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Abstract. This is a paper in 2D projective shape statistical analysis, with
an application to face analysis. We test nonparametric methodology for
an analysis of shapes of almost planar configurations of landmarks on real
scenes from their regular camera pictures. Projective shapes are regarded
as points on projective shape manifolds. Using large sample and nonpara-
metric bootstrap methodology for intrinsic total variance on manifolds, we
derive tests for coplanarity of a configuration of landmarks, and apply it
our results to a BBC image data set for face recognition, that was previous
analyzed using planar projective shape.
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1 Introduction

Advances in statistical analysis of projective shape have been slowed down due to
overemphasized importance of similarity shape in image analysis that ignored basic
principles of image acquisition. Progress was also hampered by lack of a geometric
model for the space of projective shapes, and ultimately by insufficient dialogue be-
tween researchers in geometry, computer vision and statistical shape analysis.
For reasons presented above, projective shapes have been studied only recently, and
except for one concrete 3D example due to Sughatadasa(2006), to be found in Liu
et al.(2007), the literature was bound to linear or planar projective shape analyzes.
Examples of 2D projective shape analysis can be found in Maybank (1994), Mardia
et. al. (1996), Goodall and Mardia (1999), Patrangenaru (2001), Lee et. al. (2004),
Paige et. al. (2005), Mardia and Patrangenaru (2005), Kent and Mardia (2006, 2007)
and Munk et. al. (2007).
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In this paper, we study the shape of a 2D configuration from its 2D images in
pictures of this configuration, without requiring any restriction for the camera po-
sitioning vs the scene pictured. A non-planar configuration of landmarks may often
seem to be 2D, depending on the way the scene was pictured and on the distance
between the scene pictured and the camera location. A test for coplanarity of k ≥ 4
landmarks is derived here, extending a similar test for k = 5 due to Patrangenaru
(1999).

Once the configuration passed the coplanarity test, we use a nonparametric sta-
tistical methodology to estimate its 2D projective shape, based on Efron’s bootstrap.
In this paper, a 2D projective shape is regarded as a random object on a projective
shape space. Since typically samples of images are small, in order to estimate the
mean projective shape we use nonparametric bootstrap for the studentized sample
mean projective shape on a manifold, as shown in Patrangenaru et al. (2008).

A summary by sections follows. Secton 2 is devoted to a recollection of basic
geometry facts needed further in the paper, such as projective invariants, projective
frames, and projective coordinates from Patrangenaru (2001).

In Section 3 we introduce projective shapes of configurations of points in Rm. We
will represent a projective shape of such a configuration as a point in (Rm)k−m−2 using
a registration modulo a projective frame. Then we derive the asymptotic distribution
of its total sample variance, and the corresponding pivotal bootstrap distribution,
needed in the estimation of the total population variance.

Since projective shapes are identified via projective frames with multivariate axial
data, in section 4 we refer to the multivariate axial distributions via a representation
of the projective shape space PΣk

m as product of k − m − 2 copies of RPm. This
space is provided with a Riemannian structure that is locally flat around the support
of the distributions considered here as in Patrangenaru (2001). In Theorem 4.1 an
asymptotic result is derived for the sampling distribution of the total intrinsic variance
of a random k-ad. Based on this result we derive confidence intervals the total intrinsic
population variance of the projective shape, as well as for affine coordinates of the
marginal axial distributions. A. Bhattacharya (2008) derived a similar test for the total
extrinsic variance of a distribution on an embedded manifold. Section 5 is dedicated
to a face analysis example, where we test the planarity of eight anatomic landmarks
selected on the face of an individual.

2 Projective Geometry for camera image acquisition

Projective geometry governs the physics of ideal pinhole camera image acquisition
from a 2D flat scene to the 2D camera film. It also provides a justification for the
reconstruction of a 2D configuration from monocular retinal images, since classical
similarity shape is often meaningless in computer vision and in pattern recognition.
In this section we review some of the basics of projective geometry that are useful in
understanding of image formation and 2D scene retrieval from ideal pinhole camera
images.
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2.1 Basics of Projective Geometry

Consider a real vector space V. Two vectors x, y ∈ V \{0V } are equivalent if they differ
by a scalar multiple. The equivalence class of x ∈ V \{0V } is labeled [x], and the set
of all such equivalence classes is the projective space P (V ) associated with V, P (V ) =
{[x], x ∈ V \OV }. The real projective space in m dimensions, RPm, is P (Rm+1).
Another notation for a projective point p = [x] ∈ RPm, equivalence class of x =
(x0, . . . , xm) ∈ Rm+1, is p = [x0 : x1 : · · · : xm] features the homogeneous coordinates
(x0, . . . , xm) of p, which are determined up to a multiplicative constant. A projective
point p admits also a spherical representation , when thought of as a pair of antipodal
points on the m dimensional unit sphere, p = {x,−x}, x = (x0, x1, . . . , xm), (x0)2 +
· · · + (xm)2 = 1. A d - dimensional projective subspace of RPm is a projective space
P (V ), where V is a (d + 1)-dimensional vector subspace of Rm+1. A codimension one
projective subspace of RPm is also called hyperplane. The linear span of a subset D of
RPm is the smallest projective subspace of RPm containing D. We say that k points
in RPm are in general position if their linear span is RPm. If k points in RPm are in
general position, then k ≥ m + 2.

The numerical space Rm can be embedded in RPm, preserving collinearity. An
example of such an affine embedding is

h((u1, ..., um)) = [1 : u1 : ... : um] = [ũ],(2.1)

where ũ = (1, u1, . . . , um)T , and in general, an affine embedding is given for any
A ∈ Gl(m + 1,R), by hA(u) = [Aũ]. The complement of the range of the embedding
h in (2.1) is the hyperplane RPm−1, set of points [x1 : · · · : xm : 0] ∈ RPm, which
has volume measure 0 with respect to the Riemannian volume associated with the
Riemannian structure on RPm induced by the standard metric on Sm.

The inhomogeneous (affine) coordinates (u1, . . . , um) of a point p = [x0 : x1 : · · · :
xm] ∈ RPm\RPm−1 are given by

(2.2) uj =
xj

x0
,∀j = 1, . . . , m.

Consider now the linear transformation from Rm′+1 to Rm+1 defined by the matrix
B ∈ M(m + 1,m′ + 1;R) and its kernel K = {x ∈ Rm′+1, Bx = 0}. The projective
map β : RPm′\P (K) → RPm, associated with B is defined by β([x]) = [Bx]. In
particular, a projective transformation β of RPm is the projective map associated
with a nonsingular matrix B ∈ GL(m + 1,R) and its action on RPm :

β([x1 : · · · : xm+1]) = [B(x1, . . . , xm+1)T ].(2.3)

In affine coordinates (inverse of the affine embedding (2.1)), the projective transfor-
mation (2.3) is given by v = f(u), with

(2.4) vj =
aj
0 +

∑m
i=1 aj

iu
i

a0
0 +

∑m
i=1 a0

i u
i
,∀j = 1, . . . , m

where det B = det((aj
i )i,j=0,...,m) 6= 0. An affine transformation of RPm, v =

Au + b, A ∈ GL(m,R), b ∈ Rm, is a particular case of projective transformation
α, associated with the matrix B ∈ GL(m + 1,R), given by
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(2.5) B =
(

1 b
0T

m A

)
.

A projective frame in an m dimensional projective space (or projective basis in the
computer vision literature, see e.g. Hartley (1993)) is an ordered set of m+2 projective
points in general position. An example of projective frame in RPm is the standard
projective frame is ([e1], . . . , [em+1], [e1 + ... + em+1]).

In projective shape analysis it is preferable to employ coordinates invariant with
respect to the group PGL(m) of projective transformations. A projective transfor-
mation takes a projective frame to a projective frame, and its action on RPm is
determined by its action on a projective frame, therefore if we define the projective
coordinate(s) of a point p ∈ RPm w.r.t. a projective frame π = (p1, . . . , pm+2) as
being given by

(2.6) pπ = β−1(p),

where β ∈ PGL(m) is a projective transformation taking the standard projective
frame to π, these coordinates have automatically the invariance property.

Remark 2.1. Assume u, u1, . . . , um+2 are points in Rm, such that π = ([ũ1], . . . , [ũm+2])
is a projective frame. If we consider the (m+1)×(m+1) matrix Um = [ũT

1 , . . . , ũT
m+1],

the projective coordinates of p = [ũ] w.r.t. π are given by

(2.7) pπ = [y1(u) : · · · : ym+1(u)],

where

v(u) = U−1
m ũT(2.8)

and

(2.9) yj(u) =
vj(u)

vj(um+2)
, ∀j = 1, . . . ,m + 1,

with the components vj given by (2.8).

Note that in our notation, the superscripts are reserved for the components of a
point whereas the subscripts are for the labels of points. The projective coordinate(s)
of x are given by the point [z1(x) : · · · : zm+1(x)] ∈ RPm. In affine coordinates,
the projective coordinate of a point x̃ can be obtained as follows. Consider a pro-
jective transformation β of Rm that takes the m + 2-tuple (x1, . . . , xm+2) ∈ Rm

of affine coordinates in a projective frame to the standard projective frame (of
Rm), (0, e1, . . . , em, 1T

m). Then inhomogeneous coordinates of [x̃] are given by y = β(x).

3 Projective shape

Definition 3.1. Two configurations of points in Rm have the same the projective
shape if they differ by a projective transformation of Rm.

Projective transformations of Rm have a pseudo-group structure under composi-
tion (the domain of definition of the composition of two such maps is smaller than
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the maximal domain of a projective transformation in Rm). A projective shape of a
k−ad (configuration of k landmarks or labeled points ) is the orbit of that k-ad under
projective transformations with respect to the diagonal action

(3.1) αk(p1, . . . , pk) = (α(p1), . . . , α, (pk)).

From (3.1), if two k-ads (u1, . . . , uk), (v1, . . . , vk) in Rm have the same projective
shape, there exists a projective transformation α given by (2.4) with α(uj) = vj , j =
1, . . . , k.

V. Patrangenaru (1999, 2001) considered the set G(k, m) of k−ads
(p1, ..., pk), k > m+2 for which π = (p1, ..., pm+2) is a projective frame. PGL(m) acts
on G(k,m) and the projective shape space PΣk

m, is the quotient G(k, m)/PGL(m).
Using the projective coordinates (pπ

m+3, . . . , p
π
k ) given by (2.6) one can show that PΣk

m

is a manifold diffeomorphic with (RPm)k−m−2. The projective frame representation
has two useful features: firstly, the projective shape space has a manifold structure,
thus allowing to use the asymptotic theory for means on manifolds in Bhattacharya
and Patrangenaru (2003, 2005), an secondly, it can be extended to infinite dimen-
sional projective shape spaces, such as projective shapes of curves, as shown in Munk
et al. (2007). This approach has the advantage of being inductive in the sense that
each new landmark of a configuration adds an extra marginal axial coordinate, thus
allowing to detect its overall contribution to the variability of the configuration as
well as correlation to the other landmarks. The effect of change of projective coordi-
nates, due to projective frame selection, can be understood via a group of projective
transformations, but is beyond the scope of this paper.

4 Total intrinsic variance and planarity of a 3D k−ad

The local chart around the support of the distribution Q is given in inhomogeneous
affine coordinates in the projective frame representation of the projective shape of a
k-ad in Rm recorded in random digital images. Assume the registered coordinates are
(x1, . . . , xk), k > m+2 and (x1, . . . , xm+2) yields a projective frame. To represent the
projective shape of this k-ad with respect to this frame one may use equations (2.9),
(2.8), or, alternately one may perform the following steps:

(i) solve for a the linear system (2.4) for the pairs of points (u = x1, v = 0), (u =
x2, v = e1), . . . , (u = xm+1, v = em), (u = xm+2, v = e1 + · · ·+ em), and,

(ii) for the values of a obtained at step (i), compute from (2.4) the affine coordi-
nates v1, . . . , vk−m−2 corresponding respectively to xm+3, . . . , xk.

We will consider an intrinsic analysis on the projective shape space, for a Rieman-
nian metric which is flat around the support of the distribution Q. A random projective
shape pσ(X) of a k−ad X = (X1, . . . , Xk) ∈ Rm (k > m + 2), with the support of Y
contained in the domain of our affine chart, is represented by the the random vector
W = (V1, . . . , Vk−m−2) in (Rm)k−m−2 with the total (intrinsic) variance

(4.1) tΣI =
k−m−2∑

a=1

TrΣa = E(dg
2(X, µI)) = Tr(Cov(W ).

where dg is the Riemannian distance, Σa is the covariance matrix of Va, and µI is the
extrinsic mean, and Cov(W ) is the covariance matrix of the vectorized form of W.
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One may assume that the probability distribution Q of Pσ(X) has small flat support
on PΣk

m in the sense of Patrangenaru (2001).

Theorem 4.1. If Q has small flat support on M and has finite moments up to the
fourth order, then n1/2(tΣ̂I,n− tΣI) converges in distribution to a random vector with
a multivariate distribution N (0, V ar(dg

2(X, µI))).

Proof. Let W1, . . . ,Wn be independent identically distributed random vectors
(i.i.d.r.v.) in Rm(k−m−2) representing the independent identically distributed random
projective shapes X1, . . . , Xn with the distribution Q. Assume E(W1) = µ. Given the
small flat support assumption,
(4.2)

tΣ̂I,n − tΣI = Tr
(

1
n

∑n
i=1(Wi −W )(Wi −W )T − TrE((W1 − µ)(W1 − µ)T

)
=

= 1
n

∑n
i=1 Tr

(
(Wi −W )(Wi −W )T

)− TrE
(
(W1 − µ)(W1 − µ)T

)
=

= 1
n

∑n
i=1 Tr

(
(Wi − µ)(Wi − µ)T

)− TrE
(
(W1 − µ)(W1 − µ)T

)
=

= 1
n

∑n
i=1 ‖Wi − µ‖2 − E(‖W1 − µ‖2).

From the Central Limit Theorem (applied here for a random sample from the pro-
bability distribution of distribution of ‖W1 − µ‖2, it follows that

(4.3)
√

n(tΣ̂I,n − tΣI) =
√

n
(
‖W − µ‖2 − E(‖W1 − µ‖2

)
→d Z,

where Z ∼ N (0, V ar(‖W1 − µ‖2) = N (0, V ar(dg
2(X,µI))). 2

Further, under the assumptions of Theorem 4.1, if we set

S2 =
1
n

n∑

i=1

(dg
2(Xi, XI)− dg

2(X, XI))2,

then we obtain

Corollary 4.2. If Q has small flat support on M then

(4.4) n
1
2

(
(tΣ̂I,n − tΣI)

S

)

converges in distribution to a N (0, 1) distributed random variable.

As well, we get

Corollary 4.3. A 100(1 − α)% large sample symmetric confidence interval for tΣI

is given by

(4.5)
(

tΣ̂I,n − zα
2

s√
n

, tΣ̂I,n + zα
2

s√
n

)
.

Note that for any affine coordinate U we have

Lemma 4.4. Assume U1, . . . , Un are i.i.d.r.v.’s from a probability distribution Q
with finite mean µ and variance σ2, third and fourth moments µ3,0, µ4,0 about zero,
and let Ua = 1

n

∑n
i=1 Ua

i be the sample estimator of µa,0. Then for n large enough,√
n(σ̂2 − σ2) →d W where σ̂2 = U2 − U

2
and

(4.6) W ∼ N (
0, σ2(6µ2 − σ2) + 3µ4 − 4µ3,0µ + µ4,0

)
.
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Therefore, if we assume σ2(6µ2 − σ2) + 3µ4 − 4µ3,0µ + µ4,0 > 0 and studentize, we
obtain the following:

Proposition 4.5. Under the hypothesis of Lemma 4.4, if we set

(4.7) T =
√

n(σ̂2 − σ2)
(
σ̂2(6U

2 − σ̂2) + 3U
4 − 4U3U + U4

) 1
2
,

then T has asymptotically an N (0, 1) distribution.

Corollary 4.6. A large sample 100(1− α)% confidence interval for σ2 is given by

(4.8)

(
σ̂2 − zβ√

n

[
σ̂2(6u2 − σ̂2) + 3u4 − 4u3u + u4

] 1
2

,

σ̂2 + zγ√
n

[
σ̂2(6u2 − σ̂2) + 3u4 − 4u3u + u4

] 1
2
)

,

where β + γ = α.

5 Applications. Example from face analysis

From the previous section we formulate the problem of planarity of a 3D scene as a
hypothesis testing question :

(5.1) H0 : tΣI = 0 vs H1 : tΣI 6= 0,

where tΣI is the total intrinsic variance of the random 2D projective shape of the k-ad
under consideration (here m = 2). Rejecting H0 means the k-ad is in general position
(not planar ). If the number of images is small, we may use a bootstrap confidence
interval, derived from the boostrap distribution of Corollary 4.2.

If we want to check the coplanarity of one of the landmarks with the projective
frame, we use instead the confidence intervals in (4.8) or their bootstrap analogues
for the variances of the affine coordinates corresponding to a given landmark.
A face recognition example based on a data set used in a live BBC program “Tomor-
row’s World” is given below. The example was introduced in Mardia and Patrangenaru
(2005), where six landmarks (ends of eyes plus ends of lips) have been recorded from
fourteen digital images of the same person (an actor posing in different disguises), in
fourteen pictures (which provide 14 i.i.d.r.v. in (R2)8−2−2 = (R2)4.

In this paper we use two additional landmarks (bridge of the nose and tip of the
nose). Hence, in this case we have n = 14,m = 2, k = 8 > m + 2 = 4 (4 projective
shapes used in the projective frame) and k−m−2 = 4 (4 extra projective shapes). The
affine coordinates of the projective shapes of this 8-ad, with respect to the projective
frame given by the “end of lips” and “outer ends of eyes” are displayed in the Fig. 2,
where we have used the following symbols: circle - for left inner eye end (landmark
#1), square - right inner eye end (#2), nose-bridge - star (#3), and nose tip - triangle
(#4). We illustrate the obtained theoretical results in the case of this experiment, by
providing the following confidence intervals for planarity:
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Figure 1: BBC data:14 views of an actor face.

Case I. The simultaneous confidence intervals for the coordinates (xk, yk), k ∈
{1, ..., 4} of the four observations, symmetric about tΣ̂I,n, for α = 0.05, γ = 0.025,
β = 0.025 are:

x1 ∈ [0.00853129340099773, 0.148558674971251]
x2 ∈ [−0.0840617129477059, 0.432726727843371]
x3 ∈ [0.0184935709543756, 0.0837586203816484]
x4 ∈ [−0.00290403837745329, 0.212652481111851]
y1 ∈ [0.00211307898182853, 0.0327929403581654]
y2 ∈ [−0.0382290058234896, 0.229364025574857]
y3 ∈ [0.0656967552395945, 0.149609901393107]
y4 ∈ [0.01161789651198, 0.0691394183317944].

Fig. 2. Affine coordinates of four projective representations of facial

landmarks.

Case II. The simultaneous confidence intervals for the coordinates (xk, yk), k ∈
{1, ..., 4} of the four observations, non-symmetric about σ̂2, for α = 0.05, γ = 0.045,
β = 0.005, are:
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x1 ∈ [−0.0134686026942806, 0.139107857780284]
x2 ∈ [−0.165255061513897, 0.39784731336349]
x3 ∈ [0.00823968853543718, 0.0793537101121015]
x4 ∈ [−0.0367704220678841, 0.198104003255809]
y1 ∈ [−0.0027070765829481, 0.0307222756205941]
y2 ∈ [−0.0802709180592805, 0.211303466325924]
y3 ∈ [0.0525130444845735, 0.143946381906257]
y4 ∈ [0.00258061045344363, 0.0652571391577564].

If we select centered confidence intervals, at level α = 0.05 we accept (fail to reject)
the planarity of three of the four inner eye ends and nose ends, and reject it for three
landmarks. If we are more inclusive for the lower bound of the confidence intervals, by
taking γ = 0.045 then we reject the tip of the nose as being in the plane determined
by the lines of the eyes and of the lip ends, which comes in agreement with our
expectations.
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