connection on 7'M and I'}, (z,y) and

pvo

C’W(:z: y) transform according to the following laws:
(2.2) T = Do pZ,pZ,I‘gV +P¢ Py

’

(2.3) Chiryr = pa Pl O

In other words, I'jj, transform as the coefficients of a linear connection, whereas C}j,,
transform as the components of a tensor.

Definition 2.3. The horizontal (h-) and vertical (v-) covariant derivatives with re-
spect to the d-connection D (of a tensor field Af}) are defined respectively by:

(2.4) o= 0, AL+ ASTS, — ACTS,;

1z pev o
(2.5) o= 0, AG + ALCS, — ACS,.
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Definition 2.4. A symmetric and non-degenerate tensor field g, (x,y) of type (0, 2)
is called a generalized Lagrange metric on the manifold M. The pair (M, g) is called
a generalized Lagrange space.

Definition 2.5. Let (M, g) be a generalized Lagrange space equipped with a non-
linear connection N. Then a d -connection D = (N2, T, ,, Cj},,) is said to be metrical
with respect to g if

(26) Juvla = 0, Guv|la = 0.

The following remarkable result was proved by R. Miron [8]. It guarantees the
existence of a unique torsion-free metrical d-connection on any generalized Lagrange
space equipped with a non-linear connection. More precisely:

Theorem 2.6. Let (M,g) be a generalized Lagrange space. Let N be a given non-
linear connection on TM. Then there exists a unique metrical d-connection D =

(NZ, Ty, Chy) such that Aj, =T, =Ty, =0 and T}, == C};, — Cy,, = 0. This

d-connection is given by N and the generalized Christoffel symbols:

Oa 1 Qe

(2.7) F;w = 59 (5ugue + 51/9#6 - 5eg;w)a
S 1 e (A 5 3

(2'8) C;w = 59 (a,ugve + augue - aeg;w)'

This connection will be referred to as the Riemannian d-connection.

3 d-Parallelizable manifolds (GAP-spaces)

The Riemannian d-connection mentioned in Theorem 2.6 plays the key role in our
generalization of the AP-space, which, as will be revealed, appears natural. However,
it is to be noted that the close resemblance of the two spaces is deceptive; as they are
similar in form. However, the extra degrees of freedom in the generalized AP-space
makes it richer in content and different in its geometric structure (see Remark 3.6).
We start with the concept of d-parallelizable manifolds.

Definition 3.1. An n-dimensional manifold M is called d-parallelizable, or general-
ized absolute parallelism space (GAP-space), if the pull-back bundle 7= (T M) admits
n global linearly independent sections (m-vector fields) A(z, ), i = 1,...,n.

If A= (\"), a=1,...,n, then

i

where (A ) denotes the inverse of the matrix (A®).

Einstein summation convention is applied on both Latin (mesh) indices and Greek
(world) indices, where all Latin indices are written in a lower position.

In the sequel, we will simply use the symbol A (without a mesh index) to denote
any one of the vector fields A (¢ = 1,...,n) and in most cases, when mesh indices

appear they will be in pairs, meaning summation.
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We shall often use the expression GAP-space (resp. GAP-geometry) instead of
d-parallelizable manifold (resp. geometry of d-parallelizable manifolds) for its typo-
graphical simplicity.

Theorem 3.2. A GAP-space is a generalized Lagrange space.

In fact, the covariant tensor field g, (z,y) of order 2 given by

(32) glll/(z7y) ::{_\,u Az‘l”
defines a metric in the pull-back bundle 7=!(T'M) with inverse given by
(3.3) g (@, y) =AN

Assume that M is a GAP-space equipped with a non-linear connection N, .- By

o

Theorem 2.6, there exists on (M, g) a unique torsion-free metrical d-connection D =

(Ng, I, C) (the Riemannian d-connection). We define another d-connection D =

pv
(Ng, T, Cp,) in terms of D by:
(3.4) o, =17, —Hjxa )}“T’”
(3.5) cn, =0, —i—)i\a )i\H o
Here, T ? and ¢ ﬁ ” denote the h- and v-covariant derivatives with respect to the

Riemannian d-connection D. If and denote the h- and v-covariant derivatives

with respect to the d-connection D, then
(3.6) A% =0, X% =0.

“|77 L‘H?)

This can be shown as follows: A|, = §,A% + AT'g, = §,A% + A (T, +/J\O‘ i\gc‘)u) =

(6pAY +A°Tg)) 7);&7#( )i\6 Ae) = 0. In exactly the same way, it can be shown that

A%||x = 0. Hence, we obtain the following

Theorem 3.3. Let (M, X(x,y)) be a GAP-space equipped with a non-linear con-

nection N. There exists a unique d-connection D = (N2, I',,C2,), such that
Ay = A% = 0. This connection is given by Ng, (3.4) and (3.5). Consequently,

D 1s metrical: g,(09,v)|c = 0-
This connection will be referred to as the canonical d-connection.

It is to be noted that relations (3.6) are in accordance with the classical AP-
geometry in which the covariant derivative of the vector fields A with respect to the
canonical connection I'fj,, = A*(J, \,,) vanishes [15].

Theorem 3.4. Let (M, X(x,y)) be a d-parallelizable manifold equipped with a non-

(o3

T
linear connection NS. The canonical d-connection D = (NZ,I'7,,

expressed in terms of A in the form

Cy,) is explicitly

(3.7) Lo, =M (0, ), % =20 M),

nv uv h
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Proof. Since A%}, = 0, we have §,A\* = —A“T'¢,. Multiplying both sides by A, taking
into account the fact that A* X\, = 05, we get I'}, = — X\, (6, A%) = A*(d, \,). The

49
A ;

proof of the second relation is exactly similar and we omit it. a

It is to be noted that the components of the canonical d-connection are similar
in form to the components of the canonical connection in the classical AP-context
[15], noting that 0, is replaced by §, (for the h-counterpart) and by d, (for the
v-counterpart) respectively (See Table 1). The above expressions for the canonical
connection seem therefore like a natural generalization of the classical AP case.

By (3.4) and (3.5), in view of the above theorem, we have the following

Corollary 3.5. The Reimannian d-connection D = (Ng, I'y,, C},) is explicitly
expressed in terms of A in the form
(38) D% = XA — M) Gy = X @A = A,

A°. s a result of the dependence of A on the velocity vector y, the n® functions
A*(0, A\u), as opposed to the classical AP-space, do not transform as the coefficients

of a linear connection, but transform according to the rule

(3:9) AV (9w M) = DB Dl A (D M) + D2 Dl + 18 Dy Ol

Similarly, it can be shown that, in general, tensors in the context of the classical
AP-space do not transform like tensors in the wider context of the GAP-space; their
dependence on the velocity vector y spoils their tensor character. In other words,
tensors in the classical AP-context do not necessarily behave like tensors when they
are regarded as functions of position x and velocity vector y. This means that though
the classical AP-space and the GAP-space appear similar in form, they differ radically

}n their gﬁometric structures. We now introduce some tensors that will prove useful
ater on. Let

o [e3% _ (e « o, (e _ [e% (6%
(310) Yuv = )1‘ )i\HTV = Fuy - F[U/’ Guy = >1‘ )i‘uﬁl/ - C;,LIJ _Cpu'
In analogy to the AP-space, we refer to 7}, and Gy}, as the h- and v-contortion tensors

respectively.

Let
(311) Alojfu = ng - FS;L = FYSI/ - Fyg,u'
be the torsion tensor of the canonical connection I'7, and
(3.12) QZ‘V = 'yZ‘V + 71(,"“.
Similarly, let
(3.13) T, =C,, —C, =G, -Gy,
be what we may call the torsion tensor of Cj, and
(3.14) Dy, =G}, + G,

Now, if Yo = geo}, and Gopw = ngfw, then ¥4, and G, are skew symmetric

in the first pair of indices. This, in turn, implies that
(3.15) ", =G5, =0,

Hence, if . .
By = Yue By, = Guev
then
(316) A/ie = ’YfLe = ﬂl“ jﬁe = GIEJ.E - B#'
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Table 1. Comparison between the classical AP-geometry
and the GAP-geometry

Classical AP-geometry GAP-geometry
Building blocks A (z) A (z, y)
Metric Juv (x) =Ap (@) Av () Juv (x, y) =Ap(z, y)Av (z, y)
2 2 Z
o o

Riemannian connection Fgu = %gae{ay.gue + 6ugug + 859/4&} Fgu = %go‘e{%gue + 51/9;1‘5 + 6(9#1}}

Cﬁu = %gag{éugue + 8ugue + 6eg;w}

Canonical connection l"ff,/ :Ava (BVAH) Fﬁu :)\va(ci,, A_M) (h-counterpart)
i i i i
Chy = A‘a(a',,x“) (v-counterpart)
i i
AP-condition A% lu=0 Aalu =0 (h-covariant derivative)
AQHIL = 0 (w-covariant derivative)
Torsion AG, =Th, - T3, AL, =T5, — Ty, (h-counterpart)
TSV = C:V — Cg# (v-counterpart)
o o
Contorsion vﬁ‘,, = Ff‘w — Fffu 'y;‘l/ = FffV - FS‘“ (h-counterpart)
o
GSV = C’SV - C’z‘u (v-counterpart)
Basic vector Bu = Aﬁ(y = “fﬁa Bu = Af‘m = —yﬁ‘a (h-counterpart)

By = Tﬁ‘a = Gﬁa (v-counterpart)

Finally, it can be shown, in analogy to the classical AP-space [3], that the contor-
tion tensors 7., and G, can be expressed in terms of the torsion tensors in the
form

1

(317) Yuve = i(A;u/a + Am/p, + Ayou)
1

(3.18) Gue = i(T‘“’U +Tovp+Toopn)s

where Ao = gepus, and To = ge Ty, It is clear by (3.11), (3.13), (3.17) and
(3.18) that the torsion tensors vanish if and only if the contortion tensors vanish.

Table 1 gives a comparison between the fundamental geometric objects in the
classical AP-geometry and the GAP-geometry. Similar objects of the two spaces will
be denoted by the same symbol. As previously mentioned, “h” stands for “horizontal”
whereas “v” stands for “vertical”.

4 Curvature tensors in Generalized AP-space

Owing to the existence of two types of covariant derivatives with respect to the canon-
ical connection D, we have essentially three commutation formulae and consequently
three curvature tensors.
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Lemma 4.1. Let [05,9,] := 0,0, — 0,0, and let [5073u] be similarly defined. Then
(1) o0 = R 0er (0,8 = (0,N9) 1,

where R, := 0,Ng —0,N is the curvature tensor of the non-linear connection N7
Theorem 4.2. The three commutation formulae of )i\a corresponding to the canonical
connection D = (Ng,I'5,,Cp,) are given by

(@) A% ue = A%op = A°RE,p + A% AL, + A% RE,

(B) A%juo = A%jon = XSGus + A% Ty

(€) A%julo = A% ol = APe + A% C5 + A% Poys

cno
where
Ry,. = (0,17, —6,170,) + (T}, Te, —T5,1g,) + Ly, (h-curvature)
82yt = 0,C8, — 0,Co + C5,C — C5,C2,, (v-curvature)
Pliot=Couo— 9,8, — P;,Cre, (hv-curvature)
gwen that Ly, . :=Cj R, and Pj, :=0,N;—1T},.

A direct consequence of the above commutation formulae, together with the fact
that A%, = A%, = 0, is the following

Corollary 4.3. The three curvature tensors Ry, ., Sy, and Pg, . of the canonical

connection D = (N, T, Cp,,) vanish identically.

It is to be noted that the above result is a natural generalization of the corre-
sponding result of the classical AP-geometry [15].

le%

The Bianchi identities [4] for the canonical d-connection (Ng,I',,

Cg,) gives
Proposition 4.4. The following identities hold
(a) 6V7M7UA3MU = GV;M;U(A;(:GAIiU + Lgl/o)

(b) 6V7M7UT15);LHO' = 6V7M7U(T;(}6T50)?

where &, , » denotes a cyclic permutation on v, u,o.

Corollary 4.5. The following identities hold:

(a) A€ = ﬁmu - ﬁu\,u + /BEAZ,V + 6@1”#‘[]21/#'

e

(b) T5 e = By — Bujju + BT,

al

Proof. Both identities follow by contracting the indices a and o in the identities

(a) and (b) of Proposition 4.4, taking into account that 3, = Aj., B, = Ty, and

Lo, =—-L% O

pro pov:
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In addition to the Riemannian and the canonical d-connections, our space admits
at least two other natural d-connections. In analogy to the classical AP-space, we
define the dual d-connection D = (N, T, C2,) by

(4.2) e, =ry

v

Q.
Cp =0Cp,

and the symmetric d—connection D = (N3, fij, égy) by

~ 1 ~ 1
(4.3) I, = §(Fg” +17,), Ch = 5(03,] +Cy,)-
Covariant differentiation with respect to fﬁ‘y and fij will be denoted by “N\” and “/\\”
respectively.

Now, corresonding to each of the four d-connections there are three curvature ten-
sors. Therefore, we have a total of twelve curvature tensors three of which, as already
mentioned, vanish identically. The vanishing of the curvature tensors of the canoni-
cal d-connection allows us to express, in a relatively compact form, six of the other
curvature tensors (the h- and v-curvature tensors) corresponding to the Riemannian,
symmetric and the dual d-connections. These curvature tensors are expressed in terms
of the torsion tensors Ay, 7)), and their covariant derivatives with respect to the
canonical d-connection, together with the curvature Rjj, of the non-linear connection
N The other three hv-curvature tensors are calculated, though their expressions are
more complicated. This is to be expected since the expression obtained for the hv-
curvature tensor of the canonical d-connection lacks the symmetry properties enjoyed
by the h- and v-curvature tensors.

Theorem 4.6. The h-, v- and hv-curvature tensors of the dual d-connection D =

(Nﬁ‘,ffju, 52‘,/) can be expressed in the form:

(a) Rgau = A7 + CguRceru + Lguy + Lg,ucr'

ov|p

(b) S5, =T,

ov||u

A2 T A — TEAS, — A2 CS, — PL, TS

ov||lp prvitoe opev:

(c) P2, =T°

Vo pvlo

The corresponding curvature tensors of the symmetric d-connection D= (N;j‘, fij, égy)
can be expressed in the form:

(d) R, =3(A%, —A°

pov nvlo uo\z)

+ %(Ae Age — AZUASE) + %(AZVASH) + %(Ta an/)'

pur-toe €L

(e) 88, =4(Te, — T2 )+ YT, Te — TS, T5) + L(T5,TS,).

uv|lo pol|lv pr=oe po e ovten

AOt

ov||p

(£) Pg, =5 (Ag

uvlo

)+ 85T~ 4 ALCE+ GpaiuAS —} P51

1
opev pvitoe = 2 toptev:

o o )
The corresponding curvature tensors of the Riemannian d-connection D = (N, T';,, C},)
can be expressed in the form

(g) thfau = P)/Slllo' - ’Yﬁgw + 7;0'760‘1/ - 7;1/730 + 73€A§J + GgERZJ'



Geometry of parallelizable manifolds 129

(h) S/(,)ZG'V = Gz,éylla' - Gf:o'lly + GZO'G?V - GZVG?U + GzETlfO"

(i) Ply = D18 — G5

vuo vulo

+ (GE - Cliu),ygd - (G?il. - C?/,L)’Ylelo' + P{;{LGSE'

I

Proof. We prove (a) and (c) only. The proof of the other parts is similar.

(a) We have
R;ojfm/ = 6VF20 - 60F3V + FZO'F?V - FZUFSU + CgeRzen/
= 6V1—‘§,u, - 50P3p, + ngl—‘ge - Ff/[l.rgé + C?;LR;V
= {51/]-—‘3“ + F;p(Age + Feay)} - {501—‘3# + FLE/,LL(A(;E + F(ela)}
+ CgRg,
= (6VF§,U, + Fgurgu) - (60F3p, + Flelurga) - (F(CTMA?V + FlejuAge)
+ Co.RG,
= (ngu - C(?GR:LV + 6#Fgu + FZVF?/L) - (RS/LIT - CgeRlia
+ 5MFSU + FZJFSH) - (F;uAgj + FleluAge) + OSHRZ'V'
= 6HA3V + F?MAZ_V - FZHASV - FLE/p,Age + C?/,LRZ'ZI + C?ERIEJH + Cl(/xeR;eJ,a
gum + C?;LRZ'U + Lguy + L(lj/t,ua’
(c) We have
Pl/ap,a' = CAO:VTU - 8ﬂrgy - (BMNGE' - FZM)OSV
= 3;4(7 + (C;EVTU - g,u,\a) - aﬂAgu - aﬂrga - a#N;(Tg/ + Cltlle)

+ (A5, + T (TS + G
= Po — (0uNg = Tpp) T8 — 0ulg, + A5, C8 + (Co = O,

Vo pvlo

= (C0 s, = Couo) +A5,C8 — 9\, — P, TS

vp|o op~ev optev

o C LAY, — COAS, — 9N, — P TS

prlo pvitoe perov opev

=T, - 6MA2V + (wa + C;;L)Age - (T/fe + C?:A)A;V - P;HTS/

wvlo
o @ € AQ A€ a e € ma
- tuvle T AO'VIIM + T},LZIAO'G - TMEAUU - AEIJCO'M - Po’uTeV'
which are the required formulae. a

5 Fundamental second rank tensors

Due to the importance of second order symmetric and skew-symmetric tensors in
physical applications, we here list such tensors in Table 2 below. We regard these
tensors as fundamental since their counterparts in the classical AP-context play a
key role in physical applications. Moreover, in the AP-geometry, most second rank
tensors which have physical significance can be expressed as a linear combination
of these fundamental tensors. The Table is constructed as similar as possible to that
given by Mikhail (cf. [5], Table 2), to facilitate comparison with the case of the classical
AP-geometry which has many physical applications [14]. Corresponding “horizontal”
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and “vertical” tensors are denoted by the same symbol with the “vertical” tensors
barred. It is to be noted that all “vertical ” tensors have no counterpart in the classical

AP-context.
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Table 2. Summary of the fundamental symmetric
and skew-symmetric second rank tensors

Horizontal

Vertical

Skew-Symmetric

Symmetric

Skew-Symmetric

Symmetric

€ « € «
’Ya,u,’YUe - ’Yp,a’Yeu

YauToe T VaaVer

€ « € a
GauGue - GMaGeV

Epv =% o v = G |q
Ypv = Bavur® Fpv = BaGuv™
ppa— € — € — € e e €
Nuv = Be AL, buv = Be 05, Tuv = Be Tf,, éuv = Be Df,,,
— (23 pp— € ~ pp— (o3 b pp— «
Xpv = AT Yuv = Q0 Xpv =T | Ypv =D
env = 5By = Buip) | Ouv =1 Bun + 8y | Fuv = 2B — Bupp) | Ouv =SB + By
uy = 3 Puly vip v = g W plv v pv = g\ Py v||p pv = g\ Py v|lp
kpy = huv = kpy = huv =

GonGoe + GLaGey

— € «@ = p— € [e3
Tuv = YauYew Tuv = GouGey

— € « - — € «
Wpr = YpaYve Cpv =GP oG

paTve

apy = Bu By

@y = By By

Due to the metricity condition in Theorem 3.3, one can use the metric tensor g,

and its inverse g"” to perform the operations of lowering and raising tensor indices

under the h- and v- covariant derivatives relative to the canonical d-connection.

Thus, contraction with the metric tensor of the above fundamental tensors gives
the following table of scalars:

Table 3. Summary of the fundamental scalars

Horizontal

o= BuBH 0:=pB", ¢ 1= Be QHy Y= Q%0
wi=aYavge | 0 =% | b= 27 e g,

Vertical @ := B,BH* 0:=B", ¢ := Be DM, ¥ =D,
W= Gy G, | Ti=GY G2, | hi=2G G,

In physical applications, second order symmetric tensors of zero trace have special
importance. For example, in the case of electromagnetism, the tensor characterizing
the electro-magnetic energy is a second order symmetric tensor having zero trace. So

it is of interest to search for such tensors. The Table below gives some of the second
rank tensors of zero trace.
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Table 4. Summary of the fundamental tensors of zero trace

Horizontal Vertical
b + 20 B+ 20
Vv + 20, U+ 20,
Py + 2wy Ry + 20,
5 by = ) + 0w — oy = 590087, | 5B = Pp) + 0w — Tuw — 590 B,

We now consider some useful second rank tensors which are not expressible in
terms of the fundamental tensors appearing in Table 2. Unlike the tensors of Table 2,
some of the tensors to be defined below have no horizontal and vertical counterparts.
To this end, let
Ly, = Lg,, =Co.R,,, M, =1L, =C; R, Nu.:=CgR,, Fu.=Cg

ep Flavy €

R;,,.
Then, clearly
Ty =My, —Np =T R, Guy =My, —F,, =G, R,,, Gu-—T.=GgR,,.

av?

Finally, let T := g"*T},, and G := g""G,,. By the above, we have the following:
Symmetric second rank tensors: M.y, Ny, Fluu)-

Skew-symmetric second rank tensors: M,,), Ny, Fluv), Luw-

6 Contracted curvatures and curvature scalars

It may be convenient, for physical reasons, to consider second rank tensors derived
from the curvature tensors by contractions. It is also of interest to reduce the number
of these tensors to a minimum which is fundamental (cf. Propositions 6.1 and 6.2).
Contracting the indices o and p in the expressions obtained for the h- and v-
curvature tensors in Theorem 4.6, taking into account Corollary 4.5, we obtain
Proposition 6.1. Let Ry, := Eggu, Ry = ﬁgw and Ryy = RS, with similar

expressions for g‘m,, gg,, and S,,. Then, we have
(a) ﬁau = ﬂoh/ - ﬂl/|o' + ﬂsAgy + Benga

(b) Sov = Ba||u - BVHO’ + BT,

oV

(C) Rov = %Raua
(d) Sov = %So'u;
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(€) Roy = S = 0.

o o
N e} . SN
and Ry := R, with similar

Proposition 6.2. Let éw = }NBI‘jm, E;w = Eﬁ‘aa

expressions for g,w, §;w and Syus. Then, we have
(@) Ryo = Bojyu + CG R0 + Loy + Liuo.

(b) Sho = Bojju,

(©) Four = 3Hiuo + {05, + Mg A},

(d) §u0 = %gﬂff + i{BeTéu +T5o T}

ac® pe
(e) R,uo’ = /B,u|rr - 730|a + /BE’}/;J - ’yzée’}/cera + GzeR;(ﬂ

(f) Spo = Sjga = Bujjo — G + B.Gy,, — G.Gg,.

polla
Proposition 6.3. The following holds.

(a) R[HU] = %{ﬁalu - ﬂu\v} + C:aR/Ofa + C(an)R?u - C(Eau)Rgm
(b) Riuo) = 3{Boiu + Bulo + T, RS + To R,

(©) St = 3{Bojin — Bulio}+

(d) Suoy = 3{Bojiu + Bujio }+

(€) Riuo) = 3Rjyuo) + 15 AG,

(£) Riuo) = 3Ruo) + 160 M
(B) S(uo) = 3S(uo) + §T50 T

() Riuo) = ${L8,, + C5 B,y — O3 RS},

apo

(j) R(}LU) = %{(ﬁﬂlo’ + ﬂUl[L) - ngla + ﬂé QZO’} - ’Yﬁte IYS'Q + %{Gﬁg Rag + Gge RZ#}?
(k) Sfuot = 0,

(1) Stuoy = 3{(Bujjo + Bojju) = D
Corollary 6.4. The following holds:

+ Be D5} — G Gy

(03
po|a

€0

(a) RS :=g" Ry =%, + T RS,

(b) gg = guagﬁtd = BUHU?
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(¢) RS :=g" Ruo = 1{B%)o + T RS} + 1A, A2

€0

(d) 57 := g"°S, = 1B, + L1, T2

€T
(e) R% =g R, = ﬂala - %Qa[fa\a + %Ba QY% — % V5o T GV Ry,
(f) SUU = gHU S,ua = BUHO’ - %DaUaHa + %Ba D%y — Gaae G;a'

We now apply a different method for calculating both R, and S,,,, now expressed
in terms of the covariant derivative of the contorsion tensors with respect to the
Riemannian d-connection. Then we obtain

o

Proposition 6.5. The “Ricci” tensors R, and S,s can be expressed in the form
(a) Rua = ﬁu“’a - ryzto—‘l’a - ﬂ€’7/ia + rYZ,aryga + G;O:SR::):U'

() Syo = By — Gy~ BeGiy + GG

wio

Proof. We prove (a) only; the proof of (b) is similar.
We have

0= Rfjm = (6QFZ‘U — 50Fﬁa) + (Ffwl‘ga — FZQFS‘U) + RfmCﬁ‘6
BT +7) = G (T 478 + (T + 750 (TS + )
(T + 7o) (T2 +72,) + RE,CS
— Ryo — (00100 — 9e0T50) + (02700 + 750 T — AT,

- Vgerga) + R;a(c;(je - Cge) + 720730( - 'Y;iaryga'

Consequently,

o

Rp,o’ = ﬁy“)a - ’YSG'T(X - ﬁe’y;a + 7;04730 + Gzefoa’
which is the required formula. O

In view of Proposition 6.2 (e) and (f) and Proposition 6.5, we obtain

Corollary 6.6. The following identities holds:
(a) (ﬁmo - 6#70’) - (730|a - ,VZZU'TQ) = (nyLanﬁ — 266/}/;0)

(b) (B;LHU - B,uﬁcr) - (ngHO‘ - ija’ﬁa) = (GZaDge - 2B6G/€_m')'
The next two tables summarize the results obtained in this section, where the

contracted curvatures are expressed in terms of the fundamental tensors.
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Table 5 (a). Second rank curvature tensors

Skew-symmetric Symmetric
Dual Riuo) = €op — Loy + Migp) + Niop) Ripo) = Opo + Muo) = Nipo)
Sluo) = Eon S(uo) = Ous
Symmetric Riyo) = 5 Rjpo) + 1o Riuo) = 3Ruo) + 3 {huo —wpo — opo}
a 13 1 g 13 107 — —
S[/»m'] = §S[#U] + 1Mop S(,uo') = §S(,u.¢7) + Z{h,uo — Wpo — U,uo—}
. . _ 1 _ 1
Riemannian R[,u,o'] = ELV‘U — F[,u,o‘] R([,LU) = 9“5 — 5(’[,[)“0- — (]5#0—)
—Wpo + Moy = Flus)
_ L — _ B
Slue] =0 S(uoy = o — 5(Wpe — buo) — Wpo

Table 5 (b). h- and v-scalar curvature tensors

h-scalar curvature v-scalar curvature

Dual R =0+T 57 =90

~ o~

Symmetric | RZ=3(0+T) - +Bw+o) | SI=10— (3w +70)

o

Riemannian fzg:e—%(@/z—qs)—erG 55:9—%@—@—@

7 The W-tensors

The W-tensor was first defined by M. Wanas in 1975 [13] and has been used by
F. Mikhail and M. Wanas [6] to construct a geometric theory unifying gravity and
electromagnetism. Recently, two of the authors of this paper studied some of the
properties of this tensor in the context of the classical AP-space [15].

Definition 7.1. Let (M, \) be a generalized AP-space. For a given d-connection
D = (Ng,I';,,Cp,), the horizontal W-tensor (hW-tensor) Hp,, is defined by the
formula

)‘;L|1/cr - )‘;L\JV =AM

pvod

whereas the vertical W-tensor (vW-tensor) Vg, is defined by the formula

_ €
Aullve = Aullov = AV

where and “||” are the horizontal and the vertical covariant derivatives with
respect to the connection D.

“ ‘77
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We now carry out the task of calculating the different W -tensors. As opposed to the
classical AP-space, which admits essentially one W-tensor corresponding to the dual
connection, we here have 4 distinct W-tensors: the horizontal and vertical W-tensors
corresponding to the dual d-connection, the horizontal W-tensor corresponding to the
symmetric d-connection and, finally, the horizontal W-tensor corresponding to the
Riemannian d-connection. The remaining W-tensors coincide with the corresponding
curvature tensors.

It is to be noted that some of the expressions obtained for the W-tensors are
relatively more compact than those obtained for the corresponding curvature tensors.

Theorem 7.2. The hW-tensor HY, , the vW-tensor V., . the hW-tensor H®,_ and

nvo s nvo s puvo

the hW-tensor Hj,,, corresponding to the dual, symmetric and the Riemannian d-
connections respectively can be expressed in the form:

(a) ﬁgz/a = A7 + AliaAze + 6#7’/70[’50’1/

ov|p
(b) Vp,auo = Tng# + TSUTSE'
(C) Hﬁuo = %(AZLMO— - Azgll/) + %(AZuAge - AZUAge) + %(AZVA?;L)‘

(d) Hyjo = Voo = Viioly + Vo Ve = Vi Veo + AoVe:
Proof. We prove (a) only. The proof of the other parts is similar. We have

AeH,o = AR}, + )\H~‘€Afw + A+ R

mlle
Hence, taking into account Theorem 4.6 (a), we obtain
Hyyyy = Ry +3% (G Ay —AsTG)AG, +X(0c N —AsCl, )RS,
= Rzau + AZO‘(]‘—‘E(E - F:u) + RZU(CSE - C?u)

= Agum + CgLRZ'D + Lgyu + Lgua + AZoAze + TﬁeRfﬂ/
gym + TE(LRZV + C;(jeRZ'V + Lgl/p, + L(Ijuo’ + AZGIUA;O;G + T}?ER(ETV
gum + AIE/JAﬁe + Gl"anULzO'V'

a

Proposition 7.3. Let ﬁw = }NI(‘;‘W, ﬁw = H> and Hye = HS with similar

‘- avo avo
expression for V,,. Then, we have

(a) 7’_21/0 = Bah/ - Bu|0 + QﬁeAfw,
(b) Voo = Bojjy — Byjjo +2B.T%,,

(C) ﬁl/a - %{ﬁua + 661\20_},

(d) Hyo = 0.
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Proposition 7.4. Let ]?I,w = H® }AIW = H®  and H,, = Hfja

paos oo with similar

o

expressions for 17#,,. Then, we have
(a) HMU = 6U|H + AeaoA;O;e + 6(17/%0113;10’

+T€ Ta

allp ao* per

(b) V.o =B
(©) Huo = $Hyo + (BAG,, + AsaAl),

(d) Hyo = Bujo — Vpola T BeVjio = Voo Ve

Proposition 7.5. The following holds:
(a) ﬁ[lw} = %{@ﬂu = Bulo} + Sapo Lo
(0) Hiuoy = 5 {Boip + Bpiok + Moo Al
(©) Viuo) = 5{Bolju — Bua},

(d) ‘7(u<f) = 5{Bojju + Bujjo} + T T
() Hiuo) = 3Hyyo) + 35S,

(£) Hyoy = 3Hiuo) + 14504

2 4 toat e

(g) H[;LO’] = %GapaLguaa

(h) H(,LLU) = %{(ﬁMG + ﬁﬂ\#) - Qzﬂa + /859/6_1,0‘} - ’Yﬁe/yfroz‘
Corollary 7.6. the following holds:
(a) He = 0% +A%aAg

€

(b) V& = B, + T, T2

€

(c) H = 3B% + JA%AS

(73]
(d) HO’U _ ﬁg‘g _ %Qaaala + %5()({20«70 _ 'Yaae')/;a-

Taking into account Proposition 4.4, Theorem 7.2 and the Bianchi identity [4] for
the Riemannian d-connection, we get the following

o

Proposition 7.7. The hW-tensors ﬁﬁ‘w, I?I/‘j‘w, H,,, and the vW-tensors XN/M‘XW
satisfy the following identities:

(@) Sppo HYyy = 26,0 (A% AL, + L0,,).

ne pnov

(b) S Vissy = 26,10 (T2 T5,).

pnvo

ra a
(C) 6#71/70 H;u/a’ - 6#»1/70' Luau'
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(d) GMV;UHSVU = GP«JGU Lf)fou'

We collect the results obtained in this section in the following tables, where the
contracted W-tensors are expressed in terms of the fundamental tensors.

Table 6 (a). Second rank W-tensors

Skew-symmetric Symmetric
Dual Hiyo) = €op — Loy + 2Miy Hpoy = Opo — (Wpo + 0o — huo)
‘7[;w] = €op V(HU) = é;w - (‘Duo +Opo — B;w)
Symmetric | Hyo) = 5Hjuo) + iou | Hiuo) = 5H(u0) + §{0e + 0o — huo}
Riemannian I;[W] = 3Luo — M0 ;}(W) =0po — 2 (VYpo — buo) — Wuo

Table 6 (b). Scalar W-tensors

h-scalar W-tensors | v-scalar W-tensors

Dual H? =0 — (3w+o0) Ve =0—(30+0)

Symmetric | HI = 10— 1Bw+o)

Riemannian [HI =0 — (¢ — ¢) —w

Concluding remarks

In the present article, we have developed a parallelizable structure in the context of
a generalized Lagrange space. Four distinguished connections, depending on one non-
linear connection, are used to explore the properties of this space. Different curvature
tensors characterizing this structure are calculated. The contracted curvature tensors
necessary for physical applications are given and compared (Tables 5(a)). The traces
of these tensors are derived and compared (Table 5(b)). Finally, the different W-
tensors with their contractions and traces are also derived (Tables 6(a) and 6(b)).
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On the present work, we have the following comments and remarks:

1. Existing theories of gravity suffer from some problems connected to recent ob-
served astrophysical phenomena, especially those admitting anisotropic be-
havior of the system concerned (e.g. the flatness of the rotation curves of spiral
galaxies). So, theories in which the gravitational potential depends on both po-
sition and direction are needed. Such theories are to be constructed in spaces
admitting this dependence. This is one of the aims motivating the present work.

2. Among the advantages of the AP-geometry are the ease in calculations and the
diverse and its thorough applications. In this work, we have kept as close as
possible to the classical AP-case. However, the extra degrees of freedom in our
GAP-geometry have created an abundance of geometric objects which have no
counterpart in the classical AP-geometry. Since the physical meaning of most of
the geometric objects of the classical AP-structure is clear, we hope to attribute
physical meaning to the new geometric objects appearing in the present work,
especially the vertical quantities.

3. Due to the wealth of the GAP-geometry, one is faced with the problem of
choosing geometric objects that represent true physical quantities. As a first step
to solve this problem, we have written all second order tensors in terms of the
fundamental tensors defined in section 5. This is done to facilitate comparison
between these tensors and to be able to choose the most appropriate for physical
application. The same procedure has been used for scalars.

4. The paper is not intended to be an end in itself. In it, we try to construct a
geometric framework capable of dealing with and describing physical phenom-
ena. The success of the classical AP-geometry in physical applications made us
choose this geometry as a guide line.

The physical interpretation of the geometric objects existing in the GAP-
geometry and not in the AP-geometry will be further investigated in a forth-
coming paper.

This paper is not an end in itself, but rather the beginning of a research direction.
The physical interpretation of the geometric objects in the GAP-space that have
no counterpart in the classical AP-space will be further investigated in forthcoming
papers.
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