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Abstract. ∞-Harmonic maps are a generalization of ∞-harmonic func-
tions. They can be viewed as the limiting cases of p-harmonic maps as
p goes to infinity. In this paper, we give complete classifications of lin-
ear and quadratic ∞-harmonic maps from and into a sphere, quadratic
∞-harmonic maps between Euclidean spaces. We describe all linear and
quadratic ∞-harmonic maps between Nil and Euclidean spaces, between
Sol and Euclidean spaces. We also study holomorphic ∞-harmonic maps
between complex Euclidean spaces.
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1 Introduction

In this paper, we work in the category of smooth objects so that all manifolds, vector
fields, and maps are assumed to be smooth unless there is an otherwise statement.

The infinity-Laplace equation

(1.1) ∆∞u :=
1
2
〈∇u,∇|∇u|2〉 =

m∑

i,j=1

uijuiuj = 0,

where u : Ω ⊂ Rm −→ R, ui = ∂u
∂xi and uij = ∂2u

∂xi∂xj , was first discovered and studied
by G. Aronsson in his study of “optimal” Lipschitz extension of functions in the late
1960s ([1], [2]).

To see why this nonlinear and highly degenerate elliptic PDE has been so fasci-
nating, we recall that the well-known minimal surface equation can be written as

(1 + |∇u|2)∆u +
m∑

i,j=1

uiujuij = 0,

from which we see that the ∞-Laplace equation can be obtained as harmonic min-
imal surface equation meaning the equation for harmonic functions with minimal
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graphs. The solutions of the ∞-Laplace equation are called ∞-harmonic functions
which have the following interpretations:

Lemma 1.1. (see [10]) Let u : (Mm, g) −→ R be a function. Then the following
conditions are equivalent: (1) u is an ∞-harmonic function, i.e., ∆∞u = 0; (2) u is
horizontally homothetic; (3) ∇u is perpendicular to ∇|∇u|2; (4) Hessu(∇u,∇u) = 0;
(5) |∇u|2 is constant along any integral curve of ∇u.

Also, the∞-Laplace equation can be viewed (see [1]) as the formal limit, as p →∞,
of p-Laplace equation

∆p u := |∇u|p−2

(
∆ u +

p− 2
|∇u|2 ∆∞ u

)
= 0.

Finally, the ∞-Laplace equation can be viewed as the Euler-Lagrange equation of the
L∞ variational problem of minimizing E∞(u) = ess supΩ |d u| among all Lipschitz
continuous functions u with given boundary values on ∂Ω (see e.g., [3]).

Recently, a great deal of research work has been done in the study of the ∞-
Laplace equation after the work of Crandall and Lions (see e.g. [8]) on the theory
of viscosity solutions for fully nonlinear problems. Many important results have been
achieved and published (see e.g., [3], [8], [9] and the references therein).

On the other hand, the ∞-Laplace equation has been found to have some very
interesting applications in areas such as image processing (see e.g. [6], [12]), mass
transfer problems (see e.g. [9]), and the study of shape metamorphism (see e.g. [7]).

The generalization from harmonic functions to harmonic maps between Rieman-
nian manifolds was so fruitful that it has not only opened new fields of study in
differential geometry, analysis, and topology but also brought important applications
to many branches in mathematics and theoretical physics. It would be interesting to
study maps between Riemannian manifolds that generalize ∞-harmonic functions.
This was initiated in [11] where the notion of ∞-harmonic maps between Riemannain
manifolds was introduced as a natural generalization of ∞-harmonic functions and as
the limit case of p-harmonic maps as p →∞.

Definition 1.2. A map ϕ : (M, g) −→ (N, h) between Riemannian manifolds is
called an ∞-harmonic map if the gradient of its energy density belongs to the kernel
of its tangent map, i.e., ϕ is a solution of the PDEs

(1.2) τ∞(ϕ) :=
1
2
dϕ(grad |dϕ|2) = 0,

where |dϕ|2 = Tracegϕ
∗h is the energy density of ϕ.

A direct computation using local coordinates yields

Corollary 1.3. In local coordinates, a map ϕ : (M, g) −→ (N, h) with
ϕ(x) = (ϕ1(x), . . . , ϕn(x)) is ∞-harmonic if and only if

(1.3) g(grad ϕα, grad |dϕ|2) = 0, α = 1, 2, ..., n.
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Clearly, any ∞-harmonic function is an ∞-harmonic map by Definition 1.2. It
also follows from the definition that any map between Riemannian manifolds with
constant energy density, i.e., |dϕ|2 = Tracegϕ

∗h = constant is an ∞-harmonic map.
Thus, the following important and familiar families are all ∞-harmonic maps: (i)
totally geodesic maps, (ii) isometric immersions, (iii) Riemannian submersions, (iv)
eigenmaps between spheres, (v) projections of multiply warped products (e.g., the
projection of the generalized Kasner spacetimes), (vi) equator maps, and (vii) ra-
dial projections. We refer the readers to [11] for details of these and many other
examples and other results including methods of constructing ∞-harmonic maps into
Euclidean spaces and spheres, characterizations of ∞-harmonic immersions and sub-
mersions, study of ∞-harmonic morphisms which can be characterized as horizontally
homothetic submersions, and the transformation ∞-Laplacians under the the confor-
mal change of metrics.

In this paper, we study the classification of ∞-harmonic maps between certain
model spaces. We give complete classifications of linear and quadratic ∞-harmonic
maps from and into a sphere, quadratic ∞-harmonic maps between Euclidean spaces.
We describe all linear and quadratic ∞-harmonic maps between Nil and Euclidean
spaces and between Sol and Euclidean spaces. We also study holomorphic∞-harmonic
maps complex Euclidean spaces.

2 quadratic ∞-harmonic maps between Euclidean
spaces

As we mentioned in Section 1 that any map with constant energy density is ∞-
harmonic. It follows that any affine map ϕ : Rm −→ Rn with ϕ(X) = AX + b, where
A is an n×m matrix and b ∈ Rn is a constant, is an ∞-harmonic map because of its
constant energy density. Note that there are also globally defined ∞-harmonic maps
between Euclidean spaces which are not affine maps. For example, one can check that
ϕ : R3 −→ R2 given by ϕ(x, y, z) = (cos x + cos y + cos z, sin x + sin y + sin z) is a
map with constant energy density |dϕ|2 = Tracegϕ

∗h = 3 and hence an ∞-harmonic
maps. In this section, we give a complete classification of ∞-harmonic maps between
Euclidean spaces defined by quadratic polynomials. First, we prove the following
lemma which will be used frequently in this paper.

Lemma 2.1. Let Ai, i = 1, 2, . . . , n, be symmetric m×m matrices. Then, (
∑n

j=1 A2
j )Ai+

Ai(
∑n

j=1 A2
j ) = 0 for all i = 1, 2 . . . , n if and only if Ai = 0 for i = 1, 2 . . . , n.

Proof. Suppose otherwise, i.e., one of Ai is not zero, without loss of generality, we may
assume A1 6= 0. Then rank(A1) = K with 1 ≤ K ≤ m. Without loss of generality,
we can choose a suitable orthogonal matrix T such that T−1A1T takes the diagonal
form with the first K diagonal entries λ1, . . . , λK non-zero.
Note that
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T−1
n∑

j=1

(A2
j )T =

n∑

j=1

T−1(A2
j )T =

n∑

j=1

(T−1AjT )2(2.1)

with each (T−1AjT )2 being symmetric matrix. It follows that

0 = T−10T =
n∑

j=1

(T−1AjT )2T−1A1T + T−1A1T (T−1AjT )2).(2.2)

This is impossible because the i-th entry in the main diagonal of the matrix on the
right-hand side of Equation (2.2) takes the form

(2.3) 2λi(λ2
i +

n∑

j≥2

|(T−1AjT )i|2),

where (T−1AjT )i denotes the i-th row vector in (T−1AjT ), and we know that at least
one λi is not zero. The contradiction proves the Lemma.

Theorem 2.2. Let ϕ : Rm −→ Rn be a quadratic map with ϕ(X) = (XtA1X, . . . , XtAnX),
where Xt = (x1, . . . , xm) ∈ Rm, and Ai, i = 1, . . . , n are symmetric m×m matrices.
Then, ϕ is an ∞-harmonic map if and only if ϕ is a constant map.

Proof. By a straightforward computation and Corollary 1.3, the ∞-harmonic map
equation reduces to

(2.4) XtAi(
n∑

j=1

A2
j )X = 0, i = 1, 2, . . . , n, ∀ X,

which is equivalent to Ai(
∑n

j=1 A2
j ) + (

∑n
j=1 A2

j )Ai = 0, i = 1, 2, . . . , n. It follows
from this and Lemma 2.1 that Ai = 0 for i = 1, 2, . . . , n, and hence ϕ(X) = 0, a
constant map, from which we obtain the Theorem.

Theorem 2.3. Let ϕ : Rm −→ Rn, ϕ(X) = (XtA1X, . . . , XtAnX) + (AX)t + b be
a polynomial map, where Ai is an m×m symmetric matrix for i = 1, 2, . . . , n, A an
n×m matrix, and b ∈ Rn . Then, ϕ is an ∞-harmonic map if and only if ϕ is an
affine map with ϕ(X) = (AX)t + b.

Proof. Let αi ∈ Rm, i = 1, 2, . . . , n, denote the i-th row vector of the matrix A. A
direct computation shows that in this case the map ϕ is ∞-harmonic if and only if

16
n∑

j=1

XtAiA
2
jX + 8

n∑
j=1

XtAiAj(αj)t + 8
n∑

j=1

(αiA
2
j )X + 4

n∑
j=1

αiAj(αj)t = 0.

By comparing the coefficients of the leading terms of this polynomial identity we have
that, if ϕ is ∞-harmonic, then

(2.5) 16XtAi

n∑

j=1

A2
jX = 0, i = 1, 2, . . . , n,
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which is the same as Equation (2.4). Now we can use Lemma 2.1 to conclude that if
ϕ is ∞-harmonic, then Ai = 0 for i = 1, 2, . . . , n and hence ϕ(X) = (AX)t + b is an
affine map. The converse statement clearly true because an affine map has constant
energy density. Therefore, we obtain the theorem.

Remark 2.4. It would be interesting to know if there are any ∞-harmonic maps
ϕ : Rm −→ Rn defined by homogeneous polynomials of degree greater than 2.

3 Linear and quadratic ∞-harmonic maps from and
into a sphere

In this section, we first derive an equation for linear∞-harmonic maps between confor-
mally flat spaces. We then use it to give a complete classification of linear∞-harmonic
maps between a Euclidean space and a sphere.

Lemma 3.1. Let ϕ : (Rm, g = F−2δij) −→ (Rn, h = λ−2δαβ) with

ϕ(X) = AX =
(
A1X, · · · , AnX

)
,

where Ai is the i-th row vector of A, be a linear map between conformally flat spaces.
Then, ϕ is ∞-harmonic if and only if A = 0, i.e., ϕ(X) = AX = 0 is a constant map,
or 〈Aα,∇( F

λ◦ϕ )〉 = 0 for α = 1, 2, . . . , n, where 〈, 〉 is the Euclidean inner product and
∇f denotes the gradient of f taken with respect to the Euclidean metric on Rm.

Proof. For the linear map ϕ : (Rm, g = F−2δij) −→ (Rn, h = λ−2δαβ) with ϕ(X) =
AX =

(
A1X, · · · , AnX

)
we have g(grad ϕα, grad |dϕ|2) = 2F 3|A|2

λ◦ϕ 〈Aα,∇( F
λ◦ϕ )〉 , from

which the Lemma follows.

Let (Sn, gcan) be the n-dimensional sphere with the standard metric. It is well
known that we can identify (Sn \ {N}, gcan) with (Rn, λ−2δij), where λ = 1+|x|2

2 .
Using coordinate {xi} we can write the components of gU as:

ḡij = λ−2δij , ḡij = λ2δij .

As an application of Lemma 3.1 we give the following classification of linear ∞-
harmonic maps between spheres.

Theorem 3.2. A linear map ϕ : (Rm, F−2δij) ≡ (Sm\{N}, gcan) −→ (Rn, λ−2δij) ≡
(Sn\{N}, gcan) between two spheres with ϕ(X) =

(
A1X, · · · , AnX

)
is ∞-harmonic if

and only if A = 0, i.e., ϕ is a constant map, or, AtA = Im×m, i.e., ϕ is an isometric
immersion.

Proof. To prove the theorem, we applying Lemma 3.1 with F = 1+|X|2
2 and λ = 1+|Y |2

2
we conclude that ϕ is ∞-harmonic if and only if A = 0, ϕ(X) = AX = 0 is a constant
map, or 〈Aα,∇( F

λ◦ϕ )〉 = 1
2(λ◦ϕ)2 〈Aα, (1 + |AX|2)X − (1 + |X|2)AtAX〉 = 0, α =

1, 2, . . . , n, which is equivalent to

(3.1) (1 + |AX|2)AX − (1 + |X|2)AAtAX = 0,
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for any X ∈ Rm. Since (3.1) is an identity of polynomials we comparie the coefficients
to have

(3.2)
{

AX −AAtAX = 0
|AX|2AX − |X|2AAtAX = 0.

for any X ∈ Rm. It is easy to see that Equation (3.2) implies that A = 0, or,
AtA = Im×m and |ϕ(X)|2 = |AX|2 = |X|2, from which we obtain the theorem.

For linear maps between a Euclidean space and a sphere we have

Theorem 3.3. (1) A linear map ϕ : Rm −→ (Rn, λ−2δij) ≡ (Sn \ {N}, gcan) from a
Euclidean space into a sphere with ϕ(X) =

(
A1X, · · · , AnX

)
is ∞-harmonic if and

only if A = 0, i.e., ϕ is a constant map.
(2) A linear map ϕ : (Rm, λ−2δij) ≡ (Sm \ {N}, gcan) −→ Rn from a sphere into a
Euclidean space with ϕ(X) =

(
A1X, · · · , AnX

)
is ∞-harmonic if and only if A = 0,

i.e., ϕ is a constant map.

Proof. To prove the first Statement, we applying Lemma 3.1 with F = 1 and
λ = 1+|Y |2

2 we conclude that ϕ is ∞-harmonic if and only if A = 0 and hence
ϕ(X) = AX = 0 is a constant map, or 〈Aα,∇( 1

λ◦ϕ )〉 = − 1
(λ◦ϕ)2 〈Aα, AtAX〉 = 0, α =

1, 2, . . . , n, which is equivalent to

(3.3) AAtAX = 0.

for any X ∈ Rm. By letting X = (Ai)t, i = 1, . . . , n in Equation (3.3) we conclude that
ϕ is ∞-harmonic if and only if AAtAAt = 0. Note that AAtAAt = (AAt)(AAt)t = 0

implies that Trace(AAt) =
n∑

i=1

|Ai|2 = 0. It follows that |A| = 0, i.e., ϕ is a constant

map. This gives the first Statement of the theorem.

For the second Statement, we apply Lemma 3.1 with λ = 1 and F = 1+|X|2
2 to

conclude that ϕ is ∞-harmonic if and only if A = 0, ϕ(X) = AX = 0 is a constant
map, or

〈Aα,∇F 〉 = 〈Aα, X〉 = 0(3.4)

for α = 1, 2, . . . , n and for all X ∈ Rm. It is easy to see that Equation (3.4) implies
that Aα = 0 for for α = 1, 2, . . . , n and hence A = 0, i.e., ϕ is a constant. This
completes the proof of the Theorem.

Again, we identify (Sn \ {N}, gcan) with (Rn, λ−2δij), where λ = 1+|X|2
2 .

Theorem 3.4. (1) A quadratic map ϕ : Rm −→ (Rn, λ−2δij) ≡ (Sn \{N}, gcan) into
sphere with ϕ(X) = (XtA1X,XtA2X, . . . ,XtAnX) is ∞-harmonic if and only it is
a constant map.
(2) A quadratic map from a sphere into a Euclidean space
ϕ : (Rm, λ−2δij) −→ Rn with ϕ(X) = (XtA1X,XtA2X, . . . , XtAnX) is ∞-harmonic
if and only it is a constant map.
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Proof. For Statement (1), by a straightforward computation and (1.3) we conclude
that the quadratic map ϕ is ∞-harmonic iff

(3.5) 0 = 16σ(Xt
n∑

j=1

A2
jX)〈XtAα,∇σ〉+ 16σ2XtAα

n∑
j=1

A2
jX,

where σ = 1
λ◦ϕ . Note that (3.5) is equivalent to

−32(Xt
n∑

j=1

A2
jX)(XtAαA1Xy1 + . . . + XtAαAnXyn) + 16

σ XtAα

n∑
j=1

A2
jX = 0, or,

(3.6) 0 = −P (X) + 8XtAα

n∑
j=1

A2
jX

where P (X) denotes a polynomial in X of degree greater than 2. Noting that the
equation is an identity of polynomials we conclude that if ϕ is ∞-harmonic, then

(3.7) XtAα

3∑

j=1

A2
jX = 0, α = 1, 2, . . . , n,

which is exactly the Equation (2.4) and the same arguments used in the proof of
Theorem 2.2 apply to give the required results.

To prove the second statement, let ∇f = (f1, . . . , fm) denotes the Euclidean gra-
dient of function f . Then, a straightforward computation gives:

(3.8) ∇ϕα = 2XtAα, |dϕ|2 = λ2δαβϕα
iϕβ

jδij = 4λ2
n∑

j=1

XtA2
jX,

and

(3.9) ∇ |dϕ|2 = 8λ(Xt
n∑

j=1

A2
jX)X + 8λ2Xt

n∑
j=1

A2
j ,

where we have used the fact that ∇λ = X. The ∞-harmonic map equation becomes

(3.10) 16λ3(Xt
n∑

j=1

A2
jX)XtAαX + 16λ4XtAα

n∑
j=1

A2
jX = 0

for all X ∈ Rm and for α = 1, 2, . . . , n. Note that Equation (3.10) is an identity of
polynomials since λ is also a polynomial. Comparing the coefficients of the polynomials

we conclude that ϕ is ∞-harmonic implies that XtAα

n∑
j=1

A2
jX = 0 for α = 1, 2, . . . , n,

which is exactly the Equation (2.4) and the same arguments used in the proof of
Theorem 2.2 apply to give the required results.

Remark 3.5. It is well known that any eigenmap between spheres is of constant energy
density, so any eigenmap is ∞-harmonic. It would be interesting to know if there is
any ∞-harmonic maps between spheres which is not an eigenmap.
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4 Linear ∞-harmonic maps from and into Nil space

In this section we will give a complete classification of linear ∞-harmonic maps be-
tween Euclidean spaces and Nil space.

Theorem 4.1. Let (R3, gNil) denote Nil space, where the metric with respect to the
standard coordinates (x, y, z) in R3 is given by gNil = dx2 + dy2 + (dz− xdy)2. Then

(1) A linear function f : (R3, gNil) −→ R, f(x, y, z) = Ax + By + Cz is an ∞-
harmonic function if and only if A = 0 or C = 0.

(2) A linear map ϕ : (R3, gNil) −→ Rn (n ≥ 2) is ∞-harmonic if and only if ϕ
is a composition of the projection π1 : (R3, gNil) −→ R2, π1(x, y, z) = (x, y)
followed by a linear map R2 −→ Rn, or, ϕ is a composition of the projection
π2 : (R3, gNil) −→ R2, π2(x, y, z) = (y, z) followed by a linear map R2 −→ Rn.

Proof. For Statement (1), we note that it has been proved in [10] that a linear function
f : (R3, gNil) −→ R, f(x, y, z) = Ax + By + Cz is an 1-harmonic if and only if it is
horizontally homothetic which is equivalent to f being ∞-harmonic. It was further
shown that this is equivalent to A = 0 or C = 0. To prove Statement (2), one can
easily compute the following components of Nil metric:

(4.1) g11 = 1, g12 = g13 = 0, g22 = 1 + x2, g23 = −x, g33 = 1;

Let ϕ : (R3, gNil) −→ Rn (n ≥ 2) be a linear map ϕ(X) = AX with A being an n× 3
matrix and Xt = (x, y, z). By a straightforward computation and Corollary 1.3 we
see that ϕ is ∞-harmonic iff

(4.2) g(∇ϕi,∇|dϕ|2) = 2ai1(
n∑

i=1

a2
i3x +

n∑
i=1

ai2ai3) = 0, i = 1, 2, . . . , n,

where and in the rest of the paper aij denotes the entry at the ith row and jth colomn of
the matrix A. Solving Equation (4.2) we have ai1 = 0, for i = 1, 2, . . . , n, or ai3 = 0,
for i = 1, 2, . . . , n, from which we conclude that the linear map ϕ : (R3, gNil) −→
Rn (n ≥ 2) with ϕ(X) = AX is ∞-harmonic if and only if the first or the third
column of A vanishes. Thus, we obtain the theorem.

Remark 4.2. (i) We remark that in both cases, the maximum possible rank of the
linear ∞-harmonic map ϕ is 2.
(ii) We can check that in first case the linear ∞-harmonic map ϕ has constant energy
density given by a quadratic polynomial whilst in the second case the linear ∞-
harmonic map ϕ has non-constant energy density.
(iii) It follows from our Theorem that we can choose to have submersion
ϕ : (R3, gNil) −→ R2 with ϕ(x, y, z) = (a12y + a13z, a22y + a23z) so that ϕ has non-
constant energy density. Clearly, ϕ cannot be a Riemannian submersion because the
energy density is not constant.

Theorem 4.3. A linear map ϕ : Rm −→ (R3, gNil) into Nil space is ∞-harmonic if
and only if ϕ is a composition of a linear map Rm −→ R2 followed by the inclusion
map i1 : R2 −→ R3, i1(y, z) = (0, y, z), or, ϕ is a composition of a linear map
Rm −→ R2 followed by the inclusion map i2 : R2 −→ R3, i2(x, z) = (x, 0, z).
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Proof. Let ϕ : Rm −→ (R3, gNil) be a linear map with ϕ(X) = AX, where A is a
3 × m matrix and Xt = (x1, . . . , xm). In this case, the ∞-harmonic map equation
becomes

2
m∑

k=1

aika1k(
m∑

j=1

a2
2jx−

m∑
j=1

a2ja3j) = 0, i = 1, 2, 3,

Solving this system we have a1k = 0, for k = 1, 2, . . . , m or a2k = 0, for k =
1, 2, . . . ,m, from which we obtain the theorem.

Remark 4.4. We remark that in both cases, the maximum possible rank of the linear
∞-harmonic map ϕ is 2 and the linear∞-harmonic map ϕ has constant energy density.

5 Linear ∞-harmonic maps from and into Sol space

In this section we give a complete classification of linear ∞-harmonic maps between
Euclidean spaces and Sol space.

Theorem 5.1. Let (R3, gSol) denote Sol space, where the metric with respect to the
standard coordinates (x, y, z) in R3 is given by gSol = e2zdx2 + e−2zdy2 + dz2. Then

(1) A linear function f : (R3, gSol) −→ R, f(x, y, z) = Ax + By + Cz is an ∞-
harmonic function if and only if C = 0 or A = B = 0.

(2) A linear map ϕ : (R3, gSol) −→ Rn (n ≥ 2) is ∞-harmonic if and only if ϕ
is a composition of the projection π1 : (R3, gSol) −→ R2, π1(x, y, z) = (x, y)
followed by a linear map R2 −→ Rn, or, ϕ is a composition of the projection
π2 : (R3, gSol) −→ R2, π2(x, y, z) = (z) followed by a linear map R −→ Rn.

Proof. The Statement (1) is proved in [10]. To prove Statement (2), one can easily
compute the following components of Sol metric:

g11 = e2z, g22 = e−2z, g33 = 1, all other, gij = 0;(5.1)

Let ϕ : (R3, gSol) −→ Rn (n ≥ 2) be a linear map ϕ(X) = AX with A being an
n × 3 matrix and Xt = (x, y, z). Then, a straightforward computation shows that ϕ
is ∞-harmonic iff

(5.2) g(∇ϕi,∇|dϕ|2) = −2ai3(
n∑

i=1

a2
i1e

−2z −
n∑

i=1

ai2e
2z) = 0, i = 1, 2, . . . , n.

Solving Equation (5.2) we obtain the theorem.

Remark 5.2. It follows from Theorem 5.1 that the maximum rank of the linear ∞-
harmonic maps from Sol space into Euclidean space is 2. In the case when the linear
∞-harmonic map with the third column of A vanishing it has non-constant energy
density.

Theorem 5.3. A linear map ϕ : Rm −→ (R3, gSol) is ∞-harmonic if and only
if it is a composition of a linear map Rm −→ R2 followed by the inclusion map
i1 : R2 −→ R3, i1(x, y) = (x, y, 0), or, ϕ is a composition of a linear map Rm −→ R
followed by an inclusion map i2 : R −→ R3, i2(z) = (0, 0, z).
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Proof. For the linear map ϕ : Rm −→ (R3, gSol) ϕ(X) = AX, where A is a 3 × m
matrix and Xt = (x1, . . . , xm), the ∞-harmonic map equation reads

(5.3) 2
m∑

k=1

aika3k(
m∑

j=1

a2
1je

2z −
m∑

j=1

a2
2je

−2z) = 0, i = 1, 2, 3,

The solutions of this system give the statements in the Theorem.

Remark 5.4. It follows from theorem 5.3 that the maximum rank of the linear ∞-
harmonic maps from Euclidean space into Sol space is 2, and any linear ∞-harmonic
map into Sol space has constant energy density.

6 Quadratic ∞-harmonic maps into Sol and Nil
spaces

Theorem 6.1. Let (R3, gSol) denote Sol space, where the metric with respect to the
standard coordinates (x, y, z) in R3 is given by gSol = e2zdx2 + e−2zdy2 + dz2. Then,
a quadratic map ϕ : Rm −→ (R3, gSol) with ϕ(X) = (XtA1X,XtA2X, XtA3X) is an
∞-harmonic map if and only if it is a constant map.

Proof. In this case the map ϕ is ∞-harmonic iff

16(XtAiA
2
1X + XtA2

1XXtAiA3X)e2z + 16(XtAiA
2
2X −XtA2

2XXtAiA3X)e−2z

+16XtAiA
2
3X = 0, for all X ∈ Rm, and i = 1, 2, 3.(6.1)

Note that Equation (6.1) is an identity of functions which are analytic. We can sub-
stitute the Taylor expansions for e2XtA3X and e−2XtA3X into (6.1) and compare the
coefficients of the second degree terms to get

16(XtAi

3∑
j=1

A2
jX) = 0, i = 1, 2, 3.

From this we obtain Ai(
3∑

j=1

A2
j )+(

3∑
j=1

A2
j )Ai = 0, and Lemma 2.1 applies to complete

the proof of the Theorem.

In a similar way we can prove the following

Theorem 6.2. A quadratic map ϕ : Rm −→ (R3, gNil),
ϕ(X) = (XtA1X, XtA2X, XtA3X) into Nil space is ∞-harmonic if and only if it is
a constant map.

Example 6.3. We remark that there are many polynomial ∞-harmonic maps ϕ :
(R3, gNil) −→ Rm, for instance,

ϕ : (R3, gNil) −→ R2

with ϕ(x, y, z) = (z − xy/2, 2z − xy) is an ∞-harmonic map which has nonconstant
energy density |dϕ|2 = 5(1 + (x2 + y2)/4) (see [11] for details).
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7 Holomorphic ∞-harmonic maps

In this section, we study ∞-harmonicity of holomorphic maps Cm −→ Cn. Let
(z1, . . . , zm) ∈ Cm and (w1, . . . , wn) ∈ Cn with zj = xj − iyj j = 1, . . . , m and
wα = uα − ivα α = 1, . . . , n. Then, a map ϕ : Cm −→ Cn, ϕ(z1, . . . , zm) =
(ϕ1, . . . , ϕn) is associated to a map ϕ : R2m −→ R2n with ϕ(x1, . . . , xm, y1, . . . , ym) =
(u1, . . . , un, v1, . . . , vn). We write the map as ϕ(X + iY ) = φ(X, Y )+ iψ(X, Y ), where
X = (x1, . . . , xm), Y = (y1, . . . , ym) ∈ Rm and the maps
φ(X, Y ) = (u1(X,Y ), . . . , un(X, Y )) and ψ(X, Y ) = (v1(X, Y ), . . . , vn(X,Y )) are
called the real and imaginary parts of ϕ. We have

Theorem 7.1. A holomorphic map ϕ : Cm −→ Cn with ϕ(X, +iY ) = φ(X, Y ) +
iψ(X, Y ) is ∞-harmonic if and only if its real and imaginary parts φ(X,Y ) and
ψ(X, Y ) are ∞-harmonic.

Proof. It is well known that ϕ : Cm −→ Cn is holomorphic if and only if

(7.1)
∂uα

∂xj
=

∂vα

∂yj
,

∂uα

∂yj
= −∂vα

∂xj
; j = 1, 2, . . . , m, α = 1, 2, . . . , n.

We can easily check that

|∇uα|2 = |∇vα|2, |dϕ|2 = 2
n∑

α=1

|∇uα|2 = 2
n∑

α=1

|∇vα|2,

∇|dϕ|2 = 2∇|∇φ|2 = 2∇|∇ψ|2.
Substitute these into the ∞-harmonic map Equation (1.3) we obtain that ϕ is ∞-
harmonic if and only if

(7.2) 2g(∇φα,∇|∇φ|2) = 0, 2g(∇ψα,∇|∇ψ|2) = 0, α = 1, 2, . . . , n,

which gives the Theorem.

Theorem 7.2. Let ϕ : Cm −→ C be a nonconstant holomorphic map. Then, ϕ is
an ∞-harmonic map if and only if ϕ is a composition of an orthogonal projection
Cm −→ C followed by a homothety C −→ C, i.e., ϕ(z1, . . . , zm) = λzi + z0, where
λ ∈ R, z0 ∈ C are constants.

Proof. Notice that a holomorphic map ϕ : Cm −→ C is automatically a horizontally
weakly conformal harmonic map (see e.g., [4]). It follows from the relationship among
tension, p-tension, and ∞-tension fields of a map

(7.3) τp(ϕ) = |dϕ|p−2
τ2(ϕ) + (p− 2)|dϕ|p−4

τ∞(ϕ)

that if ϕ is also an ∞-harmonic map, then it must be p-harmonic for any p. In
this case ϕ is a p-harmonic morphism (being horizontally weakly conformal and p-
harmonic map) for any p. By a theorem in [5], ϕ must be a horizontally homothetic.
Now the classification of horizontally homothetic maps between Euclidean spaces [10]
applies to give the required results.
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