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Abstract. In this paper 1-dimensional and 2-dimensional top spaces with
finite numbers of identities and connected Lie group components are char-
acterized. MF-semigroups are determined. By using of the left-invariant
vector fields of top spaces and their one-parameter subgroups, a relation
between the Lie algebras of a class of top spaces and the Lie algebras of
a class of Lie groups is determined. As a result a solution for an open
problem to a class of top spaces is presented.
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1 Introduction

Basically a top space is a smooth manifold which points can be (smoothly) multiplied
together and generally its identity is a map. In this paper we are going to characterize
two classes of top spaces. Then we will consider the relation between left-invariant
vector fields of a top space and its one-parameter subgroups. We know that if the
cardinality of the identities of a top space is finite then the set of its left-invariant
vector fields under the Lie bracket is a Lie algebra. We are going to deduce a Lie
group which its Lie algebra be isomorphic to the Lie algebra of a special kind of top
spaces.

2 Basic notions

In this paper we assume that T is a top space [3, 5], and for all ¢ € T', the set T,y is
a connected set. In [8] one can find the conditions which imply to the connectedness
of Te(t)-

Let (Te(t),pt,e(t)) be a universal covering space of (T¢(:),e(t)). Then Te(t) with the
multiplication 17 (¢, %) with £1,t5 € Te(t) such that psoris(ty,ta) = my(ps(ts,t2)
where m; is the restriction of m on T,y x Te), is a Lie group [6].

If T is the disjoint union of Te(t) where ¢ € T then the product m on T x T’ determines
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uniquely by the equalities psrom(8,t) = m(ps(5),p+(t)) and m(e(s),e(t)) = e(st) [6].

Moreover (T',70) is a top space [6].

If P: T —> T is the mapping p(t) = p(t) then P is a homomorphism of top spaces,

and the pair (T, P) is called an upper top space of T. The kernel of p is called the

MF-semigroup of T [6].

Theorem 2.1 [6] If (T,p) and (S, q) are two upper top spaces of a top space T', then

ker p is isomorphic to ker q.

Theorem 2.2 [6] If T is a top space and D its MF-semigroup then D is isomorphic to
0

U 71 (T, e(t)), where 71 (T, @), e(t)) is the fundamental group of T,y with base

tee(T)
0

point e(t) and U denotes the disjoint union.

As a result of Theorem 3.3, if T' is a Lie group then the MF-semigroup of T is the
fundamental group of T'.

3 Characterization of two classes of top spaces

We begin this section with the following theorem.

Theorem 3.1 Let T be a top space and the cardinality of e(T) be finite. Moreover
let H be a closed submanifold generalized subgroup of T' [5]. Then H is a top space.
Proof. Since the cardinality of e(T') is finite then for all ¢t € T', e~ *(e(t)) is open and
closed subset of 7" and it is a Lie group. We know that H.y = H Ne *(e(t)) is a
closed subset of e~ *(e(t)). The Cartan theorem [2] implies that H., ;) is a Lie subgroup

of e71(e(t)) and then H = U H,) is a top space. O
e(t)eT

Corollary 3.1 Let T be a top space and the cardinality of e(T") be finite. Moreover
let H be a submanifold generalized subgroup of 7. Then H is a top space.

Proof. Since H is a locally closed generalized subgroup of T, then H is a closed
submanifold of T' [7], and so H is a top space. O
Example 3.1 Let T be the top space R — {0} with the product a.b — a|b|, then
Corollary 3.1 implies that H; = {+1,—1} and Hy = {(—1)"*12" (-1)"2"|n € NU
{0}} are top spaces.

Theorem 3.2 Suppose that T is a one-dimensional top space and the cardinality
of e(T) is finite, if e~1(e(t)) is connected for allt € T then T = Deard(e(T)) Ai, where
Ai = RI or Ai = Sl.

0

Proof. We know that T' = U e !(e(t)) and e~ *(e(t)) is a connected Lie group.
tee(T)

Since e~ !(e(t)) is isomorphic to R! or S*, then T =2 Deard(e(T))Ai, where A; = R! or

A; =St 0

Theorem 3.3 Let T be a top space and D be its MF-semigroup, if |e(T)| < oo,
and e~ 1(e(t)) is a connected subset of T for all t € T, then D is isomorphic to a
direct sum of integer numbers.
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0
Proof. D = U T (Tery, e(t)) where Toqy = e *(e(t)) and 7(Top,e(t)) is a
tee(T)
fundamental group of T, with the base point e(t). Since for all @ € R and b €
St m1(St,b) and 71 (R, a) are isomorphic with (Z,+) and {e} respectively, then D is
isomorphic to a direct sum of integer numbers. O
Theorem 3.4 If T is a two dimensional top space and e~!(e(t)) is a connected set, for
allt € T. Then T = @A, where 4; = R?, A; =T?, A; =R x S* or identity connected

component T¢ of the group of affine motions of real line on e~!(e(t)).
0

Proof. Since T' = U e !(e(t)) and e !(e(t)) is a connected Lie group, then we
tee(T)

know that each two dimensional Lie groups is isomorphic to R?, T2, R x S* or identity

connected component T¢ of the group of affine motions of real line on e~ (e(t)). O

Example 3.2 If T is the top space of Example 3.1 then e(T) = {1, -1}, e (1) =
(0,00) and e~ !(—1) = (—00,0). Thus T2 R @& R and D = {e}.

4 Left-invariant vector fields and one-parameter sub-
groups

We begin this section by the following theorem.

Theorem 4.1 [3] Let T be a top space and let the cardinality of e(T) be a natural
number. Then the set of left-invariant vector fields on T [4] is a Lie algebra under the
Lie bracket operation.

Now, we consider a problem which sketched in the paper [3].
If T is a top space and e(T) is a finite set, then Theorem 4.1 implies that there exists
a Lie algebra corresponding to T'. According to this Lie algebra there is a Lie group.
Now the problem is: What is the relation between this Lie group and 77
Definition 4.1 Suppose T is a top space. A curve ¢ : R — T is called one-parameter
subgroup of top space T if it is satisfies the condition ¢(t; + t2) = ¢(t1)p(t2); for all
t1,ts € R.

Lemma 4.1 Let ¢ : R — T be a one-parameter subgroup of T', then ¢(0) € e(T).
Moreover ¢(s)p(—s) € e(T); for all s € R.

Proof. If ¢ : R — T is a one-parameter subgroup of a top space T, then ¢(0) =
#(0+0) = ¢(0)p(0). If t = ¢(0), then ¢t = tt and so e(t) =t~ 1t =t~ 1(tt) = (t71t)
e(t)t = t. Thus e(t) =t.

mi

Given a one-parameter subgroup ¢ : R — T, then there exists a vector field X
doH(t

such that ¢ t( )
system. We show that this vector field is a left-invariant vector field. If L; : R — R

d d
defined by L¢(s) =t + s; for all s € R, then (L), (ﬁhzo) = <£|t) Next, we apply

= XH*(¢(t)), where X* denotes a component of X in a coordinate

d
induced map ¢, : dy(R) — d¢(t)(T) on the vectors %|t1 and ah,



Lie algebras of a class of top spaces 49

d apr(t), 0

(4.1) ¢*(gﬂh) =5 ulggguun::4¥mun
d aph(t),

(4.2) o (@ t) T |t@|¢(t) = Xlo)

(1) and (2) imply that:

d d d
(4.3) (pLt)+ (%hl) = (¢)(Lt)« (ﬁhl) = QL%IH“ = X|g(t,+1);

the equality ¢L; = lyu)¢ implies: (@L¢)x = (lgt)@)s, 80 Gx(Li)w = (lpr))+P+ and
then:

Se(L)e (1) = Cgi)ete (S1).

It follows from (3) and (1) that X (é(t+t1)) = (lgt))«X|g(t,)- Thus X is left-invariant
vector field.

Now, let X be a left-invariant vector field on top space T, we show that there
exist one-parameter subgroups on 1" corresponding to X. X defines a one-parameter

dot
group of transformation o(r, s); (r € R,s € T') such that % = X* and 0(0,s) = s,

for all s € T. If we define ¢ : R — T by ¢(t) = o(t,¢(0)) and ¢(0) € e(T), then
the curve ¢ becomes a one-parameter subgroup of T. To prove this, we show that
d(t+s) = ¢(t)o(s), for all s,t € R. If the parameter s is fixed and; 7 : R — T is the
map o (t, d(s)) = ¢(s)p(t) then we have,

7(0,9(s)) = é(5)9(0) = ¢(s)e(¢(0)) = d(s)e((s — s))
= d(s)e(o(s = 5,6(0))) = ¢(s)e(d(s)d(s) ™)
= ¢(s)e(d(s))e(d(s)™") = é(s) = a(s,6(0)),

d d d
2ot 0(s) = Z(9()6(0) = (Lys) (59(0))

= (Lg()«(X(8(1))) = X((s)¢(t)) = X(a(t, 6(s)))-

By the uniqueness theorem of ordinary differential equation, we conclude that:

ot +s) =o(t+s,60)) = a(t,o(s,9(0))) =7(t, é(s)) = ¢(s)o(t).

Note that the correspondence between one-parameter subgroups of T and left-
invariant vector fields on 7' is not one-to-one and we can find for every left-invariant
vector field X, |e(T')| one-parameter subgroup of T'.

Example 4.1 If T = R, with the product (a,b) — a, then we know that card
(e(T)) = oo and then by the previous assertion there exists infinite left-invariant
vector fields on T'. Note that the vector field X on T is a left-invariant vector field if
and only if X : T — R is defined by X (u) = cu, for some constant number ¢ € R.
It is clearly that for every one-parameter subgroup ¢, ¢(R) is a commutative subgroup
of T. By selecting ¢(0) € e(T"), we have a commutative subgroup of T'. Therefore we
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can find a correspondence between left-invariant vector field and free commutative
group H¢(o)ee(T)¢(R)-

Definition 4.2 Let T be a top space and let G be a topological group. Then a
covering projection P : T — G is called a top space covering projection if P satisfies
the following conditions:

(i) P(t) = e, for all t € e(T), where e is identity element;

(11) P(tltg) = P(tl)P(tQ), for all tl,tQ elT.

Example 4.2 Suppose that 7= R— {0} with the product (a,b) — alb], G = R*
with the usual product and standard topology, if P : T — G is defined by P(t) = ||,
then P is a top space covering for G.

Lemma 4.2 The space P(T) with the induced topology of T is a Lie group.
Proof. Tt is clear that P(T') is a group and the following diagram is a commutative
diagram:

01

TxT b
PxP | | P
P(T)x P(T) 2 P(T)

where 6, (t1,t2) = ti1t; '. Since P is C*°-map and Pof; = 620(P x P), then P(T)
is a Lie group. O

Note that since P is a surjective local diffeomorphism, then P(T) = G.

Now, we state the main theorem of this section.

Theorem 4.2 Let P be a top space covering projection for a top space T and
a topological group G and let |e(T)| < oco. Then there exists a correspondence (but
not necessarily one-to-one) between one-parameter subgroups G and one parameter
subgroups of T'.

Proof. Tt is clear that if ¢ is a one-parameter subgroup of 7', then Po¢ is a one-
parameter subgroup of G. Now, if ¢ : R — G is a one-parameter subgroup of G
then ¢ (0) = e and there exist a connected neighborhood U of e such that it induces

0
a diffeomorphism on each connected component of P~1(U) = U V;. We can find

tee(T)
d d
b i S — Vi such that § © B, dufri + 1) = oulra)an(ra), o = 2 g
Poyy = ¢, for all tq,ta,t € e(T). We can extend each ¢; to a one-parameter subgroup
d d
¢ : R — e~ 1(e(t)) such that Pog; = ¢ and % = 3;2, for all t;,t; € e(T). O

Corollary 4.1 If T is a top space with |e(T)| < oo, and G is a Lie group and
P :T — G a top space covering projection for G, then there exists a one-to-one cor-
respondence between left-invariant vector field G and left invariant vector fields of T.
Moreover the Lie algebra created by the left invariant vector fields of T is isomorphic
to the Lie algebra of G.

Proof. Let X be a left-invariant vector field, then there exist |e(T)| one-parameter
subgroups of T correspondence to X, and all of these one-parameter subgroups of T'
correspond to some one-parameter subgroups of G. Since G is a Lie group then there
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exists only one left-invariant vector field correspondence with that one-parameter
subgroups. O

Note. The Lie algebra T and G are denoted by 7 and G respectively.

_ Corollary 4.2 With the assumptions of corollary 4.1 if G is a connected set then
G and T are isomorphic Lie algebras, where G is the Lie algebra of universal covering
of G.

Proof. Suppose that (é, q,€) is a universal covering of G. Since ¢ is a homomor-
phism then G 2 G and Corollary 4.1 implies that G =2 7. O

Corollary 4.3 Let T and G be connected sets and e(tg) € T be fized. Moreover
let P:T — G be a top space covering projection for G. Then there exists a unique
Lie group structure on T such that e(ty) is identity element and Lie algebra of T' (as
a Lie group) is equal to the Lie algebra of left invariant vector fields of T (as a top
space).

Proof. There exists a unique structure on 7" such that T is a Lie group with identity
element e(typ) and P is a morphism of Lie groups. Thus Lie algebra of T' (as a Lie
group) is equal to Lie algebra T' (as a top space) [2]. O

5 Conclusion

In this paper we solved the problem which has been sketched in [3] for a class of top
spaces, but the problem is open for the other classes of top spaces. Regarding related
literature, we address the reader to [1].
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