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Abstract. In this paper 1-dimensional and 2-dimensional top spaces with
finite numbers of identities and connected Lie group components are char-
acterized. MF-semigroups are determined. By using of the left-invariant
vector fields of top spaces and their one-parameter subgroups, a relation
between the Lie algebras of a class of top spaces and the Lie algebras of
a class of Lie groups is determined. As a result a solution for an open
problem to a class of top spaces is presented.
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1 Introduction

Basically a top space is a smooth manifold which points can be (smoothly) multiplied
together and generally its identity is a map. In this paper we are going to characterize
two classes of top spaces. Then we will consider the relation between left-invariant
vector fields of a top space and its one-parameter subgroups. We know that if the
cardinality of the identities of a top space is finite then the set of its left-invariant
vector fields under the Lie bracket is a Lie algebra. We are going to deduce a Lie
group which its Lie algebra be isomorphic to the Lie algebra of a special kind of top
spaces.

2 Basic notions

In this paper we assume that T is a top space [3, 5], and for all t ∈ T , the set Te(t) is
a connected set. In [8] one can find the conditions which imply to the connectedness
of Te(t).
Let (T̃e(t), pt, ˜e(t)) be a universal covering space of (Te(t), e(t)). Then T̃e(t) with the
multiplication m̃t(t̃1, t̃2) with t̃1, t̃2 ∈ T̃e(t) such that ptom̃t(t̃1, t̃2) = mt(pt(t̃1, t̃2)
where mt is the restriction of m on Te(t) × Te(t), is a Lie group [6].
If T̃ is the disjoint union of T̃e(t) where t ∈ T then the product m̃ on T̃ × T̃ determines
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uniquely by the equalities pstom̃(s̃, t̃) = m(ps(s̃), pt(t̃)) and m̃( ˜e(s), ˜e(t)) = ˜e(st) [6].
Moreover (T̃ , m̃) is a top space [6].
If P : T̃ −→ T is the mapping p(t̃) = pt(t̃) then P is a homomorphism of top spaces,
and the pair (T̃ , P ) is called an upper top space of T . The kernel of p is called the
MF-semigroup of T [6].
Theorem 2.1 [6] If (T̃ , p) and (S̃, q) are two upper top spaces of a top space T , then
ker p is isomorphic to ker q.
Theorem 2.2 [6] If T is a top space and D its MF-semigroup then D is isomorphic to

0⋃

t∈e(T )

π1(Te(t), e(t)), where π1(Te(t), e(t)) is the fundamental group of Te(t) with base

point e(t) and
0⋃

denotes the disjoint union.

As a result of Theorem 3.3, if T is a Lie group then the MF-semigroup of T is the
fundamental group of T .

3 Characterization of two classes of top spaces

We begin this section with the following theorem.
Theorem 3.1 Let T be a top space and the cardinality of e(T ) be finite. Moreover
let H be a closed submanifold generalized subgroup of T [5]. Then H is a top space.
Proof. Since the cardinality of e(T ) is finite then for all t ∈ T , e−1(e(t)) is open and
closed subset of T and it is a Lie group. We know that He(t) = H ∩ e−1(e(t)) is a
closed subset of e−1(e(t)). The Cartan theorem [2] implies that He(t) is a Lie subgroup

of e−1(e(t)) and then H =
⋃

e(t)∈T

He(t) is a top space. 2

Corollary 3.1 Let T be a top space and the cardinality of e(T ) be finite. Moreover
let H be a submanifold generalized subgroup of T . Then H is a top space.
Proof. Since H is a locally closed generalized subgroup of T , then H is a closed
submanifold of T [7], and so H is a top space. 2

Example 3.1 Let T be the top space R − {0} with the product a.b 7−→ a|b|, then
Corollary 3.1 implies that H1 = {+1,−1} and H2 = {(−1)n+12n, (−1)n2n|n ∈ N ∪
{0}} are top spaces.

Theorem 3.2 Suppose that T is a one-dimensional top space and the cardinality
of e(T ) is finite, if e−1(e(t)) is connected for all t ∈ T then T ∼= ⊕card(e(T ))Ai, where
Ai = R1 or Ai = S1.

Proof. We know that T =
0⋃

t∈e(T )

e−1(e(t)) and e−1(e(t)) is a connected Lie group.

Since e−1(e(t)) is isomorphic to R1 or S1, then T ∼= ⊕card(e(T ))Ai, where Ai = R1 or
Ai = S1. 2

Theorem 3.3 Let T be a top space and D be its MF-semigroup, if |e(T )| < ∞,
and e−1(e(t)) is a connected subset of T for all t ∈ T , then D is isomorphic to a
direct sum of integer numbers.
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Proof. D ∼=
0⋃

t∈e(T )

π1(Te(t), e(t)) where Te(t) = e−1(e(t)) and π(Te(t), e(t)) is a

fundamental group of Te(t) with the base point e(t). Since for all a ∈ R and b ∈
S1, π1(S1, b) and π1(R, a) are isomorphic with (Z, +) and {e} respectively, then D is
isomorphic to a direct sum of integer numbers. 2

Theorem 3.4 If T is a two dimensional top space and e−1(e(t)) is a connected set, for
all t ∈ T . Then T ∼= ⊕Ai where Ai = R2, Ai = T 2, Ai = R× S1 or identity connected
component T t

0 of the group of affine motions of real line on e−1(e(t)).

Proof. Since T =
0⋃

t∈e(T )

e−1(e(t)) and e−1(e(t)) is a connected Lie group, then we

know that each two dimensional Lie groups is isomorphic to R2, T 2,R×S1 or identity
connected component T t

0 of the group of affine motions of real line on e−1(e(t)). 2

Example 3.2 If T is the top space of Example 3.1 then e(T ) = {1,−1}, e−1(1) =
(0,∞) and e−1(−1) = (−∞, 0). Thus T ∼= R⊕ R and D ∼= {e}.

4 Left-invariant vector fields and one-parameter sub-
groups

We begin this section by the following theorem.

Theorem 4.1 [3] Let T be a top space and let the cardinality of e(T ) be a natural
number. Then the set of left-invariant vector fields on T [4] is a Lie algebra under the
Lie bracket operation.

Now, we consider a problem which sketched in the paper [3].
If T is a top space and e(T ) is a finite set, then Theorem 4.1 implies that there exists
a Lie algebra corresponding to T . According to this Lie algebra there is a Lie group.
Now the problem is: What is the relation between this Lie group and T?
Definition 4.1 Suppose T is a top space. A curve φ : R −→ T is called one-parameter
subgroup of top space T if it is satisfies the condition φ(t1 + t2) = φ(t1)φ(t2); for all
t1, t2 ∈ R.

Lemma 4.1 Let φ : R −→ T be a one-parameter subgroup of T , then φ(0) ∈ e(T ).
Moreover φ(s)φ(−s) ∈ e(T ); for all s ∈ R.

Proof. If φ : R −→ T is a one-parameter subgroup of a top space T , then φ(0) =
φ(0 + 0) = φ(0)φ(0). If t = φ(0), then t = tt and so e(t) = t−1t = t−1(tt) = (t−1t)t =
e(t)t = t. Thus e(t) = t. 2

Given a one-parameter subgroup φ : R −→ T , then there exists a vector field X

such that
dφµ(t)

dt
= Xµ(φ(t)), where Xµ denotes a component of X in a coordinate

system. We show that this vector field is a left-invariant vector field. If Lt : R −→ R
defined by Lt(s) = t + s; for all s ∈ R, then (Lt)∗

( d

dt
|t=0

)
=

( d

dt
|t
)
. Next, we apply

induced map φ∗ : dt(R) −→ dφ(t)(T ) on the vectors
d

dt
|tl

and
d

dt
|t,
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φ∗
( d

dt
|t1

)
=

∂φµ(t)
∂t

|t1
∂

∂yµ
|φ(t1) = X|φ(t1)(4.1)

φ∗
( d

dt
|t
)

=
∂φµ(t)

∂t
|t ∂

∂yµ
|φ(t) = X|φ(t)(4.2)

(1) and (2) imply that:

(φLt)∗
( d

dt
|t1

)
= (φ∗)(Lt)∗

( d

dt
|t1

)
= φ∗

d

dt
|t+t1 = X|φ(t1+t);(4.3)

the equality φLt = lφ(t)φ implies: (φLt)∗ = (lφ(t)φ)∗, so φ∗(Lt)∗ = (lφ(t))∗φ∗ and
then:

φ∗(Lt)∗
( d

dt
|tl

)
= (lφ(t))∗φ∗

( d

dt
|tl

)
.

It follows from (3) and (1) that X(φ(t+t1)) = (lφ(t))∗X|φ(t1). Thus X is left-invariant
vector field.

Now, let X be a left-invariant vector field on top space T , we show that there
exist one-parameter subgroups on T corresponding to X. X defines a one-parameter

group of transformation σ(r, s); (r ∈ R, s ∈ T ) such that
dσµ

dt
= Xµ and σ(0, s) = s,

for all s ∈ T . If we define φ : R −→ T by φ(t) = σ(t, φ(0)) and φ(0) ∈ e(T ), then
the curve φ becomes a one-parameter subgroup of T . To prove this, we show that
φ(t + s) = φ(t)φ(s), for all s, t ∈ R. If the parameter s is fixed and; σ : R −→ T is the
map σ(t, φ(s)) = φ(s)φ(t) then we have,

σ(0, φ(s)) = φ(s)φ(0) = φ(s)e(φ(0)) = φ(s)e(φ(s− s))
= φ(s)e(σ(s− s, φ(0))) = φ(s)e(φ(s)φ(s)−1)
= φ(s)e(φ(s))e(φ(s)−1) = φ(s) = σ(s, φ(0)),

thus σ(0, φ(s)) = φ(s). Also σ satisfies the same differential equation of σ;

d

dt
σ(t, φ(s)) =

d

dt
(φ(s)φ(t)) = (Lφ(s))∗

( d

dt
φ(t)

)

= (Lφ(s))∗(X(φ(t))) = X(φ(s)φ(t)) = X(σ(t, φ(s))).

By the uniqueness theorem of ordinary differential equation, we conclude that:

φ(t + s) = σ(t + s, φ(0)) = σ(t, σ(s, φ(0))) = σ(t, φ(s)) = φ(s)φ(t).

Note that the correspondence between one-parameter subgroups of T and left-
invariant vector fields on T is not one-to-one and we can find for every left-invariant
vector field X, |e(T )| one-parameter subgroup of T .

Example 4.1 If T = R, with the product (a, b) 7−→ a, then we know that card
(e(T )) = ∞ and then by the previous assertion there exists infinite left-invariant
vector fields on T . Note that the vector field X on T is a left-invariant vector field if
and only if X : T −→ R is defined by X(u) = cu, for some constant number c ∈ R.
It is clearly that for every one-parameter subgroup φ, φ(R) is a commutative subgroup
of T . By selecting φ(0) ∈ e(T ), we have a commutative subgroup of T . Therefore we
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can find a correspondence between left-invariant vector field and free commutative
group

∏∗
φ(0)∈e(T )φ(R).

Definition 4.2 Let T be a top space and let G be a topological group. Then a
covering projection P : T −→ G is called a top space covering projection if P satisfies
the following conditions:

(i) P (t) = e, for all t ∈ e(T ), where e is identity element;
(ii) P (t1t2) = P (t1)P (t2), for all t1, t2 ∈ T .

Example 4.2 Suppose that T = R−{0} with the product (a, b) 7−→ a|b|, G = R+

with the usual product and standard topology, if P : T −→ G is defined by P (t) = |t|,
then P is a top space covering for G.

Lemma 4.2 The space P (T ) with the induced topology of T is a Lie group.
Proof. It is clear that P (T ) is a group and the following diagram is a commutative
diagram:

T × T
θ1−→ T

P × P ↓ ↓ P

P (T )× P (T ) θ2−→ P (T )

where θ1(t1, t2) = t1t
−1
2 . Since P is C∞-map and Poθ1 = θ2o(P × P ), then P (T )

is a Lie group. 2

Note that since P is a surjective local diffeomorphism, then P (T ) = G.
Now, we state the main theorem of this section.

Theorem 4.2 Let P be a top space covering projection for a top space T and
a topological group G and let |e(T )| < ∞. Then there exists a correspondence (but
not necessarily one-to-one) between one-parameter subgroups G and one parameter
subgroups of T .

Proof. It is clear that if φ is a one-parameter subgroup of T , then Poφ is a one-
parameter subgroup of G. Now, if ψ : R −→ G is a one-parameter subgroup of G
then ψ(0) = e and there exist a connected neighborhood U of e such that it induces

a diffeomorphism on each connected component of P−1(U) =
0⋃

t∈e(T )

Vt. We can find

φt : S −→ Vt such that S ⊆ R, φt(r1 + r2) = φt(r1)φt(r2),
dφt1

dt
=

dφt2

dt
and

Poψt = φ, for all t1, t2, t ∈ e(T ). We can extend each φt to a one-parameter subgroup

φt : R −→ e−1(e(t)) such that Poφt = ψ and
dφt1

dt
=

dφt2

dt
, for all t1, t2 ∈ e(T ). 2

Corollary 4.1 If T is a top space with |e(T )| < ∞, and G is a Lie group and
P : T −→ G a top space covering projection for G, then there exists a one-to-one cor-
respondence between left-invariant vector field G and left invariant vector fields of T .
Moreover the Lie algebra created by the left invariant vector fields of T is isomorphic
to the Lie algebra of G.

Proof. Let X be a left-invariant vector field, then there exist |e(T )| one-parameter
subgroups of T correspondence to X, and all of these one-parameter subgroups of T
correspond to some one-parameter subgroups of G. Since G is a Lie group then there
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exists only one left-invariant vector field correspondence with that one-parameter
subgroups. 2

Note. The Lie algebra T and G are denoted by T and G respectively.

Corollary 4.2 With the assumptions of corollary 4.1 if G is a connected set then
G̃ and T are isomorphic Lie algebras, where G̃ is the Lie algebra of universal covering
of G.

Proof. Suppose that (G̃, q, ẽ) is a universal covering of G. Since q is a homomor-
phism then G̃ ∼= G and Corollary 4.1 implies that G̃ ∼= T . 2

Corollary 4.3 Let T and G be connected sets and e(t0) ∈ T be fixed. Moreover
let P : T −→ G be a top space covering projection for G. Then there exists a unique
Lie group structure on T such that e(t0) is identity element and Lie algebra of T (as
a Lie group) is equal to the Lie algebra of left invariant vector fields of T (as a top
space).

Proof. There exists a unique structure on T such that T is a Lie group with identity
element e(t0) and P is a morphism of Lie groups. Thus Lie algebra of T (as a Lie
group) is equal to Lie algebra T (as a top space) [2]. 2

5 Conclusion

In this paper we solved the problem which has been sketched in [3] for a class of top
spaces, but the problem is open for the other classes of top spaces. Regarding related
literature, we address the reader to [1].
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