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Abstract. In the present paper we submit for study a new class of Finsler
spaces. Through restricting the homogeneity condition from the definition
of a complex Finsler metric to real scalars, λ ∈ R, is obtained a wider class
of complex spaces, called by us the R−complex Finsler spaces. Two sub-
classes are taken in consideration: the Hermitian and the non-Hermitian
R−complex Finsler spaces. In an R−complex Finsler space we determine
a nonlinear connection from the variational problem similar as in the com-
plex Lagrange geometry ([11]) for the Hermitian case and similar as in the
real Lagrange geometry ([5, 7, 9]) for the non-Hermitian case. There are
studied the N− complex linear connections in each of two classes.
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1 Preliminaries

The notion of complex Finsler space appears for the first time in a paper written by
Rizza in 1963, [12], as a generalization of the similar notion from the real case, re-
quering the homogeneity of the fundamental function with respect to complex scalars
λ. The first example comes from the complex hyperbolic geometry and was given by
S. Kobayashi in 1975, [8]. The Kobayashi metric has given an impulse to the study of
complex Finsler geometry.

Geometry means, first of all, distance. The significance of the curve arc length
in complex Finsler geometry is pointed out by Abate and Patrizio in 1994, [1]. This
distance refers to curves depending on a real parameter and the invariance of the
integral to the change of parameters is ensured only for real parameters.

Bearing in mind this fact, in this paper we will extend the definition of a complex
Finsler space by reducing the scalars to λ ∈ R in the homogeneity condition and there
is obtained a new class of complex spaces, called by us the R- complex Finsler spaces.

In this section we keep the general settings from [11] and subsequently we recall
only some needed notions.
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Let M be a complex manifold with dimCM = n,
(
zk

)
be local complex coordinates

and T ′M the holomorphic tangent bundle which has a natural structure of complex
manifold, dimC T ′M = 2n and the induced coordinates on u ∈ T ′M are denoted by
u = (zk, ηk). The changes of local coordinates in u are given by the rules:

(1.1) z′k = z′k (z) ; η′k =
∂z′k

∂zj
ηj .

The natural frame
{

∂
∂zk , ∂

∂ηk

}
of T ′u (T ′M) transforms with the Jacobi matrix of

(1.1) changes.
A complex nonlinear connection, briefly (c.n.c.), is a supplementary distribu-

tion H (T ′M) to the vertical distribution V (T ′M) in T ′ (T ′M) . The vertical dis-
tribution is spanned by

{
∂

∂ηk

}
and an adapted frame in H (T ′M) is denoted by{

δ
δzk = ∂

∂zk −N j
k

∂
∂nj

}
, where N j

k are the coefficients of the (c.n.c.) and they have a

certain rule of change at (1.1) so that δ
δzk transform like vectors on the base mani-

fold M (d−tensors in [11] terminology). Next, we use the abbreviations: ∂k := ∂
∂zk ,

δk := δ
δzk , ∂̇k := ∂

∂ηk and ∂k̄ , ∂̇k̄, δk̄ for their conjugates. The dual adapted basis of{
δk, ∂̇k

}
are

{
dzk, δηk = dηk + Nk

j dzj
}

and
{
dz̄k, δη̄k

}
are their conjugates. A notion

attached to a (c.n.c.) is that of complex spray on T ′M, given by a set of coefficients
Gi(z, η) which transform at (1.1) changes as follows:

(1.2) 2G′i = 2Gk ∂z′i

∂zk
− ∂2z′i

∂zj∂zk
ηjηk.

Any complex spray determines a (c.n.c.) by the rule Nh
k = ∂Gh

∂ηk . Conversely, any
(c.n.c.) Nh

k determines a complex spray by setting G̃h = 1
2Nh

k ηk.
A covariant derivative law D on T ′M is said to be an N−complex linear connec-

tion, N − (c.l.c.), if its coefficients satisfy:
Dδk

δj = Li
jkδi; Dδk

∂̇j = Li
jk∂̇i; D∂̇k

δj = Ci
jkδi; D∂̇k

∂̇j = Ci
jk∂̇i;

Dδk̄
δj = Li

jk̄
δi; Dδk̄

∂̇j = Li
jk̄

∂̇i; D∂̇k̄
δj = Ci

jk̄
δi; D∂̇k̄

∂̇j = Ci
jk̄

∂̇i

and their conjugates in account of DXY = DX̄ Ȳ . If D is of (1, 0) type, then Li
jk̄

=

Ci
jk̄

= L
¯ī
jk

= C
¯ī
jk

= 0.

For more details concerning the geometry of T ′M bundle see [11].
In this note, as a rule, the straightforward computations are omitted but the reader

will have at hand all elements to check the assertions which involve them.

2 On R−complex Finsler metrics

We recall that the homogeneity of the fundamental function of a complex Finsler
space is with respect to complex scalars and the metric tensor of the space is one
Hermitian. Now we slightly change the definition of a complex Finsler space.

Definition 2.1. An R−complex Finsler space is a pair (M, F ), where F is a contin-
uous function F : T ′M −→ R+ satisfying:
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i) L := F 2 is smooth on T̃ ′M (except the 0 section);
ii) F (z, η) ≥ 0, the equality holds if and only if η = 0;
iii) F (z, λη, z̄, λη̄) = |λ|F (z, η, z̄, η̄) , ∀λ ∈ R;

The assertion iii) says that L is (2, 0) homogeneous with respect to the real scalar
λ, i.e. L (z, λη, z̄, λη̄) = λ2L (z, η, z̄, η̄) , ∀λ ∈ R.

Let us set the following metric tensors:

(2.1) gij :=
∂2L

∂ηi∂ηj
; gij̄ :=

∂2L

∂ηi∂η̄j
; g¯ij̄ :=

∂2L

∂η̄i∂η̄j

Proposition 2.2. In an R−complex Finsler space the following conditions hold:
i) ∂L

∂ηi η
i + ∂L

∂η̄i η̄
i = 2L;

ii) gijη
i + gj̄iη̄

i = ∂L
∂ηj ;

iii) 2L = gijη
iηj + g¯ij̄ η̄

iη̄j + 2gij̄η
iη̄j ;

iv) ∂gik

∂ηj ηj + ∂gik

∂η̄j η̄j = 0; ∂gik̄

∂ηj ηj + ∂gik̄

∂η̄j η̄j = 0.

Proof. By differentiating the equality L (z, λη, z̄, λη̄) = λ2L (z, η, z̄, η̄), with respect
to λ ∈ R and then setting λ = 1, it results i). Now, ii) results by differentiating i)
with respect to ηj . Contracting ii) with ηj , then adding it with its conjugate and
using i), we obtain iii). iv) follows by differentiating ii) with respect to ηk and η̄k

respectively.

An immediate consequence of the homogeneity conditions and Proposition 2.1
concerns the following Cartan type complex tensors:

(2.2) Cijk :=
∂gij

∂ηk
; Cijk̄ :=

∂gij

∂η̄k
; Cij̄k̄ :=

∂gij̄

∂η̄k

and their conjugates.
Let us denote with 0 or 0̄ the contracting of the Cartan tensors with ηk or η̄k,

respectively. From the above Proposition 2.1 iv) and the definitions of metric tensors
gij , gij̄ , it follows that

Proposition 2.3. The Cartan complex tensors are symmetric in the indices of the
same type (without bar or with bar) and

Cij0 + Cij0̄ = 0 ; Ci0j̄ + Ci0̄j̄ = 0 ; C0ij + C0̄ij = 0.

In complex Finsler geometry a strongly pseudo-convex requirement is assumed,
that is the metric tensor gij̄ defines a positive-definite quadratic form, and then the
matrix

(
gij̄

)
is invertible.

From Proposition 2.1 iii) we remark that by restricting the homogeneity of the
Finsler function in the definition of a complex Finsler space, the associated Lagrangian
functionL acquires a more general form than in the complex Finsler geometry. Con-
sequently, a naturally question arises now: which of the (2.1) metric tensors gij or gij̄

need be invertible? Need both of them be invertible?.
A first remark is that if there exists a set of local charts on M in which gij = 0,

then Cijk = Cijk̄ = Cik̄j = 0, and consequently gij̄ is a function of z alone, that is in
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terminology from [11] the space is then purely Hermitian. If there exists a set of local
charts in which gij̄ = 0, then Cij̄k = Cikj̄ = 0, and consequently gij are holomorphic
functions with respect to η.

Clearly, for a proper Hermitian geometry, the existence of the inverse of the gij̄

tensor is a compulsive requirement. On the other hand, from some physicists’ point of
view, for which the Hermitian condition is an impediment, it seems more attractive
that gij should be an invertible metric tensor.

Definition 2.4. An R− complex Hermitian Finsler space is a pair (M, F ) where F
satisfies the regularity condition:

(2.3) gij̄ =
∂2L

∂ηi∂η̄j

is nondegenerated, i.e. det
(
gij̄

) 6= 0 in any u ∈ T̃ ′M , and defines a positive definite
Levi-form for all z ∈ M .

This ensures the strongly pseudo-convexity of the indicatrix.
Any R− complex Hermitian Finsler space (M, F ) is a particular complex La-

grange one with L = F 2, in the sense that we leave the homogeneity condition in a
Lagrangian space. Therefore the geometric machinery may be studied following the
general framework described in [11].

The fundamental problem in the study of T ′M geometry is that of the existence
of a complex nonlinear connection, depending only on the Lagrangian function L.

In a complex Finsler space a special derivative law is usually considered, namely
the Chern-Finsler connection. It is one metrical with respect to the lift of the metric
tensor gij̄ on T ′M , is of (1, 0)− type and its coefficients are given with respect to a
(c.n.c.) obtained by constraining the derivative law to an extra condition ([1]). In [11]
we proved that the Chern-Finsler (c.n.c.) actually is derived from a complex spray.

Similar reasonings lead us to a complex nonlinear connection in an R− complex
Hermitian Finsler space and then to obtaining a derivative law.

Let us consider c (t) a curve on complex manifold M and (zk (t) , ηk (t) = dzk

dt )
its extension on T ′M. The Euler-Lagrange equations with respect to a complex La-
grangian L are

(2.4)
∂L

∂zi
− d

dt

(
∂L

∂ηi

)
= 0,

where L is considered along the curve c on T ′M.
If we develop the calculus in (2.4) taking into account that L depends on the

parameter t ∈ R by means of zk (t) , ηk (t) and their conjugates, we will get

(2.5)
(

gij
d2zj

dt2
+

∂2L

∂zj∂ηi
ηj − ∂L

∂zi

)
+

(
gij̄

d2z̄j

dt2
+

∂2L

∂z̄j∂ηi
η̄j

)
= 0.

Now, following the same arguments form [13] concerning the complex geodesic
curves, we impose that both brackets in (2.5) vanish:

(2.6) gij
d2zj

dt2
+

∂2L

∂zj∂ηi
ηj − ∂L

∂zi
= 0
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and

(2.7) gij̄

d2z̄j

dt2
+

∂2L

∂z̄j∂ηi
η̄j = 0.

From the conjugate of (2.7), taking into account Proposition 2.1 ii), by direct
calculation there is obtained

(2.8)
d2zh

dt2
+ 2Gh

(
zh (t) , ηh (t)

)
= 0,

with

(2.9) Gh(z, η) =
1
2
g
¯ih

(
∂g

r̄
¯i

∂zj
η̄r +

∂g
s
¯i

∂zj
ηs

)
ηj .

Proposition 2.5. The functions Gh from (2.9) are the coefficients of a complex spray
on T ′M.

The proof consists directly checking that Gh obey the (1.2) change rule of a com-
plex spray. Then, by using the fact that any complex spray determines a (c.n.c.), it
results that a complex nonlinear connection, depending only on the complex Hermi-

tian function L, is given by
c

Nh
k = ∂Gh

∂ηk , where Gh are given in (2.9), and called the
canonical (c.n.c.). On the other hand, if we pay more attention to (2.9), this spray
comes from a (c.n.c.). Thus we may conclude

Theorem 2.6. A complex nonlinear connection for the R− complex Hermitian
Finsler space (M, F ), called the Chern-Finsler (c.n.c.), is given by

(2.10)
CF

Nh
j = g

¯ih
(

∂g
r̄
¯i

∂zj
η̄r +

∂g
s
¯i

∂zj
ηs

)
.

A similarly computation as in [1, 11] gives that the adapted frame of
CF

Nh
j (c.n.c.)

satisfies [δi, δj ] = 0.
Now, having this (2.10) (c.n.c.), our aim is to obtain a N -(c.l.c.) of Chern-Finsler

type. Let us consider the
CF

N −lift of the fundamental tensor gij̄ to the complexified
bundle TC(T ′M),

(2.11) G = gij̄dzi ⊗ dz̄j + gij̄δη
i ⊗ δη̄j .

A N -(c.l.c.) D is said to be metrical if DG = 0, that is (DXG) (Y,Z) =
X (G (Y,Z)) − G (DXY, Z) − G (Y,DXZ) = 0 for any X,Y, Z ∈ ΓTC(T ′M). Recall-
ing that the notations for the coefficients of a N − (c.l.c.) were settled at the end of
the preview section, and taking in turn X, Y, Z the adapted frame of Chern-Finsler
(c.n.c.) {δi, ∂̇i, δ¯i, ∂̇¯i}, we easily check that

Theorem 2.7. In a R− complex Hermitian Finsler space, a
CF

N −complex linear
connection, which is metrical of (1, 0)−type, is given by:

(2.12) Li
jk = gm̄iδj(gim̄) ; Ci

jk = gm̄i∂̇j(gim̄) ; Li
jk̄ = Ci

jk̄ = 0.
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The (2.12)
CF

N −(c.l.c.) will be called the Chern-Finsler connection of the R−
complex Hermitian Finsler space.

Moreover, as in [1] we prove that Li
jk = ∂Ni

k

∂ηj . Therefore, the Chern-Finsler connec-
tion of R− complex Hermitian Finsler space has some nonzero torsion and curvature
coefficients like the Chern-Finsler (c.n.c.) of a complex Finsler space, namely:

T i
jk : = Li

jk − Li
kj ; Qi

jk := Ci
jk ; Θi

jk̄ := δk̄

CF

N i
j ; Θi

jk̄ := ∂k̄

CF

N i
j ;

Ri
jhk

: = −δhLi
jk − δh(

CF

N l
k)Ci

jl ; P i
jhk

:= −δhCi
jk = Ξi

khj
;

Qi
jhk

: = ∂̇hLi
jk + ∂̇h(

CF

N l
k)Ci

jl ; Si
jhk

:= −∂̇hCi
jk = Si

khj
.(2.13)

3 Non-Hermitian metric structure on T ′M

In this section, we make a similar approach when the tensor gij is nondegen-
erate. Note that in the R− complex Hermitian Finsler case the condition (2.6) is
one algebraic, to whom we do not assign any geometrical meaning. Actually, in com-
plex Finsler geometry this ones is just the weakly Kähler condition with respect to
Chern-Finsler connection.

Definition 3.1. An R− complex non-Hermitian Finsler space is the pair (M,F )
where F satisfies the regularity condition: gij = ∂2L

∂ηi∂ηj is nondegenerated, i.e.

det (gij) 6= 0 at any point u ∈ T̃ ′M , and defines a positive definite quadratic form for
all z ∈ M .

In this circumstances the indicatrix is one strongly convex like in the real case.
Now in the non-Hermitian case we can use (2.6) with another purpose. From (2.6)

and Proposition 2.1 iii) like above, we find by direct calculation that

(3.1)
d2zh

dt2
+ 2Gh

(
zh (t) , ηh (t)

)
= 0,

with

Gh(z, η) =
1
4
gih

(
∂gri

∂zj
+

∂gji

∂zr
− ∂grj

∂zi

)
ηrηj − 1

2
gih ∂gl̄s̄

∂zi
η̄lη̄s

+gih

(
∂gis̄

∂zj
− ∂gjs̄

∂zi

)
ηj η̄s(3.2)

and a straightforward computation proves that the coefficients Gh obey the (1.2) rule,
thus:

Proposition 3.2. The functions Gh from (3.2) are the coefficients of a complex spray
on T ′M.

Following the general theory of a spray it results that
c

Nh
k = ∂Gh

∂ηk is a complex
nonlinear connection, depending only on the complex Lagrangian L. With respect to



58 Gheorghe Munteanu and Monica Purcaru

this connection, we can consider its adapted coframe
{
dzi, δηi, dz̄i, δη̄i

}
and the

c

N −
lift (or Sasaki-type lift) of gij fundamental tensor to a metric structure G on TC(T ′M)
defined by

(3.3) G = gijdzi ⊗ dzj + gijδη
i ⊗ δηj + g¯ij̄dz̄i ⊗ dz̄j + g¯ij̄δη̄

i ⊗ δη̄j .

A N−(c.l.c.) D is a metric connection with respect to the non-Hermitian metric
structure G if DG = 0.

If a N−(c.l.c.) D is metrical with respect to the non-Hermitian Sasaki-type lift G,
then the local coefficients of D connection satisfy the following system of derivations:

gijpk = 0, gij|k = 0, gijpk̄ = 0, gij|k̄ = 0.

Theorem 3.3. There exists a unique metric N−(c.l.c.) D with respect to the metrical
structure (3.3) with hT (h, h) = 0, vT (v, v) = 0 torsions and satisfying the condition

(3.4) G (DX̄Y,Z) = G (DX̄Z, Y ) ,∀X, Y, Z ∈ T ′ (T ′M) .

It has the following local coefficients:

Li
jk =

1
2
gim {δj(gkm) + δk(gjm)− δm(gjk)} ; Ci

jk =
1
2
gim∂̇j(gkm),

Li
jk̄ =

1
2
gimδk̄(gjm) ; Ci

jk̄ =
1
2
gim∂̇k̄(gjm).(3.5)

Proof. The conditions hT (h, h) = 0, vT (v, v) = 0 suggest to take D like the Levi-
Civita connection of G:

2G (DXY, Z) = X (G (Y,Z)) + Y (G (Z,X))− Z (G (X, Y ))(3.6)
+G ([X,Y ] , Z) + G ([Z, X] , Y )−G ([Y, Z] , X) ,

which is h− and v− metrical. If we take X = δk, Y = δj , Z = δi in (3.6) and
using (3.2.6) p. 43, [11], we find by a straightforward computation (3.5)1. Taking
within in (3.6): X = ∂̇k̄, Y = δi, Z = δj and using (3.4) we obtain (3.5)2. Now for
X = ∂̇k̄, Y = δj , Z = δi, and taking into account (3.4) we find (3.5)4 and finally for
X = δk̄, Y = δj , Z = δi in (3.6) we have (3.5)3.

Other nonzero torsion components of N−(c.l.c.) D from above Theorem 3.1 are:

τ i
jk̄ = Li

jk̄; Ri
jk = δjN

i
k − δkN i

j ; Θi
jk̄ = δk̄N i

j ; Υi
jk̄ = Ci

jk̄;(3.7)

Qi
jk = Ci

jk; ρi
jk̄ = ∂̇k̄N i

j ; χi
jk̄ = Ci

jk̄; P i
jk = ∂̇kN i

j − Li
kj ; Σi

jk̄ = Li
jk̄.

We note that if D is of (1, 0)−type then gij is holomorphic with respect to z and η.
The connection 1−form of the N − (c.l.c.) given in Theorem 3.1 has the following

simplified expression

ωi
j = Li

jkdzk + Li
jk̄dz̄k + Ci

jkδηk + Ci
jk̄δη̄k.

The calculus for the curvature components of the N−(c.l.c.)D is based on the local
components of the curvature given in (3.2.10), p.45, [11] and on the local coefficients
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of D given by (3.5). It is one trivial and we leave this computation as an exercise for
the reader.

We end this paper with a class of examples which prove that our study is not
trivial, per contra it illustrates the interest for such study. Consider

α2 = Re{aij(z)ηiηj + aij̄η
iη̄j} and β = Re{bi(z)ηi},

where aij(z) define a positive-definite Riemannian metric or aij̄(z) a Hermitian metric
on the complex manifold M and bi(z) is a 1−form. All R−homogenous functions F
of α2 and β define R− complex Finsler metrics. For instance F = α + β defines
R−Randers metrics, or F = α2

β defines R−Kropina metrics. Certainly, demanding
that aij̄ or aij should be nondegenerate we obtain the R− complex (α, β) spaces of
Hermitian or non-Hermitian type. A detailed study of this class of R− complex Finsler
spaces will be done in a forthcoming paper. Related results can be found in [10, 4, 6].
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