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Abstract. Following [12] and [14], the Lie groups may be classified into
four families, with respect to the property of the invariant vector fields to
be geodesic. A detailed study in dimensions 2 and 3 ([13]) led to many ex-
amples of particular invariant vector fields ξ geometrized, in this manner,
by means of some properly chosen invariant Riemannian metrics g. In this
paper we extend the previous investigation, and analyse the behavior of all
the invariant vector fields ξ and of all their associated invariant Rieman-
nian metrics g. The 2-dimensional case is completely solved: given a left
invariant field of forces ξ on a 2-dimensional Lie group G, we determine
all the metrics g ∈ Riem(G, ξ) such that ξ becomes geodesic in (G, g) and
all the possible trajectories of free fall particles moving in the ”Universe”
(G, g).

M.S.C. 2000: 53C22, 22E15, 37C10, 15A03.
Key words: geodesic vector fields, trajectories, moduli spaces, geodesics.

1 Introduction

The starting point of this study was the need of geometrizing the trajectories of a
left invariant vector field ξ on a Lie group G, by interpreting the trajectories of ξ as
geodesics of a suitable chosen left invariant Riemannian metric g. (In this case, we
call ξ a geodesic vector field). Such problems appeared first in Theoretical Physics,
especially in Fluid Mechanics ([1], [3]), but they are quite general, whenever we have
to consider symmetry groups associated to some PDE’s. (For example, applications
in Robotics may be found in [15]; for other different but related viewpoints, see [6],
[19], [20]).

The existence problem was solved in ([12]), by the following two theorems:

Theorem 1. Let ξ be a non-vanishing left invariant vector field on a Lie group G.
Then there exists a left invariant Riemannian metric g on G, such that the trajectories
of ξ be geodesics of g, if and only if
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(1.1) ξ /∈ Lξ(L(G))

Theorem 2. Let ξ be a non-vanishing left invariant vector field on a Lie group
G.
(i) If

(1.2) ξ ∈ Lξ(L(G))

then there exists a left invariant indefinite metric g on G, such that ξ be light-like and
the trajectories of ξ be geodesics of g.
(ii) Suppose dimLξ(L(G)) = dimG − 1. If there exists a left invariant Lorentzian
metric g on G, such that the trajectories of ξ be geodesics of g and ξ be light-like, then
the relation (1.2) holds.

The possible different behaviors of the left invariant vector fields (with respect
to the properties (1.1) and (1.2) ) lead to an elementary ”classification” of the Lie
groups in 4 types ([12], [14]):
I. the ones in which every left invariant vector field has the property (1.1).
II. the ones in which there exist left invariant vector fields ξ having the property (1.1),
η, θ ∈ L(G) with the property (1.2) and dimLη(L(G)) = n−1, dimLθ(L(G)) 6= n−1;

III. the ones in which there exist left invariant vector fields ξ having the property
(1.1), η ∈ L(G) with the property (1.2) and dimLη(L(G)) = n−1, and there does not
exist θ ∈ L(G) with the property (1.2) and dimLθ(L(G)) 6= n− 1;
IV. the ones in which there exist left invariant vector fields ξ having the property
(1.1), η ∈ L(G) with the property (1.2) and dimLη(L(G)) 6= n−1, and there does not
exist θ ∈ L(G) with the property (1.2) and dimLθ(L(G)) = n− 1.

For a given non-null left invariant vector field ξ on an n-dimensional Lie group G,
we denoted by Riem(G, ξ) the set of all the left invariant Riemannian metrics g on
G, such that the trajectories of ξ be geodesics of g ([14]). We called Riem(G, ξ) the
moduli space of (associated metrics of) ξ in G and proved that it may be put into
a one-to-one correspondence with a convex cone in a linear space, of dimension at
most n(n + 1)/2 and at least n(n− 1)/2 + 1 (which will be called the ”dimension” of
Riem(G, ξ)).This number may vary from one vector field ξ to another.

The maximal number of linearly independent vector fields satisfying (1.1) equals
the dimension of G. The ”dimensions” of all the moduli spaces Riem(G, ξ) gives an
algebraic ”signature” of the Lie group G. Our hope is to extract a complete set of
(algebraic) invariants for a classification of Lie algebras, up to an isomorphism.

Any new classification must first take into account the examples in low dimen-
sions. In [13] we investigated the algebraic classifications of the 2-dimensional and
3-dimensional Lie algebras, and established the type of each one, as follows:

- the abelian 2-dimensional Lie algebra has type I;
- the non-abelian 2-dimensional Lie algebra has type III.
- the abelian 3-dimensional Lie algebra, so(3), the Heisenberg algebra, the e(2)

algebra of Euclidean rigid motions in R2 have type I.
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- the e(1, 1) algebra of rigid motions in the Minkowsi space R2 has type IV.
- the sl(2) algebra has type III.
- the ”generic” non-unimodular 3-dimensional Lie algebras have type II.
- the exceptional non-unimodular 3-dimensional Lie algebra (of class σ) has type

IV.
In each case, for some particular left invariant vector fields, we constructed effec-

tively the metrics which made them geodesic. In some very special cases, whenever the
calculations were not tedious, we did the same thing for all the left invariant vector
fields.

The previous arguments aimed to convince the reader that characterizations and
properties of Riem(G, ξ) might be important.Unfortunately,the degree of complex-
ity for computations in L(G) increases dramatically with the dimension of G. Until
now, we succeeded to do it only for the 2-dimensional Lie groups and the results
we obtained form the matter of this paper. We analyze the behavior of all the left
invariant vector fields ξ and of all their associated left invariant Riemannian met-
rics g ∈ Riem(G, ξ). We determine (§3) all the geodesics of a generic element in
Riem(G, ξ): we find exponential parametric geodesics, lines, but also a specific family
of geodesics, showing a quite strange behavior. This explains/proves why (and how)
a ”symmetric” (”regular”) field of forces on a ”symmetric” space may produce ”free
falling” trajectories with (broken) symmetry. Consequently, the section §4 is devoted
to some more speculative comments, based on interesting examples from experimental
sciences.

2 The spaces Riem(G, ξ) in dimension 2

Let G be a 2-dimensional Lie group. There are only two non-isomorphic classes of Lie
algebras L(G), with the following representatives:

(i) the abelian Lie algebra R2; in this case, G belongs to the type I. Any
left invariant vector field ξ ∈ L(G) is a geodesic one, with respect to any left invari-
ant semi-Riemannian metric on G. It follows that the moduli space Riem(G, ξ) has
maximal ”dimension” 3.

(ii) a non-abelian (solvable) Lie algebra with a basis {E1, E2}, with
[E1, E2] = E2. Expressed in canonical coordinates (x1, x2), we may write E1 = ∂

∂x1

and E2 = ex1 ∂
∂x2 .

In this case, E1 satisfies the relation (1) and E2 satisfies the relation (1.2); more-
over, dimLE2(L(G)) = dimG− 1.

Consider ξ = aE1 + bE2 be an arbitrary non-null left invariant vector field, with
a, b ∈ R. Then ([13]): ξ satisfies (1.1) if and only if a 6= 0; any ξ ∈ L(G) satisfying
(1.2) must be collinear with E2. It follows that G belongs to the type III.

The following three propositions depict some geometric properties for elements in
Riem(G, ξ).

Proposition 1. Let ξ = aE1 + bE2 be a left invariant vector field, with a 6= 0.
Then, in the canonical basis, a metric g in Riem(G, ξ) has the components:
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(2.1) g11 = α , g12 = −ba−1β , g22 = β

where α and β are positive constants, satisfying the relation a2α > b2β.

Proof. The condition that ξ satisfies (1.1) expresses as

g(ξ, [ξ, E1]) = g(ξ, [ξ, E2]) = 0

It follows that, in the given basis, the components of g write as in (2.1). In local
coordinates, we have ξ = a ∂

∂x1 + bex1 ∂
∂x2 , and the components of g are: g11 = α,

g12 = −ba−1e−x1
β, g22 = e−2x1

β. 2

Remarks. (i) From Proposition 1, it follows that, for an arbitrary given ξ, the
moduli space Riem(G, ξ) depends generically on two parameters, so its ”dimension”
is 2.

(ii) Consider two collinear vector fields in L(G), ξ = aE1+bE2 and ξ̃ = ãE1+ b̃E2.
Then ba−1 = b̃ã−1; relation (2.1) implies Riem(G, ξ) = Riem(G, ξ̃). So, collinear left
invariant vector fields have the same moduli space. As the converse is also true, we
deduce that the left invariant directions are in a 1:1 correspondence with the moduli
spaces.

The Lie algebras are purely algebraic objects, and their classifications may arise
only from algebraic constructions and invariants (as proved by the practices of the 20-
th century). The moduli spaces we defined are also (in essence) algebraic objects, but
their elements are geometric ones. We believe that geometric invariants for metrics
in the moduli spaces Riem(G, ξ) (as curvature or geodesics) may provide insights for
new classifications of Lie algebras.

Straightforward calculations prove

Proposition 2. Let ξ = aE1 + bE2 be a left invariant vector field, with a 6= 0 and
g ∈ Riem(G, ξ), with the components given by (2.1). Then the Gaussian curvature of
g is

k = −a2(a2α− b2β)

Proposition 3. Let ξ = aE1 + bE2 be a left invariant vector field, with a 6= 0 and
g ∈ Riem(G, ξ), with the components given by (2.1). Then:

(i) the potentials of ξ with respect to g are of the form

f(x1, x2) = ∆a−1x1 + γ

where ∆ = a2α− b2β and γ is an arbitrary real parameter.

(ii) for the functions in (i), the Hessian with respect to g has the components

Hess11 = −βb2a−1 , Hess12 = βbe−x1
, Hess22 = −βae−2x1

Moreover, this Hessian is semi-negative defined .
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3 Geodesics of the metrics in Riem(G, ξ)

For the 2-dimensional non-abelian Lie group G, consider a basis {E1, E2} in L(G),
with [E1, E2] = E2, as in §2. Let ξ = aE1 +bE2 be an arbitrary non-null left invariant
vector field, with a, b ∈ R and a 6= 0. Consider an arbitrary metric g ∈ Riem(G, ξ),
of the form (2.1). The trajectories of ξ are geodesics of g, but there exist many other
geodesics of g as well. So, it is of interest to determine all the geodesics of g, thus
describing all the possible trajectories of free falling particles moving under the ”field
of forces” ξ in the ”Universe” G.

Proposition 4. Let ξ = aE1 + bE2 be a left invariant vector field, with a 6= 0 and
g ∈ Riem(G, ξ), with the components given by (2.1). Then the geodesics of g are given
by the equations:

(3.1) ∆(x1)′′ + b2β((x1)′)2 − 2abβe−x1
(x1)′(x2)′ + a2βe−2x1

((x2)′)2 = 0

∆(x2)′′ + abα ex1
((x1)′)2 + abβ e−x1

((x2)′)2 − 2a2α(x1)′(x2)′ = 0

where ∆ = a2α− b2β.

Proof. From the proof of Proposition 1, we know the coefficients of g, written in
local coordinates. We calculate the Christoffel’s coefficients:

Γ1
11 = b2β∆−1 , Γ1

22 = a2β∆−1e−2x1
, Γ1

12 = Γ1
21 = −abβ∆−1e−x1

Γ2
11 = abα∆−1ex1

, Γ2
22 = abβ∆−1e−x1

, Γ2
12 = Γ2

21 = −a2α∆−1

Then, the equations of the geodesics: ẍi + Γi
jk(xj)′(xk)′ = 0 , for i ∈ {1, 2}, provide

the required system (3.1).2

Now, we shall integrate the geodesics system of equations (3.1). Denote x := x1

and y := x2. Without restraining the generality, it is sufficient to consider two cases:

Case I: (a = 1 , b = 0 ; β = 1 and arbitrary positive α). It follows that ∆ = α.

The system (3.1) becomes

(3.2) αx′′ + e−2x(y′)2 = 0 , αy′′ − 2αx′y′ = 0

Suppose that (generically) y′ = 0. Then x′′ = 0 and we obtain the obvious general
solution of the form

(3.3) t → (x(t), y(t)) = (k1t + k2, k3)

where k1, k2, k3 are arbitrary constants.
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Figure 1:

We have ξ = E1;the trajectories of ξ are exactly the (particular) geodesics given
by (3.3) and depicted in Figure 1.

Suppose that (generically) y′ 6= 0. From the second equation in (3.2) we obtain
y′ = ±e2x+k1 , where k1 is an arbitrary real constant. In what follows, we detail the
case y′ = +e2x+k1 . We introduce y′ in the first equation (3.2) and deduce x′′ = γe2x,
where we denoted γ := −α−1e2k1 . This last equation has the solution x = x(t)
satisfying the relation ∫

(k2 + γe2x)−1dx = k3 ± t

We integrate and obtain two families of curves:

(3.4) x(t) =
1
2

ln{k2γ
−1[k2(

e2k2(k3±t) + 1
1− e2k2(k3±t)

)2 − 1]}

y(t) = αk2e
−k1(1− k2)t∓ 2αk2

2e
−k1

1
1− e2k2(k3±t)

+ k4

and

(3.5) x(t) =
1
2

ln{k2γ
−1[k2(

1− e2k2(k3±t)

1 + e2k2(k3±t)
)2 − 1]}

y(t) = αk2e
−k1(1− k2)t∓ 2αk2

2e
−k1

1
1 + e2k2(k3±t)

+ k4

In a similar manner, we treat the case y′ = −e2x+k1 , and derive the geodesics

(3.6) x(t) =
1
2

ln{k2γ
−1[k2(

e2k2(k3±t) + 1
1− e2k2(k3±t)

)2 − 1]}
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y(t) = −αk2e
−k1(1− k2)t± 2αk2

2e
−k1

1
1− e2k2(k3±t)

+ k4

and

(3.7) x(t) =
1
2

ln{k2γ
−1[k2(

1− e2k2(k3±t)

1 + e2k2(k3±t)
)2 − 1]}

y(t) = −αk2e
−k1(1− k2)t± 2αk2

2e
−k1

1
1 + e2k2(k3±t)

+ k4

respectively, where k1, k2, k3, k4 are arbitrary real constants.
The formulas (3.3)-(3.7) provide all the parametrized geodesics of (G, g), in the

case I.

Case II: (a = 1 , b = 1 ; β = 1 and arbitrary α > 1). It follows that ∆ = α− 1. The
system (3.1) becomes

(3.8) (α− 1)x′′ + (x′)2 − 2e−xx′y′ + e−2x(y′)2 = 0

(3.9) (α− 1)y′′ + αex(x′)2 − 2αx′y′ + e−x(y′)2 = 0

We multiply equation (3.4) with e−x, substract from the first equation and get

y′′ − 2x′y′ = ex(x′′ − (x′)2)

We multiply equation (3.8) with α, we multiply equation (3.9) with e−x, substract
and simplify by (α− 1); we get

αx′′ − e−xy′′ + e−2x(y′)2 = 0

We make the change of variables: u := e−xy′ and v := x′. The last two equations give
the system

(3.10) αv′ = u′ + uv − u2 , v′ = v2 + u′ − uv

We distinguish now (generically) two subcases:

Subcase II-1: u = v . It follows from (3.10) that u = v = 1. Hence u′ = u2 − u and
v′ = 0. We deduce that the geodesics are of the form

t → (x(t), y(t) = (k1t + k2, e
k1t+k2 + k3)

where k1, k2, k3 are arbitrary real constants. The respective curves are parametrized
lines and exponentials, or degenerate geodesics (”points”).

Subcase II-2: u 6= v (the ”generic” case). It follows that

u′ =
1

1− α
(v − u)(αv − u) , v′ =

1
1− α

(u− v)2

We divide the two equations member by member and derive
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du

dv
=

αv − u

v − u

(remember that α > 1). We integrate

du

dv
= (α− 1)

v

v − u
+ 1

and obtain

(3.11) u2 + αv2 − 2uv − k1 = 0

where k1 is an arbitrary real non-negative constant.
The determinant of the attached bilinear form is α − 1 > 0, so (3.11) is the

implicit equation of a family of ellipses, parametrized by two parameters (α and k1).
Elementary calculations reduce the ellipses equation to

u(t) = k1 cos t +
1√

α− 1
k1 sin t

v(t) =
1√

α− 1
k1 sin t

We return to the initial coordinates (x, y) and deduce the general parametric form
of the geodesics, in the case II-2 :

(3.12) x(t) =
1√

α− 1
k1 cos t + k2

y(t) = k1

∫
cos t e

1√
α−1

k1 cos t+k2dt− e
1√

α−1
k1 cos t+k2 + k3

where k1 ≥ 0, k2 and k3 are arbitrary constants. (The last integral may be integrated
by Taylor (expansion and) approximation).

Unlike the previous cases, the ”generic” family of geodesics t → (x(t), y(t)) given
by (3.12) contains not only lines and exponential curves, but also some quite strange
ones. The following example provide geodesics of (G, g), with an unexpected behavior.

Consider in the preceding formulae: α := 5, k1 = 1, k2 = k3 := 0. Using the
Taylor decomposition for y′, we derive the (approximative) parametric equations of
the geodesic

x(t) = 0.5 cos t

y(t) = −e0.5 cos t + 0.0721315556t5 − 0.4121803177t3 + 1.6487212707t.

For different intervals of definition (different resolution/scale), the (Maple) graphics
of this geodesic are given in the figures 2,3 and 4.

Remark. The preceding example has the following interpretation: consider the
2-dimensional non-commutative Lie group G as ”Universe” (configurations space),
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subject to a unique and global field of forces ξ := E1 + E2, invariant under the
left translations. Consider a left invariant Riemannian metric g ∈ Riem(G, ξ), as a
”measure instrument” for the ”matter” of G. A (virtual) free falling particle in (G, g)
may have a regular trajectory, for example when this one is an integral curve of
ξ (Figure 1). Surprisingly, in this highly invariant (regular) dynamical framework,
chaotic-like free falling particles may also appear, as Figures 2,3,4 suggest.
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Figure 2: Definition interval [-2.8;2.8]

4 Various possible applications

From Proposition 2, we see that the (negative !) Gaussian curvature k of (G, g) is
proportional with the energy of the vector field ξ,with respect to g, calculated as
∆ := g(ξ, ξ) = a2α− b2β (i.e. k = −a2∆). Moreover, the energy of ξ varies following
variations of its E1-projection, but is insensitive to variations of its E2-projection.

This mathematical results express a hidden relationship between curvature and
energy, highly plausible to be useful in modeling real life facts as suggested by many
empirical observations and experimental facts. The strong connections between energy
and (various geometrical notions related to) curvature, encountered in Theoretical
Physics, especially in Relativity, are well-known (see [7]). In what follows, we give
several examples from various other domains:

(i) In [4], the authors study the geometric properties of the energy landscape
of coarse-grained, off-lattice models of polymers; they use a suitable metric on the
the configuration space, depending on the potential energy function, and suppose
the dynamical trajectories are the geodesics of the respective metric. By numerical
simulations, they show correlations between fluctuations of the curvature and the
folding transition, which allows distinguishing different families of polymers.
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(ii) In [17], some Nature’s geometries are studied, which include wavy (or fractal)
edges, where a pattern repeats on different scales. One family of such patterns includes
the complex wavy structures that are found along the edges of thin living tissues (flow-
ers,leaves,etc).This complexity usually is considered to have genetic roots. However,
by applying simple growth laws and principles from physics and geometry and test-
ing their ideas with flexible synthetic membranes (and computer simulations), the
authors have found how variations of some surface metrics (of negative (!) Gaussian
curvature) lead to wavy shape variations (related to membrane energy).

(iii) In [2], one studies the subcellular protein localization for eukaryotic cells. A
novel physical mechanism is proposed, based on the two-dimensional curvature of the
membrane, for spontaneous lipid targeting to the poles and division site of rod-shaped
bacterial cells. The energy of the membrane is expressed in terms of curvature and
one remarks that some geometrical constraints of the plasma membrane by a more
rigid bacterial cell wall leads to lipid microphase separation.

(iv) In [10], one presents a boundary effect detection method of pinpointing struc-
tural damage locations, using operational deflection shapes measured by a scanning
laser vibrometer. The numerical and experimental studies rest on the fitting of four
coefficients C1, C2, C3 and C4, from a linear equation. The quantity C1

. C3 is propor-
tional to the difference of kinetic and elastic energy densities, C3−C1 is proportional
to the curvature and C4−C2 is proportional to the spatial derivative of the curvature.
Even if the dependency is not directly proportional, variations of energy correspond
to variations of curvature, and conversely.
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5 Conclusions

Given a left invariant vector field (”field of forces”) ξ on a 2-dimensional Lie group
G, we determined all the left invariant Riemannian metrics g, such that ξ becomes
geodesic in (G, g); moreover, we characterized all the geodesics (i.e. the possible tra-
jectories of free falling particles) moving in a ”Universe” (G, g).

Two types of dynamics arise: a regular one (as we had expected), but also a
”chaotic”-like one (which is quite unusual). This may explain why (and how) ”sym-
metric” fields of forces in ”symmetric” environments may produce ”free falling” tra-
jectories with broken symmetry. Examples in the previous section, imported from real
life via experimental sciences, provide support for our speculative remarks.

Recent interesting results concerning the interplay between vector fields and Rie-
mannian metrics were obtained in [9] and [18], where applications and interpretations
in Convex optimization theory may be found.
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