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Abstract. The geometric category of a space was defined by R. H. Fox
and it is a generalization of the Lusternik-Schnirelmann category. In the
first part of this paper we give a characterization theorem of geometric
category. Then we prove the product inequality and give some examples.
In the last part of the paper we introduce the relative geometric category
and we study some of its properties.
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1 Introduction

The Lusternik-Schnirelmann category of a topological space X is the minimal number
n with the property that there exists a covering U1, U2, . . . , Un of X such that Ui,
i = 1, n, are open and contractible in X. Denote cat(X) = n. If such a covering
does not exist, define cat(X) = ∞. If Y is a subspace of X, then the Lusternik-
Schnirelmann category of Y in X is the minimal n with the property that there exists
a covering U1, U2, . . . , Un of Y in X such that all Ui are open and contractible in X.
Denote cat(Y, X) = n. If such a covering does not exist, define cat(Y, X) = ∞. For
Y = f¡ , take cat(Y, X) = 0. Remark that cat(X, X) = cat(X).

This homotopy invariant was defined by L. Lusternik and L. Schnirelmann in
[17] over 70’s years ago in order to provide a lower bound on the number of critical
points for any smooth function on a manifold and used to prove the famous theorem
concerning the existence of at least three closed geodesics on a sphere.

It is important to emphasize that Lusternik-Schnirelmann category, together with
its generalizations, is still intensively studied and applied in modern domains, such
as topology of manifolds, topological robotics or complexity of algorithms, see [1]-[4],
[12], [13], [20] and [23].

A natural extension of Lusternik-Schnirelmann category is the geometric cate-
gory; instead of subsets contractible in X, we take selfcontractible subsets. The origin
of this definition can be found in the paper [15] of R. H. Fox. The author gave a
characterization theorem of Lusternik-Schnirelmann category by using the notion of
categorical sequence: if Y is a subspace of X, then a categorical sequence for Y in
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X is a family of subsets Y1, Y2, . . . , Yk of X such that Y1 ⊂ Y2 ⊂ . . . ⊂ Yk = Y and
Y1, Y2 \Y1, . . . , Yk \Yk−1 are contained in open subsets of X which are contractible in
X. k is called the length of the categorical sequence. Let X be a path-connected sepa-
rable metric space and Y a subspace of X such that cat(Y, X) < ∞. Then cat(Y, X)
is the minimum length of all categorical sequences of Y in X.

In the first part of this paper we define the categorical sequence corresponding to
geometric category and we prove a Fox type theorem. Then we obtain the product
type inequality for geometric category. In the last part we define the relative geometric
category and establish its basic properties.

2 g-categorical sequences

For a topological space X it is natural to consider covers with subsets contractible in
themselves. We call such subsets selfcontractible. What we obtain is called geometric
category. This variant of category has the origin in the above cited paper of Fox [15].

Definition 2.1. Let X be a topological space. The geometric category of X, gcat(X),
is the minimal number n such that there exists a covering of X with n open and
selfcontractible subsets.

For any space X we have cat(X) ≤ gcat(X), any selfcontractible subset of X being
contractible in X. An example of space whose geometric category does not coincide
with its Lusternik-Schnirelmann category is S2/{three points} and it is given in [15].
It is proved that cat(S2/{three points}) = 2 and gcat(S2/{three points}) = 3. In
fact, in [7] M. Clapp and L. Montejano were able to construct for every integer n a
polyhedron Kn with the property that gcat(Kn) − cat(Kn) ≥ n. See also [18], [19]
and [6]. On the other hand, S2 ∨ S1 ∨ S1 and S2/{three points} are homotopically
equivalent, but gcat(S2 ∨ S1 ∨ S1) = 2. See [15] and [9]. Moreover, the poliedra Kn

have the additional property that gcat(Kn)− gcat(Kn × I) ≥ n. This fact prove that
the geometric category is not a homotopy invariant and make the geometric category
difficult to use. A possibility to obtain a homotopy invariant in this case is to consider
the minimal value of the geometric category for all spaces Y which are homotopically
equivalent with X. Then we get the strong category, Cat(X), introduced by T. Ganea
in [16].

Our first result gives a particular covering for any topological space X with finite
geometric category. We need the following lemma, which follows from Definition 2.1.

Lemma 2.2. For any subspaces X and Y of a topological space, the inequality

gcat(X ∪ Y ) ≤ gcat(X) + gcat(Y )

is satisfied.

Proposition 2.3. Let X be a topological space. If gcat(X) = n, there exists a covering
of X by n pairwise disjoint subsets of X such that any subset is contained in some
selfcontractible subset of X.

Proof. We prove the assertion by induction relative to n. The case n = 1 is obvious.
Assume gcat(X) = 2. Then X = U1 ∪ U2, where U1 and U2 are selfcontractible.



36 G. Cicortaş

Take Ũ1 = U1 and Ũ2 = U2 \ U1. Now let the assertion be true for gcat(X) ≤ k − 1
and prove it for gcat(X) = k. Take X = U1 ∪ U2 ∪ . . . ∪ Uk, where U1, U2, . . . , Uk

are selfcontractible. Define X̃ = U2 ∪ . . . ∪ Uk. By Lemma 2.2, we have gcat(X) ≤
gcat(U1) + gcat(X̃) = 1 + gcat(X̃) and gcat(X̃) ≥ k − 1. Assume now that we have
gcat(X̃) < k − 1; we obtain gcat(X) ≤ gcat(U1) + gcat(X̃) < k, contradiction. It
follows that gcat(X̃) = k. By the induction hypothesis, there exist Ũ2, . . . , Ũk pairwise
disjoint contained in selfcontractible subsets of X such that X̃ = Ũ2 ∪ . . .∪ Ũk. Then
take Ũ1 = U1 \ X̃.

Definition 2.4. We call a g-categorical sequence of length k for X a family
X1, X2, . . . , Xk of subsets of X having the following properties:
(i) X1 ⊂ X2 ⊂ . . . ⊂ Xk = X;
(ii) X1, X2 \X1, . . . , Xk \Xk−1 are contained in open selfcontractible subsets of X.

We give now a characterization of geometric category by using g-categorical se-
quences. More precisely, we prove a generalization of [15, Theorem 5.1].

Theorem 2.5. Let X be a topological space such that gcat(X) < ∞. Then gcat(X)
is the minimum length of all g-categorical sequences of X.

Proof. Let X1, X2, . . . , Xk be a g-categorical sequence of X. We prove that gcat(X) ≤
k by induction. For k = 1 it is true. Assume the assertion true for gcat(X) ≤ k − 1.
Because the family X2 \X1, . . . , Xk \X1 satisfy the Definition 2.4, it is a g-categorical
sequence of X \X1. From the induction hypothesis we have gcat(X \X1) ≤ k−1. We
apply the subadditivity property for geometric category and the inequality gcat(X) ≤
gcat(X \ X1) + gcat(X1) ≤ k follows. Conversely, assume that gcat(X) = k and
prove the existence of a g-categorical sequence of X with length k. Let U1, . . . , Uk

open and selfcontractible subsets of X such that X = U1 ∪ . . . ∪ Uk. We can take
X1 = U1, X2 = U1 ∪ U2, . . . , Xk = U1 ∪ . . . ∪ Uk. Remark that X1, X2, . . . , Xk is a
g-categorical sequence of X.

3 The product inequality for geometric category

We give a method to compute the geometric category for product spaces. For this,
we follow the standard construction introduced in [15] for Lusternik-Schnirelmann
category. See [22] and [8] for some generalizations.

Recall that a space is completely normal if any subsets A,B such that A∩B = f¡
and A ∩ B = f¡ have open and disjoint neighborhoods, which means that every
subspace of the space is normal. Metric spaces and CW -complexes are completely
normal. See [10].

The main result of this section uses the following lemma, which can be proved as
in [15].

Lemma 3.1. Let X be a completely normal space and A,B ⊂ X. If A and B are
open and disjoint in their union, then

gcat(A ∪B) = max{gcat(A), gcat(B)}.
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Theorem 3.2. For any two path-connected spaces X and Y such that X × Y is com-
pletely normal, the following inequality is satisfied:

gcat(X × Y ) ≤ gcat(X) + gcat(Y )− 1.

Proof. Denote gcat(X) = m and gcat(Y ) = n. Then there exist g-categorical se-
quences of X respectively Y, say X1, X2, . . . , Xm and Y1, Y2, . . . , Yn. Define Ak =⋃
i+j=k+1

Xi × Yj and remark that Ak+1 \Ak =
⋃

i+j=k+2

(Xi \Xi−1)× (Yj \ Yj−1). Any

Xi\Xi−1, Yj\Yj−1 is contained in a selfcontractible subset of X respectively Y and any
two sets of the above union are disjoint. By applying Lemma 3.1, it follows that any
Ak+1\Ak is contained in a selfcontractible subset of X×Y. Then A1, A2, . . . , Am+n−1

is a g-categorical sequence for X × Y and gcat(X × Y ) ≤ m + n− 1.

Remark 3.3. For X1, . . . , Xn path-connected spaces, Theorem 3.2 implies

gcat(X1 × . . .×Xn) ≤
n∑

i=1

gcat(Xi)− n + 1.

Remark 3.4. We have the following inequality:

gcat(X × Y ) ≥ max{gcat(X), gcat(Y )}.
The proof is similar to its classical Lusternik-Schnirelmann counterpart, established
in [15].

Denote the cohomology ring of a space X with some chosen coefficients R by
H∗(X, R) and the reduced cohomology by H̃∗(X, R).

Definition 3.5. The cuplength of X with coefficients in R is the least integer k (or
∞) such that all (k + 1)-fold cup products vanish in the reduced cohomology. Denote
this number by cup-lengthR(X) or, simply, by cup-length(X).

The cuplength of a space is useful in order to estimate from below the Lusternik-
Schnirelmann category of the space:

Theorem 3.6. ([5]) The following inequality holds for any R :

1 + cup-lengthR(X) ≤ cat(X).

Remark 3.7. Theorem 3.6 gives a lower bound for geometric category:

1 + cup-lengthR(X) ≤ cat(X) ≤ gcat(X).

We need the following property of cuplength:

Proposition 3.8. ([14]) If X and Y are topological spaces, then

cup-length(X × Y ) ≥ cup-length(X) + cup-length(Y ).

Example 3.9. The sphere Sn can be covered by two hemispheres extended to open
sets. Any hemisphere being selfcontractible, it follows that gcat(Sn) ≤ 2. On the
other hand, it is known that cup-lengthZ(Sn) = 1. Theorem 3.6 implies gcat(Sn) ≥
cat(Sn) ≥ 2. Then gcat(Sn) = cat(Sn) = 2.
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Example 3.10. The torus Tn has the cohomology ring H∗(Tn, Q) an exterior algebra
with n generators; then cup-lengthQ(Tn) = n. The Remarks 3.3 and 3.7 give: n+1 ≤
cat(Tn) ≤ gcat(Tn) ≤ ngcat(S1)− n + 1 = n + 1 and gcat(Tn) = n + 1.

Example 3.11. We prove that gcat(Sn×T k) = 2 + k. Theorem 3.2 implies gcat(Sn×
T k) ≤ gcat(Sn)+gcat(T k)−1 = 2+k. By Proposition 3.8 and Remark 3.7 we obtain
gcat(Sn × T k) ≥ cat(Sn × T k) ≥ 1 + cup-length(Sn) + cup-length(T k) = 2 + k.

Example 3.12. The above arguments give gcat(Sn×Sk) ≤ gcat(Sn)+gcat(Sk)−1 = 3
and gcat(Sn×Sk) ≥ cat(Sn×Sk) ≥ 1 + cup-length(Sn) + cup-length(Sk) = 3. Then
gcat(Sn × Sk) = 3.

4 Relative geometric category

Let X be a topological space and Y a subspace of X. Let A 6= f¡ be closed in X such
that A ⊂ Y. We say that a subset U of X containing A is categorical relative to A in X
if j ◦ ρ = i up to a homotopy for some ρ : (U,A) → (A,A), where i : (U,A) ↪→ (X,A)
and j : (A, A) ↪→ (X, A) are inclusions, i.e. U is deformable in X into A relative to A.

In accordance with E. Fadell [11], the category of Y in X relative to A, denoted
catA(Y, X), is the minimal number n with the property that there exists a covering
U0, U1, . . . , Un of Y in X such that U0 is open and categorical relative to A in X
and Ui, i = 1, n, are open and contractible in X. If such a covering does not exist,
define catA(Y, X) = ∞. If A = f¡ we take U0 = f¡ and catA(Y, X) = cat(Y,X).
The category of X relative to A is defined by catA(X, X) = catA(X). For any pair
(X,A) we have cat(X) ≥ catA(X).

We mention that if (X, A) is an ANR pair, then this is a minor variation of the
definition given by M. Reeken in [21].

It is natural to define the relative geometric category. For this purpose, we fix a
topological space X and a closed nonempty subset A of X.

Definition 4.1. The geometric category of X relative to A is the minimal number
n such that X = U0 ∪ U1 ∪ . . . ∪ Un, where U0 is categorical in X relative to A and
Ui, i = 1, n, are open in X and selfcontractible. Denote it by gcatA(X). If such a
covering does not exist, define gcatA(X) = ∞.

Remark 4.2. If A = f¡ , take U0 = f¡ and gcat f¡ (X) = gcat(X).

Remark 4.3. In fact, E. Fadell [11] gave two definitions of relative category, but for
relative geometric category it is not possible to do this. By denoting cat∗A(X) = n
if X = U1 ∪ . . . ∪ Un, each Ui being categorical relative to A in X and n minimal
with this property, it is obvious that the corresponding relative geometric category,
say gcat∗A(X), coincides with cat∗A(X).

We give now some basic properties of relative geometric category.

Proposition 4.4. Let X and Y be subspaces of a topological space and f¡ 6= A ⊂ X
be closed.
(i) The following subadditivity property holds: gcatA(X ∪ Y ) ≤ gcatA(X) + gcat(Y ).
(ii) (Monotonicity property) If X ⊂ Y, then gcatA(X) ≤ gcatA(Y ).
(iii) If X ⊂ Y, then gcat(Y \X) ≥ gcatA(Y )− gcatA(X).
(iv) The following inequalities hold: catA(X) ≤ gcatA(X) ≤ gcat(X).
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Proof. (i) Assume gcatA(X) = m and gcat(Y ) = n. Then we can write X = U0 ∪
U1 ∪ . . . ∪ Um, Y = V1 ∪ . . . ∪ Vn, U0 categorical relative to A in X and Ui, i =
1,m, Vj , j = 1, n open in X respectively Y and selfcontractible. The covering
{U0, U1, . . . , Um, V1, . . . , Vn} of X ∪ Y satisfy the Definition 4.1 and we deduce that
gcatA(X ∪ Y ) ≤ m + n. (ii) and (iii) are obvious. (iv) Because any selfcontractible
subset of X is contractible in X, it follows the first inequality. By applying (i) the
second part is obtained.

Proposition 4.5. If h : X → Y is a homeomorphism and f¡ 6= A ⊂ X is closed,
then gcatA(X) = gcath(A)(Y ).

Proof. Consider {Ui}i=0,n a covering of X as in Definition 4.1. Then {h(Ui)}i=0,n is
a corresponding covering of Y and gcath(A)(Y ) ≤ gcatA(X). Conversely, let {Vi}i=0,n

be a covering of Y as in Definition 4.1 and consider {h−1(Vi)}i=0,n the corresponding
covering of X.

Remark 4.6. Examples given by R. H. Fox in [15] and M. Clapp, L. Montejano in
[7] together with Remark 4.2 prove that the relative geometric category cannot be a
homotopy invariant.

We define now the relative g-categorical sequences:

Definition 4.7. We call a g-categorical sequence of length k for X, relative to a
closed subset A, a family X0, X1, X2, . . . , Xk of subsets of X having the following
properties:
(i) X0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xk = X;
(ii) X0 is categorical relative to A in X;
(iii) X1 \X0, . . . , Xk \Xk−1 are contained in open selfcontractible subsets of X.

We prove now the result which corresponds to Proposition 2.3:

Proposition 4.8. Let X be a topological space and A a closed subset of X such
that gcatA(X) = n. Then there exists a covering of X by n + 1 pairwise disjoint
subsets of X, one of them being categorical relative to A in X and n being contained
in selfcontractible subsets of X.

Proof. For n = 1 there exist U0, U1 such that X = U0 ∪ U1, where U0 is categorical
relative to A in X and U1 is selfcontractible. Take Ũ0 = U0 and Ũ1 = U1 \ U0.
Assume the assertion true for gcatA(X) ≤ k−1 and prove it for gcatA(X) = k. Write
X = U0 ∪U1 ∪ . . .∪Uk, where U0 is categorical relative to A in X and U1, U2, . . . , Uk

are contained in selfcontractible subsets of X. Take X̃ = U0 ∪ U2 ∪ . . . ∪ Uk; then
gcatA(X̃) = k − 1. The induction hypothesis ensures the existence of a covering
Ũ0, Ũ2, . . . , Ũk of X̃ which contains only pairwise disjoint subsets of X, with the
property that Ũ0 is categorical relative to A in X and Ũ2, . . . , Ũk are contained in
selfcontractible subsets of X. Take Ũ1 = U1 \ X̃.

We establish now the characterization of relative geometric category by using
relative g-categorical sequences:

Theorem 4.9. Let X be a topological space and let A be a closed subset of X. Assume
gcatA(X) < ∞. Then gcatA(X) is the minimum length of all g-categorical sequences
of X relative to A.
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Proof. Let X0, X1, . . . , Xk be a g-categorical sequence of X relative to A. We prove
that gcatA(X) ≤ k by induction. For k = 0 it is true. Assume the assertion true for
gcatA(X) ≤ k−1. Remark that X1\X0, X2\X0, . . . , Xk\X0 is a g-categorical sequence
of X\X0. Then, by using Theorem 2.5, we obtain gcat(X\X0) ≤ k. Proposition 4.4 (i)
implies gcatA(X) ≤ gcat(X \X0) + gcatA(X0) ≤ k. Assume now that gcatA(X) = k
and justify the existence of a g-categorical sequence of X relative to A, such that its
length equals k. Let U0, U1, . . . , Uk such that X = U0 ∪ U1 ∪ . . . ∪ Uk, where U0 is
categorical in X relative to A and Ui, i = 1, k are open and selfcontractible subsets
of X. Define X0 = U0, X1 = U0 ∪ U1, . . . , Xk = U0 ∪ . . . Uk. Then X0, X1, . . . , Xk is a
g-categorical sequence of X relative to A.

Example 4.10. Let X be the 2-torrus T 2 and A = S1 ⊂ T 2 be the inner meridian of
X. There is a covering U0, U1, U2 of X such that U0 is categorical relative to S1 and
U1, U2 are selfcontractible. Then gcatS1(T 2) = 2. Take X0 = U0, X1 = U0 ∪ U1 and
X2 = U0 ∪ U1 ∪ U2 = T 2. Then X0, X1, X2 is a g-categorical sequence of T 2 relative
to S1 of length 2.

Finally, remark that a product type inequality for relative geometric category can
be proved by using the Theorem 4.9 in the same way as in Theorem 3.2.

Theorem 4.11. For any two path-connected spaces X and Y such that X × Y is
completely normal, for any A 6= f¡ closed in X and B 6= f¡ closed in Y, the following
inequality is satisfied:

gcatA×B(X × Y ) ≤ gcatA(X) + gcatB(Y )− 1.
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