Lie algebras of a class of top spaces

M.R. Molaei and M.R. Farhangdoost

Abstract. In this paper 1-dimensional and 2-dimensional top spaces with finite numbers of identities and connected Lie group components are characterized. MF-semigroups are determined. By using of the left-invariant vector fields of top spaces and their one-parameter subgroups, a relation between the Lie algebras of a class of top spaces and the Lie algebras of a class of Lie groups is determined. As a result a solution for an open problem to a class of top spaces is presented.

M.S.C. 2000: 22E60, 22A15, 17B63.

Key words: Lie algebra, top space, left-invariant vector field, fundamental group, MF-semigroup.

1 Introduction

Basically a top space is a smooth manifold which points can be (smoothly) multiplied together and generally its identity is a map. In this paper we are going to characterize two classes of top spaces. Then we will consider the relation between left-invariant vector fields of a top space and its one-parameter subgroups. We know that if the cardinality of the identities of a top space is finite then the set of its left-invariant vector fields under the Lie bracket is a Lie algebra. We are going to deduce a Lie group which its Lie algebra be isomorphic to the Lie algebra of a special kind of top spaces.

2 Basic notions

In this paper we assume that T is a top space [3, 5], and for all $t \in T$, the set $T_{e(t)}$ is a connected set. In [8] one can find the conditions which imply to the connectedness of $T_{e(t)}$.

Let $(\tilde{T}_{e(t)}, p_t, e(\tilde{t}))$ be a universal covering space of $(T_{e(t)}, e(t))$. Then $\tilde{T}_{e(t)}$ with the multiplication $\tilde{m}_t(\tilde{t_1}, \tilde{t_2})$ with $\tilde{t_1}, \tilde{t_2} \in \tilde{T}_{e(t)}$ such that $p_t o \tilde{m}_t(\tilde{t_1}, \tilde{t_2}) = m_t(p_t(\tilde{t_1}, \tilde{t_2}))$ where m_t is the restriction of m on $T_{e(t)} \times T_{e(t)}$, is a Lie group [6].

If \tilde{T} is the disjoint union of $\tilde{T}_{e(t)}$ where $\tilde{t} \in T$ then the product \tilde{m} on $\tilde{T} \times \tilde{T}$ determines

Balkan Journal of Geometry and Its Applications, Vol.14, No.1, 2009, pp. 46-51.

[©] Balkan Society of Geometers, Geometry Balkan Press 2009.

uniquely by the equalities $p_{st}o\tilde{m}(\tilde{s},\tilde{t}) = m(p_s(\tilde{s}),p_t(\tilde{t}))$ and $\tilde{m}(e(\tilde{s}),e(\tilde{t})) = e(\tilde{s}t)$ [6]. Moreover (\tilde{T}, \tilde{m}) is a top space [6].

If $P: \tilde{T} \longrightarrow T$ is the mapping $p(\tilde{t}) = p_t(\tilde{t})$ then P is a homomorphism of top spaces, and the pair (T, P) is called an upper top space of T. The kernel of p is called the MF-semigroup of T [6].

Theorem 2.1 [6] If (T, p) and (S, q) are two upper top spaces of a top space T, then $\ker p$ is isomorphic to $\ker q$.

Theorem 2.2 [6] If T is a top space and D its MF-semigroup then D is isomorphic to $\bigcup \ \pi_1(T_{e(t)},e(t))$, where $\pi_1(T_{e(t)},e(t))$ is the fundamental group of $T_{e(t)}$ with base

point e(t) and \int denotes the disjoint union.

As a result of Theorem 3.3, if T is a Lie group then the MF-semigroup of T is the fundamental group of T.

3 Characterization of two classes of top spaces

We begin this section with the following theorem.

Theorem 3.1 Let T be a top space and the cardinality of e(T) be finite. Moreover let H be a closed submanifold generalized subgroup of T [5]. Then H is a top space. *Proof.* Since the cardinality of e(T) is finite then for all $t \in T$, $e^{-1}(e(t))$ is open and closed subset of T and it is a Lie group. We know that $H_{e(t)} = H \cap e^{-1}(e(t))$ is a closed subset of $e^{-1}(e(t))$. The Cartan theorem [2] implies that $H_{e(t)}$ is a Lie subgroup

of
$$e^{-1}(e(t))$$
 and then $H = \bigcup_{e(t) \in T} H_{e(t)}$ is a top space.

Corollary 3.1 Let T be a top space and the cardinality of e(T) be finite. Moreover let H be a submanifold generalized subgroup of T. Then H is a top space.

Proof. Since H is a locally closed generalized subgroup of T, then H is a closed submanifold of T [7], and so H is a top space.

Example 3.1 Let T be the top space $\mathbb{R} - \{0\}$ with the product $a.b \longmapsto a|b|$, then Corollary 3.1 implies that $H_1 = \{+1, -1\}$ and $H_2 = \{(-1)^{n+1}2^n, (-1)^n2^n | n \in \mathbb{N} \cup \mathbb{N} \}$ $\{0\}\}$ are top spaces.

Theorem 3.2 Suppose that T is a one-dimensional top space and the cardinality of e(T) is finite, if $e^{-1}(e(t))$ is connected for all $t \in T$ then $T \cong \bigoplus_{card(e(T))} A_i$, where $A_i = \mathbb{R}^1$ or $A_i = S^1$.

Proof. We know that $T = \bigcup_{t \in e(T)}^{0} e^{-1}(e(t))$ and $e^{-1}(e(t))$ is a connected Lie group. Since $e^{-1}(e(t))$ is isomorphic to \mathbb{R}^1 or S^1 , then $T \cong \bigoplus_{card(e(T))} A_i$, where $A_i = \mathbb{R}^1$ or

 $A_i = S^1$.

Theorem 3.3 Let T be a top space and D be its MF-semigroup, if $|e(T)| < \infty$, and $e^{-1}(e(t))$ is a connected subset of T for all $t \in T$, then D is isomorphic to a direct sum of integer numbers.

Proof.
$$D \cong \bigcup_{t \in e(T)}^{0} \pi_1(T_{e(t)}, e(t))$$
 where $T_{e(t)} = e^{-1}(e(t))$ and $\pi(T_{e(t)}, e(t))$ is a

fundamental group of $T_{e(t)}$ with the base point e(t). Since for all $a \in \mathbb{R}$ and $b \in S^1, \pi_1(S^1, b)$ and $\pi_1(\mathbb{R}, a)$ are isomorphic with $(\mathbb{Z}, +)$ and $\{e\}$ respectively, then D is isomorphic to a direct sum of integer numbers.

Theorem 3.4 If T is a two dimensional top space and $e^{-1}(e(t))$ is a connected set, for all $t \in T$. Then $T \cong \bigoplus A_i$ where $A_i = \mathbb{R}^2$, $A_i = T^2$, $A_i = \mathbb{R} \times S^1$ or identity connected component T_0^t of the group of affine motions of real line on $e^{-1}(e(t))$.

Proof. Since
$$T = \bigcup_{t \in e(T)}^{0} e^{-1}(e(t))$$
 and $e^{-1}(e(t))$ is a connected Lie group, then we

know that each two dimensional Lie groups is isomorphic to \mathbb{R}^2 , T^2 , $\mathbb{R} \times S^1$ or identity connected component T_0^t of the group of affine motions of real line on $e^{-1}(e(t))$. \square

Example 3.2 If T is the top space of Example 3.1 then $e(T) = \{1, -1\}, e^{-1}(1) = (0, \infty)$ and $e^{-1}(-1) = (-\infty, 0)$. Thus $T \cong \mathbb{R} \oplus \mathbb{R}$ and $D \cong \{e\}$.

4 Left-invariant vector fields and one-parameter subgroups

We begin this section by the following theorem.

Theorem 4.1 [3] Let T be a top space and let the cardinality of e(T) be a natural number. Then the set of left-invariant vector fields on T [4] is a Lie algebra under the Lie bracket operation.

Now, we consider a problem which sketched in the paper [3].

If T is a top space and e(T) is a finite set, then Theorem 4.1 implies that there exists a Lie algebra corresponding to T. According to this Lie algebra there is a Lie group. Now the problem is: What is the relation between this Lie group and T?

Definition 4.1 Suppose T is a top space. A curve $\phi : \mathbb{R} \longrightarrow T$ is called one-parameter subgroup of top space T if it is satisfies the condition $\phi(t_1 + t_2) = \phi(t_1)\phi(t_2)$; for all $t_1, t_2 \in \mathbb{R}$.

Lemma 4.1 Let $\phi : \mathbb{R} \longrightarrow T$ be a one-parameter subgroup of T, then $\phi(0) \in e(T)$. Moreover $\phi(s)\phi(-s) \in e(T)$; for all $s \in \mathbb{R}$.

Proof. If $\phi: \mathbb{R} \longrightarrow T$ is a one-parameter subgroup of a top space T, then $\phi(0) = \phi(0+0) = \phi(0)\phi(0)$. If $t = \phi(0)$, then t = tt and so $e(t) = t^{-1}t = t^{-1}(tt) = (t^{-1}t)t = e(t)t = t$. Thus e(t) = t.

Given a one-parameter subgroup $\phi: \mathbb{R} \longrightarrow T$, then there exists a vector field X such that $\frac{d\phi^{\mu}(t)}{dt} = X^{\mu}(\phi(t))$, where X^{μ} denotes a component of X in a coordinate system. We show that this vector field is a left-invariant vector field. If $L_t: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $L_t(s) = t + s$; for all $s \in \mathbb{R}$, then $(L_t)_* \left(\frac{d}{dt}|_{t=0}\right) = \left(\frac{d}{dt}|_t\right)$. Next, we apply induced map $\phi_*: d_t(\mathbb{R}) \longrightarrow d_{\phi(t)}(T)$ on the vectors $\frac{d}{dt}|_{t_t}$ and $\frac{d}{dt}|_t$,

(4.1)
$$\phi_*\left(\frac{d}{dt}|_{t_1}\right) = \frac{\partial \phi^{\mu}(t)}{\partial t}|_{t_1}\frac{\partial}{\partial y^{\mu}}|_{\phi(t_1)} = X|_{\phi(t_1)}$$

(4.2)
$$\phi_* \left(\frac{d}{dt} |_t \right) = \frac{\partial \phi^{\mu}(t)}{\partial t} |_t \frac{\partial}{\partial y^{\mu}} |_{\phi(t)} = X |_{\phi(t)}$$

(1) and (2) imply that:

$$(4.3) \qquad (\phi L_t)_* \left(\frac{d}{dt}|_{t_1}\right) = (\phi_*)(L_t)_* \left(\frac{d}{dt}|_{t_1}\right) = \phi_* \frac{d}{dt}|_{t+t_1} = X|_{\phi(t_1+t)};$$

the equality $\phi L_t = l_{\phi(t)}\phi$ implies: $(\phi L_t)_* = (l_{\phi(t)}\phi)_*$, so $\phi_*(L_t)_* = (l_{\phi(t)})_*\phi_*$ and then:

$$\phi_*(L_t)_*\left(\frac{d}{dt}|_{t_l}\right) = (l_{\phi(t)})_*\phi_*\left(\frac{d}{dt}|_{t_l}\right).$$

It follows from (3) and (1) that $X(\phi(t+t_1)) = (l_{\phi(t)})_*X|_{\phi(t_1)}$. Thus X is left-invariant vector field.

Now, let X be a left-invariant vector field on top space T, we show that there exist one-parameter subgroups on T corresponding to X. X defines a one-parameter group of transformation $\sigma(r,s)$; $(r \in \mathbb{R}, s \in T)$ such that $\frac{d\sigma^{\mu}}{dt} = X^{\mu}$ and $\sigma(0,s) = s$, for all $s \in T$. If we define $\phi : \mathbb{R} \longrightarrow T$ by $\phi(t) = \sigma(t,\phi(0))$ and $\phi(0) \in e(T)$, then the curve ϕ becomes a one-parameter subgroup of T. To prove this, we show that $\phi(t+s) = \phi(t)\phi(s)$, for all $s,t \in \mathbb{R}$. If the parameter s is fixed and; $\overline{\sigma} : \mathbb{R} \longrightarrow T$ is the map $\overline{\sigma}(t,\phi(s)) = \phi(s)\phi(t)$ then we have,

$$\overline{\sigma}(0,\phi(s)) = \phi(s)\phi(0) = \phi(s)e(\phi(0)) = \phi(s)e(\phi(s-s))$$

$$= \phi(s)e(\sigma(s-s,\phi(0))) = \phi(s)e(\phi(s)\phi(s)^{-1})$$

$$= \phi(s)e(\phi(s))e(\phi(s)^{-1}) = \phi(s) = \sigma(s,\phi(0)),$$

thus $\overline{\sigma}(0,\phi(s)) = \phi(s)$. Also $\overline{\sigma}$ satisfies the same differential equation of σ ;

$$\frac{d}{dt}\overline{\sigma}(t,\phi(s)) = \frac{d}{dt}(\phi(s)\phi(t)) = (L_{\phi(s)})_* \left(\frac{d}{dt}\phi(t)\right)$$

$$= (L_{\phi(s)})_* (X(\phi(t))) = X(\phi(s)\phi(t)) = X(\overline{\sigma}(t,\phi(s))).$$

By the uniqueness theorem of ordinary differential equation, we conclude that:

$$\phi(t+s) = \sigma(t+s,\phi(0)) = \sigma(t,\sigma(s,\phi(0))) = \overline{\sigma}(t,\phi(s)) = \phi(s)\phi(t).$$

Note that the correspondence between one-parameter subgroups of T and left-invariant vector fields on T is not one-to-one and we can find for every left-invariant vector field X, |e(T)| one-parameter subgroup of T.

Example 4.1 If $T = \mathbb{R}$, with the product $(a, b) \longmapsto a$, then we know that card $(e(T)) = \infty$ and then by the previous assertion there exists infinite left-invariant vector fields on T. Note that the vector field X on T is a left-invariant vector field if and only if $X: T \longrightarrow \mathbb{R}$ is defined by X(u) = cu, for some constant number $c \in \mathbb{R}$. It is clearly that for every one-parameter subgroup $\phi, \phi(\mathbb{R})$ is a commutative subgroup of T. By selecting $\phi(0) \in e(T)$, we have a commutative subgroup of T. Therefore we

can find a correspondence between left-invariant vector field and free commutative group $\prod_{\phi(0)\in e(T)}^* \phi(\mathbb{R})$.

Definition 4.2 Let T be a top space and let G be a topological group. Then a covering projection $P: T \longrightarrow G$ is called a top space covering projection if P satisfies the following conditions:

- (i) P(t) = e, for all $t \in e(T)$, where e is identity element;
- (ii) $P(t_1t_2) = P(t_1)P(t_2)$, for all $t_1, t_2 \in T$.

Example 4.2 Suppose that $T = \mathbb{R} - \{0\}$ with the product $(a, b) \longmapsto a|b|, G = \mathbb{R}^+$ with the usual product and standard topology, if $P: T \longrightarrow G$ is defined by P(t) = |t|, then P is a top space covering for G.

Lemma 4.2 The space P(T) with the induced topology of T is a Lie group. *Proof.* It is clear that P(T) is a group and the following diagram is a commutative diagram:

$$\begin{array}{ccc} T\times T & \xrightarrow{\theta_1} & T \\ P\times P \downarrow & & \downarrow P \\ P(T)\times P(T) & \xrightarrow{\theta_2} & P(T) \end{array}$$

where $\theta_1(t_1, t_2) = t_1 t_2^{-1}$. Since P is C^{∞} -map and $Po\theta_1 = \theta_2 o(P \times P)$, then P(T)is a Lie group.

Note that since P is a surjective local diffeomorphism, then P(T) = G.

Now, we state the main theorem of this section.

Theorem 4.2 Let P be a top space covering projection for a top space T and a topological group G and let $|e(T)| < \infty$. Then there exists a correspondence (but not necessarily one-to-one) between one-parameter subgroups G and one parameter subgroups of T.

Proof. It is clear that if ϕ is a one-parameter subgroup of T, then $Po\phi$ is a oneparameter subgroup of G. Now, if $\psi: \mathbb{R} \longrightarrow G$ is a one-parameter subgroup of G then $\psi(0) = e$ and there exist a connected neighborhood U of e such that it induces

a diffeomorphism on each connected component of $P^{-1}(U) = \bigcup_{t \in e(T)}^{0} V_t$. We can find $\phi_t : S \longrightarrow V_t$ such that $S \subseteq \mathbb{R}$, $\phi_t(r_1 + r_2) = \phi_t(r_1)\phi_t(r_2)$, $\frac{d\phi_{t_1}}{dt} = \frac{d\phi_{t_2}}{dt}$ and $Po\psi_t = \phi$, for all $t_1, t_2, t \in e(T)$. We can extend each ϕ_t to a one-parameter subgroup $\phi_t : \mathbb{R} \longrightarrow e^{-1}(e(t))$ such that $Po\phi_t = \psi$ and $\frac{d\phi_{t_1}}{dt} = \frac{d\phi_{t_2}}{dt}$, for all $t_1, t_2 \in e(T)$.

Corollary 4.1 If T is a top space with $|e(T)| < \infty$, and G is a Lie group and $P: T \longrightarrow G$ a top space covering projection for G, then there exists a one-to-one correspondence between left-invariant vector field G and left invariant vector fields of T. Moreover the Lie algebra created by the left invariant vector fields of T is isomorphic to the Lie algebra of G.

Proof. Let X be a left-invariant vector field, then there exist |e(T)| one-parameter subgroups of T correspondence to X, and all of these one-parameter subgroups of Tcorrespond to some one-parameter subgroups of G. Since G is a Lie group then there exists only one left-invariant vector field correspondence with that one-parameter subgroups. $\hfill\Box$

Note. The Lie algebra T and G are denoted by T and G respectively.

Corollary 4.2 With the assumptions of corollary 4.1 if G is a connected set then $\tilde{\mathcal{G}}$ and T are isomorphic Lie algebras, where $\tilde{\mathcal{G}}$ is the Lie algebra of universal covering of G.

Proof. Suppose that $(\tilde{G}, q, \tilde{e})$ is a universal covering of G. Since q is a homomorphism then $\tilde{\mathcal{G}} \cong \mathcal{G}$ and Corollary 4.1 implies that $\tilde{\mathcal{G}} \cong \mathcal{T}$.

Corollary 4.3 Let T and G be connected sets and $e(t_0) \in T$ be fixed. Moreover let $P: T \longrightarrow G$ be a top space covering projection for G. Then there exists a unique Lie group structure on T such that $e(t_0)$ is identity element and Lie algebra of T (as a Lie group) is equal to the Lie algebra of left invariant vector fields of T (as a top space).

Proof. There exists a unique structure on T such that T is a Lie group with identity element $e(t_0)$ and P is a morphism of Lie groups. Thus Lie algebra of T (as a Lie group) is equal to Lie algebra T (as a top space) [2].

5 Conclusion

In this paper we solved the problem which has been sketched in [3] for a class of top spaces, but the problem is open for the other classes of top spaces. Regarding related literature, we address the reader to [1].

References

- [1] M. Aghasi and A. Suri, Ordinary differential equations on infinite dimensional manifolds, Balkan Journal of Geometry and Its Applications, 12, 1 (2007), 1-8.
- [2] D. Miličić, Lecture on Lie Groups, http://www.math.utah.edu: 8080/milicic/, 2004.
- [3] M.R. Molaei, Top spaces, Journal of Interdisciplinary Mathematics, 7, 2 (2004), 173-181.
- [4] M.R. Molaei, *Complete Semi-dynamical systems*, Journal of Dynamical Systems and Geometric Theories, 3, 2 (2005), 95-107.
- [5] M.R. Molaei, Mathematical Structures Based on Completely Simple Semigroups, Hadronic Press (Monograph in Mathematics), 2005.
- [6] M.R. Molaei, M.R. Farhangdoost, Upper top spaces, Applied Sciences, 8, 2 (2006), 128-131.
- [7] M.R. Molaei, G.S. Khadekar, M.R. Farhangdost, On top spaces, Balkan Journal of Geometry and Its Applications, 11, 2 (2006), 101-106.
- [8] M.R. Molaei, A. Tahmoresi, Connected topological generalized groups, General Mathematics, 12, 1 (2004), 13-22.

Authors' addresses:

M.R. Molaei and M.R. Farhangdoost

Department of Mathematics, University of Kerman (Shahid Bahonar), 76169-14111, Kerman, Iran.

E-mail:mrmolaei@mail.uk.ac.ir, farhang@shirazu.ac.ir