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Abstract. On a k-symplectic manifold will be defined a canonical connec-
tion which induces on the reduced manifold a canonical connection, too.
Two reduced standard k-symplectic manifolds with respect to the action
of a Lie group G are considered, and the relation between the induced
canonical connections is established.
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1 Introduction

Having a k-symplectic manifold, one can obtain, by Marsden-Weinstein reduction,
other k-symplectic manifolds. This procedure is well known and important in the
symplectic mechanics, having many applications in fluids [8], electromagnetism and
plasma physics [7], etc. We proved that under certain assumptions [2], a k-symplectic
manifold can be reduced to a k-symplectic manifold, too.

In the present paper, using a momentum map for an appropriate action of a Lie
group G on the standard k-symplectic manifold (T 1

k )∗Rn endowed with the canoni-
cal k-symplectic structure induced from (Rn, ω0) [1], we shall describe the Marsden-
Weinstein reduction in this case. Then, by the mean of a diffeomorphism between
T 1

kRn and (T 1
k )∗Rn (for instance, the Legendre transformation associated to a regular

Lagrangian), we can define a k-symplectic structure on the k-tangent bundle T 1
kRn,

that will be reduced, too. We proved that on a k-symplectic manifold, there exists a
canonical connection [3]. This canonical connection induces a canonical connection on
the reduced manifold. Finally, we shall discuss the relation between the two induced
canonical connections on the reduced manifolds.

2 k-symplectic structures

Definition 2.1. [1] A k-symplectic manifold (M,ωi, V )1≤i≤k is an (n+nk)-dimensio-
nal smooth manifold M together with k 2-forms ωi, 1 ≤ i ≤ k, and an nk-dimensional
distribution V that satisfy the conditions:
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1. ωi is closed, for every 1 ≤ i ≤ k;

2.
k⋂

i=1

ker ωi = {0};

3. ωi|V×V
= 0, for every 1 ≤ i ≤ k.

The canonical model for this structure is the k-cotangent bundle (T 1
k )∗N of an

arbitrary manifold N , which can be identified with the vector bundle J1(N,Rk)0
whose total space is the manifold of 1-jets of maps with target 0 ∈ Rk, and projection
τ∗(j1

x,0σ) = x. Identify (T 1
k )∗N with the Whitney sum of k copies of T ∗N [6],

(T 1
k )∗N ∼= T ∗N⊕ k. . . ⊕T ∗N, jx,0σ 7→ (j1

x,0σ
1, . . . , jk

x,0σ
k),

where σi = πi ◦ σ : N −→ R is the i-th component of σ. The k-symplectic struc-
ture on (T 1

k )∗N is given by ωi = (τ∗i )∗(ω0) and Vj1
x,0σ = ker(τ∗)∗(j1

x,0σ), where
τ∗i : (T 1

k )∗N −→ T ∗N is the projection on the i-th copy T ∗N of (T 1
k )∗N and ω0

is the standard symplectic structure on T ∗N .

Let (M,ωi, V )1≤i≤k be a k-symplectic manifold. Consider the bundle morphism

Ω# : T 1
k M −→ T ∗M, Ω#(X1, . . . , Xk) :=

k∑

j=1

iXj ωj .

Definition 2.2. A k-Hamiltonian system is an ordered k-tuple of vector fields
(X1, . . . , Xk) ∈ T 1

k M such that there exists a smooth function H : M −→ R, called
the Hamiltonian of (X1, . . . , Xk), with the property

(2.1) Ω#(X1, . . . , Xk) = dH.

We will denote by ((X1)H , . . . , (Xk)H) the k-Hamiltonian system corresponding to H.

Definition 2.3. A k-symplectic action of a Lie group G on M is an action Φ :
G×M −→ M such that

(2.2) (Φg)
∗
ωi = ωi, ∀ g ∈ G, ∀i ∈ 1, k,

where Φg : M −→ M, Φg(x) := Φ(g, x).
Let Gk = G× k. . . ×G and G∗k

= G∗× k. . . ×G∗, where G∗ is the dual of the Lie
algebra G of G.

Definition 2.4. A momentum map for the k-symplectic action Φ : G×M −→ M is
a map J : M −→ G∗k

defined by

(2.3) (Xi)Ĵ(ξ1,...,ξk) := (ξi)M , ∀(ξ1, . . . , ξk) ∈ Gk, ∀i ∈ 1, k,

where Ĵ(ξ1, . . . , ξk) : M −→ R, Ĵ(ξ1, . . . , ξk)(x) := J(x)(ξ1, . . . , ξk) and (ξi)M are the
fundamental vector fields on M corresponding to the elements ξi ∈ G, i ∈ {1, . . . , k}.
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For g ∈ G, define Adg
k : Gk −→ Gk, Adg

k(ξ1, . . . , ξk) := (Adgξ1, . . . , Adgξk),
where Ad : G −→ Aut(G) denotes the adjoint representation and Adg = Ad(g), and
Ad∗

k

g : G∗k −→ G∗k

, Ad∗
k

g (µ) = µ ◦Adg
k.

A momentum map J : M −→ G∗k

is called (Φ, Ad∗
k

)-equivariant if

(2.4) J(Φg(x)) = Ad∗
k

g−1J(x), ∀g ∈ G, ∀x ∈ M.

Consider G a Lie group and Φ : G × M −→ M a k-symplectic action of G

on the k-symplectic manifold (M, ωi, V )1≤i≤k. Let J : M −→ G∗k

be a (Φ, Ad∗
k

)-
equivariant momentum map for Φ and µ ∈ G∗k

a regular value of J . Then J−1(µ)
is a smooth manifold. The isotropy subgroup of µ with respect to the k-coadjoint
action, Gµ := {g ∈ G | Ad∗

k

g−1(µ) = µ} ⊂ G, leaves invariant J−1(µ). Assume that
Gµ acts freely and properly on J−1(µ). Then the quotient space Mµ := J−1(µ)/Gµ

is also a smooth manifold. A reduction type theorem for k-symplectic manifolds holds:

Theorem 2.5. [2] Under the hypotheses above, on Mµ := J−1(µ)/Gµ there exists
a unique k-symplectic structure ((ωµ)i, Vµ)1≤i≤k, such that

(2.5) πµ
∗(ωµ)i = iµ

∗ωi, ∀i ∈ 1, k,

where πµ : J−1(µ) −→ Mµ is the canonical projection and iµ : J−1(µ) −→ M the
canonical inclusion.

3 Canonical connections on k-symplectic manifolds

Let (M, ωi, V )1≤i≤k be a k-symplectic manifold. For every 1 ≤ i ≤ k, define

(3.1) Vix :=
⋂

j 6=i

ker(ωjx).

Denote by F the foliation integral to the distribution V and by Fi the foliation
integral to Vi. It follows that [3]:

(a) for each i ∈ {1, . . . , k} the distribution Vi = (Vix)x∈M is integrable;

(b) V = V1 ⊕ · · · ⊕ Vk;

(c) for each j ∈ {1, . . . , k} the map

(3.2) ij : Vj −→ (NF)∗, X 7→ iXωj

is an isomorphism, where NF denotes the normal bundle of F .

Consider Q an n-dimensional integrable distribution on M transversal to F (and
denote by G the foliation integral to Q), such that

(1) ωi (Y, Y ′) = 0 for any Y, Y ′ ∈ Γ (Q) and for every 1 ≤ i ≤ k;

(2) [X, Y ] ∈ Γ (Vi ⊕Q) for any X ∈ Γ (Vi) and for any Y ∈ Γ (Q).
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Lemma 3.1. [3] Let Y, Y ′ ∈ Γ (Q). For each j ∈ {1, . . . , k}, the map

(3.3) ψY Y ′
j : W 7→ (LY iY ′ωj) (W )

(LY iY ′ωj) (W ) = Y (ωj (Y ′,W ))− ωj (Y ′, [Y, W ]) ,

for any W ∈ Γ(TM), belongs to V ∗
j .

Theorem 3.2. [3] Let (M, ωi, V )1≤i≤k be a k-symplectic manifold and let Q be an
integrable distribution supplementary to V verifying the above conditions (1), (2) and
such that

(3.4) (i∗1)
−1(ψY Y ′

1 ) = · · · = (i∗k)−1(ψY Y ′
k )

for any Y, Y ′ ∈ Γ(Q), where ψY Y ′
1 , . . . , ψY Y ′

k are the maps defined in Lemma 3.1.
Then there exists a unique connection ∇ on M satisfying the following properties:

1. ∇Fi ⊂ Fi for each i ∈ {1, . . . , k}, and ∇Q ⊂ Q,

2. ∇ω1 = · · · = ∇ωk = 0,

3. T (X, Y ) = 0 for any X ∈ Γ (V ) and for any Y ∈ Γ (Q),

where T denotes the torsion tensor field of ∇.
Remark that the splitting

TM = V ⊕Q = V1 ⊕ · · · ⊕ Vk ⊕Q

induces a canonical isomorphism between Q and NF := TM/V , the normal bundle
to the foliation F . So, we shall define a connection ∇Vi on each subbundle Vi, a
connection ∇Q on Q and then we take the sum of these connections for defining a
global connection on M : for any V, W ∈ Γ(TM), let

(3.5) ∇V W := ∇V1
V WV1 + · · ·+∇Vk

V WVk
+∇Q

V WQ.

Proposition 3.3. [3] The connection ∇ defined in Theorem 3.2. is torsion free along
the leaves of the foliations F and G.

Proposition 3.4. [3] The curvature tensor field of the connection ∇ defined in The-
orem 3.2. vanishes along the leaves of the foliations F and G.

Generalizing the result obtained by I. Vaisman in [10], we shall give a reduction
type theorem for the canonical connection on a k-symplectic manifold as follows.

Let ∇ be the canonical connection defined in Theorem 3.2. Assume that the k-
symplectic action Φ is a ∇-affine action, that is, it preserves the connection ∇ and
that J−1(µ) is ∇-self-parallel, that is, TJ−1(µ) is preserved by ∇-parallel translations
along paths in J−1(µ).

Theorem 3.5. Let (M,ωi, V )1≤i≤k be a k-symplectic manifold on which we have a ∇-
affine k-symplectic action Φ of a Lie group G and there exists a (Φ, Ad∗

k

)-equivariant
momentum map J : M −→ G∗k

. Assume that µ ∈ G∗k

is a regular value of J and
that the isotropy group Gµ under the Ad∗

k

-action on G∗k

acts freely and properly
on J−1(µ). Assume that J−1(µ) is ∇-self-parallel. Then the canonical connection ∇
defined in Theorem 3.2. induces a canonical connection ∇µ on Mµ = J−1(µ)/Gµ.
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4 The standard k-symplectic manifolds

For an arbitrary action Φ : G × Rn → Rn of a Lie group G on Rn, define the
lifted action ΦT∗k to the standard k-symplectic manifold (T 1

k )∗Rn:

ΦT∗k : G× (T 1
k )∗Rn → (T 1

k )∗Rn,

(4.1) ΦT∗k (g, α1q, . . . , αkq) := (α1q ◦ (Φg−1)∗Φg(q)
, . . . , αkq ◦ (Φg−1)∗Φg(q)

),

g ∈ G, (α1, . . . , αk) ∈ (T 1
k )∗Rn, q ∈ Rn, which is a k-symplectic action [9] and

respectively, the lifted action ΦTk to T 1
kRn:

ΦTk : G× T 1
kRn → T 1

kRn,

(4.2) ΦTk(g, v1q, . . . , vkq) := ((Φg)∗qv1q, . . . , (Φg)∗qvkq),

g ∈ G, (v1, . . . , vk) ∈ T 1
kRn, q ∈ Rn.

If F : T 1
kRn → (T 1

k )∗Rn is a diffeomorfism, equivariant with respect to these
actions, that is ΦT∗k

g ◦F = F ◦ΦTk
g , for any g ∈ G, then by taking the pull-back of the

k-symplectic structure (ωi, V )1≤i≤k on the standard k-symplectic manifold (T 1
k )∗Rn,

we can define a k-symplectic structure ((ωF )i, VF )1≤i≤k on T 1
kRn [6]:

(ωF )i := F ∗ωi, VF := ker(πF )∗

for any 1 ≤ i ≤ k, where πF : T 1
kRn → Rn, πF (v1q, . . . , vkq) := q. Then F becomes a

symplectomorphism between (T 1
kRn, (ωF )i, VF )1≤i≤k and ((T 1

k )∗Rn, ωi, V )1≤i≤k.

On the two standard k-symplectic manifolds described above, consider the two
canonical connections ∇ on (T 1

k )∗Rn and ∇̄ on T 1
kRn which induce, naturally, on the

reduced manifolds ((T 1
k )∗Rn)µ and (T 1

kRn)µ respectively the reduced canonical con-
nections ∇µ and ∇̄µ (see Theorem 3.5.). Then we have

Proposition 4.1. The two reduced connections are connected by the relation

(4.3) [F ]∗ ◦ ∇̄µ = ∇µ ◦ ([F ]∗ × [F ]∗).

Proof. Since F is a diffeomorphism compatible with the equivalence relations that de-
fine the quotient manifolds ((T 1

k )∗Rn)µ and (T 1
kRn)µ, for any X̄, Ȳ ∈ Γ(T (((T 1

k )Rn)µ)),
if πTk and πT∗k denote the canonical projections, we obtain:

(∇µ ◦ ([F ]∗ × [F ]∗))(X̄, Ȳ ) = ∇µ(([F ]∗ ◦ πTk∗ )(X), ([F ]∗ ◦ πTk∗ )(Y ))

= ∇µ((πT∗k∗ ◦ F∗)(X), (πT∗k∗ ◦ F∗)(Y ))

= (∇µ ◦ (πT∗k∗ × π
T∗k∗ ))(F∗(X), F∗(Y ))

= (πT∗k∗ ◦ ∇)(F∗(X), F∗(Y ))

= (πT∗k∗ ◦ ∇ ◦ (F∗ × F∗))(X,Y )

= (πT∗k∗ ◦ F∗ ◦ ∇̄)(X, Y )
= ([F ]∗ ◦ πTk∗ ◦ ∇̄)(X,Y )
= ([F ]∗ ◦ ∇̄µ ◦ (πTk∗ × πTk∗ ))(X, Y )
= ([F ]∗ ◦ ∇̄µ)(X̄, Ȳ ). ¤
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