
On some pseudo-symmetric Riemann spaces
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Abstract. Let (M, g) be a Riemannian manifold. It is called pseudo-
symmetric if at every point of M the tensor R·R and the Tachibana tensor
Q(g, R) are linearly dependent. Any semi-symmetric manifold (R ·R = 0)
is pseudo-symmetric. This general notion arose during the study of totally
umbilical submanifolds of semi-symmetric spaces, as well as during the
consideration of geodesic mappings.

We continue the study in this direction, considering subgeodesic map-
pings, which are a natural generalization of geodesic mappings on Rie-
mannian manifolds. We study ξ-subgeodesically related spaces, extend-
ing some known results concerning pseudo-symmetric spaces admitting
geodesic mappings. Conharmonic semi-symmetric spaces geodesically re-
lated are also characterized.
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1 Classes of Riemannian manifolds

Let (M, g) be a Riemann manifold. The notion of pseudo-symmetry [10] is a
natural generalization of semi-symmetry [14], [2] along the line of spaces of constant
sectional curvature and locally symmetric spaces.

R0 ⊂ R1 ⊂ R2 ⊂ R3,

where R0 is the class of constant sectional curvature Riemann spaces,
R1 is the class of locally symmetric Riemann spaces (i.e. ∇R = 0),
R2 is the class of semi-symmetric Riemann spaces (i.e. R ·R = 0),
R3 is the class of pseudo-symmetric Riemann spaces (i.e. R ·R = LQ(g, R)).

Remark A. Let T ∈ T 0,kM. We define R · T,Q(g, T ) ∈ T 0,k+2M, by

(R · T )(X1, . . . , Xk; X, Y ) = (R(X, Y ) · T )(X1, . . . , Xk) =
= −T (R(X, Y )X1, . . . , Xk)− · · · − T (X1, . . . , R(X, Y )Xk).

∗Balkan Journal of Geometry and Its Applications, Vol.14, No.2, 2009, pp. 42-49.
c© Balkan Society of Geometers, Geometry Balkan Press 2009.



On some pseudo-symmetric Riemann spaces 43

Q(g, T )(X1, . . . , Xk;X,Y ) = −((X ∧ Y ) · T )(X1, . . . , Xk) =
= T ((X ∧ Y )X1, . . . , Xk) + · · ·+ T (X1, . . . , (X ∧ Y )Xk),

where (X ∧g Y )U = g(U, Y )X − g(U,X)Y.

Remark B. The class R2 of semi-symmetric spaces was introduced by E. Cartan.
These spaces were classified by Z.I. Szabo [11] and semi-symmetric hypersurfaces in
En+1 were studied by K.Nomizu.

a) It is clear that any semi-symmetric manifold (R·R = 0) is Ricci semi-symmetric
(R · S = 0).

b)(Open Problem) It is a long standing question whether these notions are equiv-
alent for hypersurfaces of Euclidean spaces.

c) Ricci semi-symmetric hypersurfaces of Euclidean spaces (n > 3), with positive
scalar curvature are semi-symmetric.

d) Both properties are equivalent for hypersurfaces of Euclidean space En+1(n >
3), under the additional global condition of completness.

The class R3 of pseudo-symmetric manifolds (i.e. R · R and Q(g, R) are linearly
dependent) arose:

I) during the study of totally umbilical submanifolds in semi-symmetric manifolds
[4], [5], [6]:

Theorem A. Let Mn ⊂ M
n+1

be a totally umbilical hypersurface. If M
n+1

is
semi-symmetric then M is conformally flat or is a pseudo-symmetric space.

Theorem B. The hypersurface M ⊂ En+1, n ≥ 3, is pseudo-symmetric if and
only if the shape operator has one of the following forms:

1) 0n;

2) λIn, λ 6= 0;

3) λI1 ⊕ 0n−1, λ 6= 0;

4) λIk ⊕ 0n−k, λ 6= 0, k > 1;

5) λI1 ⊕ µI1 ⊕ 0n−2, λµ 6= 0;

6) λI1 ⊕ µIn−1, λµ 6= 0;

7) λIk ⊕ µIn−k, λµ 6= 0, k > 1.

II) during the study of geodesic and subgeodesic mappings:

Remark C.
a) Let ξ ∈ X (M). A diffeomorphism f : Vn = (M, g) 7→ V n = (M, ḡ) is called

ξ− subgeodesic mapping if maps ξ− subgeodesics into ξ− subgeodesics, where ξ−
subgeodesics on M are given by the following equations:

d2xi

dt2
+ Γi

jk

dxk

dt

dxj

dt
= a

dxi

dt
+ bξi, ξi = gijξj , a, b ∈ F(M).

b) There exists a ξ− subgeodesic mapping f if and only if the Yano formulae are
satisfied
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∇XY = ∇XY + ψ(X)Y + ψ(Y )X − g(X, Y )ξ, ψ ∈ ∧1(M).

c) f is called nontrivial if ψi − ξi 6= 0, ∀i ∈ {1, . . . n}.
d) There exists f geodesic mapping (i.e. ξ = 0 ) if and only if the Weyl formulae

are satisfied
∇XY = ∇XY + ψ(X)Y + ψ(Y )X.

e) The geodesic correspondence is special if ψij = fgij , where

ψij = ψi,j − ψiψj , f ∈ F(M).

Example.

Let Vn = (M, g), V n = (M, ḡ) be geodesically related Riemann spaces, where one
considers the warped product [12] M = (a, b) × F M̃ of an open interval (a, b) of Rn

and of a Riemann space of constant sectional curvature (M̃n−1, g̃). Let F : (a, b) 7→ R
be a positive differentiable function. The geodesically related metrics are defined in
the following manner [5] 




g11 = ε ∈ {−1, 1}
gαβ = F g̃αβ

g1α = 0.




ḡ11 =
c

(F + d)2

ḡαβ = εF
cF

d(f + d)
g̃αβ

ḡ1α = 0.

Also one has 



ψ1 =
−1
2

F ′

F + d
ψα = 0,

c, d ∈ R∗, α, β = 2, n.





L =
ε

2F
(F”− (F ′)2

2F
)

L̄ =
d2

2cF
(F”− (F ′)2

2F
) +

d

2c
(F”− (F ′)2

F
).

One can take, for example, F (x1) = (kx1 + d)2. So, L = 0, L̄ = −dk2

c
.

Theorem C. [4] Let (M, g) be a pseudo-symmetric manifold admitting a nontriv-
ial geodesic mapping f on (M, ḡ). Then (M, ḡ) is also a pseudo-symmetric space.

Remark D. We should point out that one can consider the general context of
pseudo-Riemannian case.

Many spacetimes (Robertson-Walker, Schwarzchild, Einstein-de Sitter etc) are
pseudo-symmetric and those which are not pseudo-symmetric verify certain condi-
tions of pseudo-symmetric type [6].

Extensive literature concerning similar problems for Einstein equations, PDE’s
and integral equations can be mentioned from different perspectives [1], [3], [7], [13].
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2 Conharmonic semi-symmetric spaces

Let Vn = (M, g) be a Riemann space, n ≥ 3. The conharmonic curvature tensor C is
defined by

C(X, Y )Z = R(X, Y )Z − 1
n− 2

{(AX ∧ Y )Z + (X ∧AY )Z},

where A is the symmetric endomorphism of the tangent space at each point of the
manifold corresponding to the Ricci tensor S, i.e. g(AX, Y ) = S(X, Y ).

Let ξ ∈ X (M). The conformal transformation

g 7→ g̃ = e2ug, u ∈ F(M),
∂u

∂xi
= ξi = gijξ

j

is called a conharmonic transformation if ξhk = 0, where
ξhk = ξh,k − ξhξk + 1

2ξiξ
ighk.

The conharmonic curvature tensor is invariant under these transformations.
The conharmonic curvature tensor has been introduced by Y. Ishii and character-

izes conformally flat spaces with vanishing scalar curvature, if it vanishes identically.
The space Vn is called conharmonic semi-symmetric if R · C = 0.
Our aim is to characterize conharmonic semi-symmetric spaces geodesically re-

lated.

Theorem 2.1. Let Vn = (M, g) and V n = (M, g), n ≥ 3, be two nontrivial geodesi-
cally related Riemann spaces.

If V n is C-semi-symmetric, then Vn and V n are spaces with constant sectional
curvature or are special geodesically related.

Proof. Vn is C-semi-symmetric.
Then (R · C)h

ijkrm = C
i

jkh;sm − C
i

jkh;ms = 0.
Contracting this relation with gkr one gets

(2.1)

gkr(Rs
ikjRhsmr + Rs

imrRhsjk + Rs
jmrRhisk+

+Rs
kmrRhijs) + Rs

ihjΨsm − ghmgkrRs
ikjΨsr+

+ΨimSjh −ΨisR
s
jmh + ΨjsR

s
imh − gjhgkrΨskRs

imr−
−ΨjsR

s
mih + ΨisR

s
jmh + ΨmsR

s
jih − fRhijm − gjhΨisg

srSrm = 0,

where f = gijΨij .
Summing the above equation with the same obtained interchanging the indices h

and i, we obtain

(2.2)

ΨsmRs
ihj + ΨsmRs

hij − ghmgkrΨsrR
s
ikj − ψsrgimgkrRs

hkj+
+SjhΨim + SijΨmh + ΨjsR

s
imh + ΨjsR

s
hmi−

−gjhgkrΨksR
s
imr − gijg

krΨksR
s
hmr − gjhΨisg

srSrm−
−gijΨhsSrm = 0.

Summing the relation (2.2) with the same equation obtained permuting the indices j
with m, we have

(2.3)
SjhΨim + SijΨhm − gjhΨisA

s
m + ShmΨij − gijΨshAs

m+
+SimΨhj − gmhΨisA

s
j − gimΨshAs

j = 0.
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After a contraction of (2.3) with gij , we get the equation

(2.4) (n + 1)ΨhsA
s
m − ρΨhm − fShm + ghmΨsrS

sr −ΨsmAs
h = 0,

where Sij = girAj
r, ρ = gijSij . From (2.4) we obtain

(2.5) ρf = nSijΨij .

The relations (2.5) and (2.3) lead to

(2.6) ΨshAs
m =

f

n
Smh − fρ

n2
gmh +

ρ

n
Ψmh = ΨsmAs

h.

Using (2.6), the relation (2.3) becomes

(fghm − nΨhm)(nSij − ρgij) + (fgij − nΨij)(nShm − ρghm)+

+(fgjm − nΨjm)(nSih − ρgih) + (fgih − nΨih)(nSjm − ρgjm) = 0.

We obtain (Ψij − f
ngij)(Shm − ρ

nghm) = 0. Hence the correspondence is special or
the space Vn is Einstein. In the second case one has

Ψir − f

n
gir = 0 or Pijkh = 0,

where P is the projective Weyl curvature tensor [9], [8]. Vn being an Einstein space,
if P = 0 then Vn becomes a space with constant curvature. Hence, Vn and Vn are
spaces with constant curvature, using the Beltrami theorem. 2

Theorem 2.2. Let Vn = (M, g) and V n = (M, g), n ≥ 3, be two nontrivial geodesi-
cally related Riemann spaces. If V n is C-semi-symmetric, with irreducible curvature
tensor, then Vn and V n are spaces with constant sectional curvature.

Proof. If Vn and Vn are two special geodesically related Riemannian spaces then

R
i

jkh = Ri
jkh + f(δi

hgjk − δi
kgjh), where Ψij = fgij .

The above relation leads to

gisR
s

jkh + gjsR
s

ikh = 0

The space Vn being with irreducible curvature tensor, then the system

(2.7) xisR
s

jkh + xjsR
s

ikh = 0

has an unique solution, abstraction a factor. Because gij and gij are solutions of the
system (2.7) we obtain gij = e2ugij , where u is a function with variables x1, ..., xn. Vn

and Vn being geodesically related, we have u = ct. and we obtain
∣∣∣∣

i
j k

∣∣∣∣ =
∣∣∣∣

i
j k

∣∣∣∣.
Then δi

jΨk + δi
kΨj = 0 and Ψk = 0. Using the previous result, the theorem is proved.

2



On some pseudo-symmetric Riemann spaces 47

The relation between the subgeodesic correspondence and the conformal related
spaces leads to the

Theorem 2.3. Let Vn = (M, g) and V n = (M, g), n ≥ 3, be two nontrivial ξ-
subgeodesically related Riemann spaces. If V n is C-semi-symmetric, with irreducible
curvature tensor, then V n and Ṽn = (M, g̃ = e2ug) are spaces with constant sectional
curvature.

Proof. Vn and Vn being subgeodesically related, we have
∣∣∣∣

i
j k

∣∣∣∣ =
∣∣∣∣

i
j k

∣∣∣∣ + δi
jΨk + δi

kΨj − gjkξi.

Because Vn and Ṽn are conformally related, the Christoffel symbols are trans-
formed by

˜∣∣∣∣
i
j k

∣∣∣∣ =
∣∣∣∣

i
j k

∣∣∣∣ + δi
jξk + δi

kξj − gjkξi.

Then we have
∣∣∣∣

i
j k

∣∣∣∣ =
˜∣∣∣∣
i
j k

∣∣∣∣ + δi
jωk + δi

kωj , where ωk = Ψk − ξk.

So, Vn and Ṽn are non-trivial geodesically related. Applying the previous theorem
for spaces Vn and Ṽn, we obtain the conclusion. 2

3 Pseudo-symmetric subgeodesically
related Riemann spaces

One can obtain certain conditions of pseudo-symmetric type for ξ−subgeodesically
related spaces:

Theorem 3.1. Let Vn = (M, g) and V n = (M, ḡ), n ≥ 3, be nontrivial ξ-
subgeodesically related Riemann spaces.

Then
R · g = Q(g, F ),

where
Fij = ξi;j − ψi;j − (ξi − ψi)(ξj − ψj).

Proof. Using the Yano formulae, we get

gjk;ir = −2Ψi;rgjk − (Ψj;r − ξj;r)gik − (Ψk;r − ξk;r)gij−

−2Ψi [−2Ψrgjk − (Ψj − ξj)grk − (Ψk − ξk)grj ]−
−(Ψj − ξj) [−2Ψrgik − (Ψi − ξi)grk − (Ψk − ξk)gir]−
−(Ψk − ξk) [−2Ψrgij − (Ψj − ξj)gri − (Ψi − ξi)grj ] .

Hence
(R · g)jkri = gjk;ir − gjk;ri = Q(g, F )jkri,

where Fij = ξi;j −Ψi;j − (ξi −Ψi)(ξj −Ψj). 2
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Theorem 3.2. Let Vn = (M, g) and V n = (M, ḡ), n ≥ 3, be nontrivial ξ-
subgeodesically related Riemann spaces.

Let V n = (M, ḡ) be a pseudo-symmetric space such that

R ·R = LQ(g, R),

where L is constant on the set U = {x ∈ M | Z 6= 0 at x},Z being the concircular
curvature tensor.

If F = fg + hg, f, h ∈ F(M), then spaces are conformally related or L = h on U .
Proof. Because F = fg + hg, using the previous theorem, we have R · g =

Q(g, −hg).
The tensor E = −hg − Lg satisfies on U the relation

E − 1
n

(gijEij)g = 0.

This condition is equivalent [5] with

(L + h)
[
g − 1

n
(gijgij)g

]
= 0

on U. 2

Conjectures:

Let Vn = (M, g) and V n = (M, g), n ≥ 3, be nontrivial geodesically or ξ -
subgeodesically related Riemann spaces.

If V n is conharmonic pseudo-symmetric (i.e. R · C = LQ(g, C)) then
a) Vn is conharmonic pseudo-symmetric (i.e. R · C = LQ(g, C));
b) both spaces have constant sectional curvature.
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University of Bucharest
Faculty of Mathematics and Informatics
Department of Geometry, 14 Academiei Str.
RO-010014, Bucharest 1, Romania.
e-mail: ihirica@fmi.unibuc.ro


