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Abstract. The symmetry analysis for Laplace equation on cylinder is
considered. Symmetry algebra, the structure of the Lie algebra of the sym-
metries and some related topics such as invariant solutions, one-parameter
subgroups, one dimensional optimal system and differential invariants are
given.
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1 Introduction

Pierre-Simon, marquis de Laplace (March 23, 1749 - March 5, 1827) was a French
mathematician and astronomer whose work was pivotal to the development of math-
ematical astronomy. He summarized and extended the work of his predecessors in his
five volume Mcanique Cleste (Celestial Mechanics) (1799-1825). This seminal work
translated the geometric study of classical mechanics, used by Isaac Newton, to one
based on calculus, opening up a broader range of problems. He formulated Laplace’s
equation, and invented the Laplace transform which appears in many branches of
mathematical physics, a field that he took a leading role in forming. The Laplacian
differential operator, widely used in applied mathematics, is also named after him.

In mathematics and physics, the Laplace operator or Laplacian, denoted by ∆ or
∇2 and named after Pierre-Simon de Laplace, is a differential operator, specifically an
important case of an elliptic operator, with many applications. In physics, it is used in
modeling of wave propagation (the wave equation is an important second-order linear
partial differential equation that describes the propagation of a variety of waves, such
as sound waves, light waves and water waves. It arises in fields such as acoustics, elec-
tromagnetics, and fluid dynamics. Historically, the problem of a vibrating string such
as that of a musical instrument was studied by Jean le Rond d’Alembert, Leonhard
Euler, Daniel Bernoulli, and Joseph-Louis Lagrange.), an important partial differen-
tial equation which describes the distribution of heat (or variation in temperature) in
a given region over time. For a function of three spatial variables (x, y, z) and one time
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variable t; heat flow, forming the Helmholtz equation. It is central in electrostatics and
fluid mechanics, anchoring in Laplace’s equation and Poisson’s equation. In quantum
mechanics, it represents the kinetic energy term of the Schrödinger equation. The ki-
netic energy of an object is the extra energy which it possesses due to its motion. It is
defined as the work needed to accelerate a body of a given mass from rest to its current
velocity. Having gained this energy during its acceleration, the body maintains this
kinetic energy unless its speed changes. Negative work of the same magnitude would
be required to return the body to a state of rest from that velocity. In mathematics,
functions with vanishing Laplacian are called harmonic functions; the Laplacian is at
the core of Hodge theory and the results of de Rham cohomology [9].

The aim is to analysis the point symmetry structure of the Laplace equation on
cylinder, i.e., cylindrical Laplace equation, which is

∇2u =
1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
+

∂2u

∂z2
= 0,(1.1)

where u is a smooth function of (r, θ, z).
The symmetry algebra of (1.1) is determined in the next section and some results

yield from the structure of the Lie algebra of symmetries are given.

2 Lie symmetries of the equation

The method of determining the classical symmetries of a partial differential equation
is standard which is described in [1, 4, 5] and [8]. To obtain the symmetry algebra of
the (1.1), we take an infinitesimal generator of symmetry algebra of the form

X = ξ1(r, θ, z, u)
∂

∂r
+ ξ2(r, θ, z, u)

∂

∂θ
+ ξ3(r, θ, z, u)

∂

∂z
+ η(r, θ, z, u)

∂

∂u
.

Using the invariance condition, i.e., applying the second prolongation X(2) to (1.1),
the following system of 18 determining equations yields:

ξ2u = 0,
ξ3u = 0,
ηuu = 0,
ξ3rzz = 0,
ξ3θzz = 0,
ξ3zzz = 0,

ξ3rr + ξ3zz = 0,
ξ3θ + r2ξ2z = 0,
ξ3θ − rξ3rθ = 0,
ξ3rz + 2ηru = 0,
ξ3θz + 2ηθu = 0,
ξ3zz + 2ηzu = 0,

ξ1 + r(ξ2θ − ξ3z) = 0,
ξ2θ + r(ξ2rθ − ξ3rz) = 0,
ξ2θθ − rξ2r − ξ3θz = 0,
ξ3θθ + r(ξ3r + rξ3zz) = 0,
ξ3θz + r(2ξ2r − rξ2rr) = 0,
ηθθ + r(ηr + rηrr + rηzz) = 0.

The solution of the above system gives the following infinitesimals,

X1 =
∂

∂θ
, X2 =

∂

∂z
, X3 = u

∂

∂u
,

X4 = r
∂

∂r
+ z

∂

∂z
, X5 = rz

∂

∂r
+

1
2
(z2 − r2)

∂

∂z
− 1

2
zu

∂

∂u
,

X6 = sin θ
∂

∂r
+

1
r

cos θ
∂

∂θ
, X7 = cos θ

∂

∂r
− 1

r
sin θ

∂

∂θ
,
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X8 = z sin θ
∂

∂r
+

1
r
z cos θ

∂

∂θ
− r sin θ

∂

∂z
,

X9 = z cos θ
∂

∂r
− 1

r
z sin θ

∂

∂θ
− r cos θ

∂

∂z
,

X10 =
1
2
(z2 − r2) sin θ

∂

∂r
+

1
2r

(z2 + r2) cos θ
∂

∂θ
− rz sin θ

∂

∂z
+

1
2
ru sin θ

∂

∂u
,

X11 =
1
2
(z2 − r2) cos θ

∂

∂r
− 1

2r
(z2 + r2) sin θ

∂

∂θ
− rz cos θ

∂

∂z
+

1
2
ru cos θ

∂

∂u
.

The commutation relations of the 11−dimensional Lie algebra g spanned by the vector
fields X1, · · · , X11, are shown in following table.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

X1 0 0 0 0 0 X7 −X6 X9 −X8 X11 −X10

X2 0 0 0 X2 − 1
2
X3 + X4 0 0 X6 X7 X8 X9

X3 0 0 0 0 0 0 0 0 0 0 0
X4 0 −X2 0 0 X5 −X7 −X7 0 0 X10 X11

X5 0 1
2
X3 −X4 0 −X5 0 −X8 −X9 −X10 −X11 0 0

X6 −X7 0 0 X7 X8 0 0 −X2 0 1
2
X3 −X4 −X1

X7 X6 0 0 X7 X9 0 0 0 −X2 X1
1
2
X3 −X4

X8 −X9 −X6 0 0 X10 X2 0 0 X1 −X5 0
X9 X8 −X7 0 0 X11 0 X2 −X1 0 0 −X5

X10 −X11 −X8 0 −X10 0 − 1
2
X3 + X4 −X1 X5 0 0 0

X11 X10 −X9 0 −X11 0 X1 − 1
2
X3 + X4 0 X5 0 0

2.1 Differential invariants

Suppose that G is a transformation group. It is well known that a smooth real dif-
ferential function I : Jn → R, where Jn is the corresponding n−th jet space, is a
differential invariant for G if and only if for all X ∈ g, its n−th prolongation annihi-
lates I, i.e., X(n)(I) = 0. Here we are going to find the differential invariants of order
0, 1 and 2 and some of their results. For more details and some practical examples
see [3] and [8].

The symmetry group of the cylindrical Laplace equation has not any nonconstant
ordinary differential invariants, i.e., it does not have any differential invariants of order
zero, thus the orbit of generic points (the points which lies in the orbit of maximal
dimension) has dimension four and its isotropy subgroup is seven dimensional.

The first prolonged action of the symmetry group has one differential invariant,
which is a function of (u, ur, uθ, uz), so the action has a generic orbit of dimension
six, and its isotropy subgroup is five dimensional.

Finally the second prolonged action has another differential invariant which is a
function of (u, ur, uθ, uz, urr, urθ, urz, uθθ, uθz, uzz), consequently the dimension of the
generic orbit is equal to the dimension of the group; thus, the second prolonged action
is transitive and has a discrete isotropy subgroup.

According to the relations between above subjects and [4], we can obtain the
number of functionally independent differential invariants up to order n.
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Theorem 2.1. The number of functionally independent differential invariants up
to order n ≥ 3 for the symmetry group of cylindrical Laplace equation is

(
3+n

n

) − 8
and the number of strictly differential invariants which occur in each prolongation is(
3+n

n

)− (
2+n
n−1

)
.

Proof. According to the above discussion for n ≥ 3 the action is transitive, so the
number of independent differential invariants in, is

in = 3 +
(

3 + n

n

)
− 11 =

(
3 + n

n

)
− 8.

If jn is the number of strictly differential invariants then,

jn =
(

3 + n

n

)
−

(
3 + n− 1

n− 1

)
=

(
3 + n

n

)
−

(
2 + n

n− 1

)
. 2

2.2 Reduction of the equation

The Eq. (1.1) maybe regarded as a submanifold M of the jet space J2(R3,R). Doing
as section 3.1 of [5] and find (in a sense) the most general group-invariant solutions
to the Eq. (1.1).

Theorem 2.2. The one-parameter groups gi(t) : M → M generated by the Xi, i =
1, · · · , 11, are given in the following table:

g1(t) : (r, θ, z, u) 7−→ (r, θ + t, z, u),
g2(t) : (r, θ, z, u) 7−→ (r, θ, z + t, u),
g3(t) : (r, θ, z, u) 7−→ (r, θ, z, uet),
g4(t) : (r, θ, z, u) 7−→ (ret, θ, zet, u),

g5(t) : (r, θ, z, u) 7−→
(
rzt + r, θ,

t

2
(z2 − r2),−1

2
zut + u

)
,

g6(t) : (r, θ, z, u) 7−→
(
t sin θ + r,

t

r
cos θ + θ, z, u

)
,

g7(t) : (r, θ, z, u) 7−→
(
t cos θ + r,

t

r
sin θ + θ, z, u

)
,

g8(t) : (r, θ, z, u) 7−→
(
tz sin θ + r,

t

r
z cos θ + θ,−rt sin θ + z, u

)
,

g9(t) : (r, θ, z, u) 7−→
(
tz cos θ + r,− t

r
z sin θ + θ,−rt cos θ + z, u

)
,

g10(t) : (r, θ, z, u) 7−→
(

t

2
(z2 − r2) sin θ,

t

2

(z2

r
+ r

)
cos θ + θ,

−rzt sin θ + z,
1
2
rut sin θ + u

)
,

g11(t) : (r, θ, z, u) 7−→
(

t

2
(z2 − r2) cos θ,− t

2

(z2

r
+ r

)
sin θ + θ,

−rzt cos θ + z,
1
2
rut cos θ + u

)
,
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where entries give the transformed point exp(tXi)(r, θ, z, u) = (r̃, θ̃, z̃, ũ).

The transformations g1 and g2 demonstrate the radius- and space-invariance and
radius- and angle-invariance solutions of the equation. The one-parameter g3 reflects
the linearity of the cylindrical laplace equation, and the well-known scaling symmetry
turns up in g4. The most general one-parameter group of symmetries is obtained
by considering a general linear combination of the given vector fields; the explicit
formula for the group transformations is very complicated, but alternatively we can
use theorem 2.52 in [4], and represent an arbitrary group transformation g as the
composition of transformations in theorem (2.2).

Theorem 2.3. Let i = 1, · · · , 11 and t ∈ R. If u = U(r, θ, z) is a solution of Eq.
(1.1) so are the functions ui(r, θ, z) = U(r, θ, z), where

u1 = U(r, θ + t, z), u2 = U(r, θ, z + t),
u3 = e−tU(r, θ, z), u4 = U(etr, θ, etz),

u5 =
(
1 +

1
2
zt

)
U(rzt + r, θ,

t

2
(z2 − r2)),

u6 = U(t sin θ + r,
t

r
cos θ + θ, z), u7 = U

(
t cos θ + r,

t

r
cos θ + θ, z

)
,

u8 = U
(
tz sin θ + r,

t

r
z cos θ + θ,−rt sin θ + z

)
,

u9 = U
(
tz cos θ + r,− t

r
z sin θ + θ,−rt cos θ + z

)
,

u10 =
(
1− rt

2
sin θ

)
U

(
t

2
(z2 − r2) sin θ,

t

2r
(z2 + r2) cos θ + θ, z − rzt sin θ

)
,

u11 =
(
1− rt

2
cos θ

)
U

(
t

2
(z2 − r2) cos θ,

t

2r
(z2 + r2) sin θ + θ, z − rzt cos θ

)
.

For example, if u(r, θ, z) = 1 be a constant solution of Eq. (1.1), we conclude
that the trivial functions gi(t) · 1 = 1 for i = 1, 2, 4, 6, 7, 8, 9, g3(t) · 1 = e−t and
g5(t) · 1 = 2 + zt, and by applying g5

(
2a
b

)
· g3(ln b) on u = 1, we conclude the linear

solution u = az + b. The two nontrivial solutions for Eq. (1.1) are:

g10(t) · 1 = 2− rt sin θ, g11(t) · 1 = 2− rt cos θ.

Now by summing g1, g5

(
−8+2c

d

)
· g3ln d · 1, g10(−a) · 1 and g11(−b) · 1, we conclude

the following result:

Corollary 2.4. The function u(r, θ, z) = ar sin θ + br cos θ + dz + c, is a solution of
Eq. (1.1), where a, b, c and d are arbitrary constants.

2.3 Some invariant solutions

The first advantage of symmetry group method is to construct new solutions from
known solutions. Neither the first advantage nor the second will be investigated here,
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but symmetry group method will be applied to the Eq. (1.1) to be connected directly
to some order differential equations. To do this, a particular linear combinations of
infinitesimals are considered and their corresponding invariants are determined.

The cylindrical Laplace equation expressed in the coordinates (r, θ, z), so to reduce
this equation is to search for its form in specific coordinates. Those coordinates will
be constructed by searching for independent invariants (y, v) corresponding to an
infinitesimal generator. so using the chain rule, the expression of the equation in the
new coordinate allows us to the reduced equation. Here we will obtain some invariant
solutions with respect to symmetries.

1. First consider X6. To determine the independent invariants I, we need to solve
the first order partial differential equation X6{I(r, θ, z, u)} = 0, that is

sin θ
∂I

∂r
+

cos θ

r

∂I

∂θ
+ 0

∂I

∂z
+ 0

∂I

∂u
= 0,

which is a homogeneous first order PDE. Thus we solve the associated characteristic
ordinary differential equations

dr

sin θ
=

cos θdθ

r
=

dz

0
=

du

0
.

Hence we obtain two functionally independent invariants y =
z

r sin θ
and v = u.

If we treat v as a function of y, we can compute formulae for the derivatives
of u with respect to x and t in terms of y, v and the derivatives of v with respect
to y, along with a single parametric variable, which we designate to be t, so that
x will be the corresponding principal variable. Using the chain rule we find that if
u = v = v(y) = v(z/r sin θ), then

ur = vyyr,(2.1)
urr = yrrvy + vyyyr,(2.2)
uθθ = yθθvy + vyyyθ,(2.3)
uzz = yzzvy + vyyyz.(2.4)

Substituting ur, urr, uθθ and uzz in (1.1) we obtain an ODE with solution u =
C1 arctan

(
z

r sin θ

)
+ C2, which is called an invariant solution for Eq. (1.1).

2. Similarly, the invariants of X7 are y =
z

r cos θ
and v = u, and the solution of

reduced equation (invariant solution) by substituting (2.1), (2.2), (2.3) and (2.4) is
u = C1 arctan

(
z

r cos θ

)
+ C2.

3. The invariants of X8 are
r2 + z2

r sin θ
and v = u. The invariant solution constructed

with (2.1), (2.2), (2.3) and (2.4) is u = C1 arctanh
(√

r2+z2

r sin θ

)
+ C2 obtained from

ordinary differential equations
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dr

z sin θ
=

rdθ

a cos θ
=

dz

−r sin θ
=

du

0
.

The above mentioned method in sections 1 and 2 can be followed for X9 with invari-

ants
r2 + z2

r sin θ
and v = u, and invariant solution u = C1 arctanh

(√
r2+z2

r cos θ

)
+ C2. We

can proceed for other Xis as above.

2.4 The Lie algebra of symmetries

In this section, we determine the structure of full symmetry Lie algebra g, of Eq.
(1.1).

Theorem 2.5. The full symmetry Lie algebra g, of Eq. (1.1) has the following semidi-
rect decomposition:

g = Rn g1,(2.5)

where g1 is a simple Lie algebra.

Proof: The center z of g is SpanR{X3}. Therefore the quotient algebra g1 = g/z is
SpanR{Y1, · · · , Y10}, where Yi := Xi + z for i = 1, · · · , 10. The commutator table of
this quotient algebra is given in following table:

Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10

Y1 0 0 0 0 Y7 −Y5 Y8 −Y7 Y10 −Y9

Y2 0 0 Y2 Y3 0 0 Y5 Y6 Y7 Y8

Y3 0 −Y2 0 Y4 −Y5 −Y6 0 0 Y9 Y10

Y4 0 −Y3 −Y4 0 −Y7 −Y8 −Y9 −Y10 0 0
Y5 −Y7 0 Y5 Y7 0 0 −Y2 0 −Y3 −Y1

Y6 Y5 0 Y6 Y8 0 0 0 −Y2 Y1 −Y3

Y7 −Y8 −Y5 0 Y9 Y2 0 0 Y1 −Y4 0
Y8 Y7 −Y6 0 Y10 0 Y2 −Y1 0 0 −Y4

Y9 −Y10 −Y7 −Y9 0 Y3 −Y1 Y4 0 0 0
Y10 Y9 −Y8 −Y10 0 Y1 Y3 0 −Y4 0 0

The Lie algebra g is non-solvable, because

g(1) = [g, g] = SpanR

{
X1, X2,

1
2
X3 −X4, X5, · · · , X11

}
,

g(2) = [g(1), g(1)] = g(1).

Similarly, g1 is semi-simple and non-solvable, because

g(1)
1 = [g1, g1] = SpanR{Y1, · · · , Y10} = g1.

The Lie algebra g admits a Levi decomposition as the following semi-direct product
g = rn s, where r = SpanR{X3} is the radical of g (the largest solvable ideal contained
in g), and
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s =
{

X1, X2,
1
2
X3 −X4, X5, · · ·X11

}
.

r is a one-dimensional subalgebra of g, therefore it is isomorphic to R; Thus the
identity g = rn s reduces to g = Rn g1. 2

2.5 Optimal system of sub-algebras

As is well known, the theoretical Lie group method plays an important role in finding
exact solutions and performing symmetry reductions of differential equations. Since
any linear combination of infinitesimal generators is also an infinitesimal generator,
there are always infinitely many different symmetry subgroups for the differential
equation. So, a mean of determining which subgroups would give essentially different
types of solutions is necessary and significant for a complete understanding of the
invariant solutions. As any transformation in the full symmetry group maps a solution
to another solution, it is sufficient to find invariant solutions which are not related by
transformations in the full symmetry group, this has led to the concept of an optimal
system [6]. The problem of finding an optimal system of subgroups is equivalent to
that of finding an optimal system of subalgebras. For one-dimensional subalgebras,
this classification problem is essentially the same as the problem of classifying the
orbits of the adjoint representation. This problem is attacked by the naive approach
of taking a general element in the Lie algebra and subjecting it to various adjoint
transformations so as to simplify it as much as possible. The idea of using the adjoint
representation for classifying group-invariant solutions is due to [5] and [6].

The adjoint action is given by the Lie series

Ad(exp(tYi)Yj) = Yj − t[Yi, Yj ] +
t2

2
[Yi, [Yi, Yj ]]− · · · ,(2.6)

where [Yi, Yj ] is the commutator for the Lie algebra, t is a parameter, and i, j =
1, · · · , 10. We can write the adjoint action for the Lie algebra g1, and show that

Theorem 2.6. A one dimensional optimal system of the g1 is given by

1) Y1,
2) Y3,
3) Y4,
4) Y7,
5) Y8,
6) Y9,
7) aY1 + bY3,

8) aY1 + bY4,
9) aY1 + bY7,
10) aY1 + bY8

11) aY1 + bY9,
12) aY3 + bY7,
13) aY3 + bY8,
14) aY4 + bY9,

15) aY7 + bY8,
16) aY1 + bY4 + cY9,
17) aY1 + bY3 + cY8,
18) aY1 + bY7 + cY8,
19) aY3 + bY7 + cY8,
20) aY1 + bY3 + cY7,
21) aY1 + bY3 + cY7 + dY8,

where a, b, c, d ∈ R are arbitrary numbers.

Proof. F t
i : g1 → g1 defined by Y 7→ Ad(exp(tYi)Y ) is a linear map, for i =

1, · · · , 10. The matrices M t
i of F t

i , i = 1, · · · , 10, with respect to basis {Y1, · · · , Y10}
are
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M t
1 =




1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 sin t 1− cos t 0 0
0 0 0 0 t 1 cos t− 1 t− sin t 0 0
0 0 0 0 0 0 cos t − sin t 0 0
0 0 0 0 0 sin t cos t 0 0
0 0 0 0 0 0 0 0 cos t − sin t
0 0 0 0 0 0 0 0 sin t cos t




,

M t
2 =




1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 −t 1 0 0 0 0 0 0 0
0 t2/2 −t 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 −t 0 1 0 0 0
0 0 0 0 0 −t 0 1 0 0
0 0 0 0 t2/2 0 −t 0 1 0
0 0 0 0 0 t2/2 0 −t 0 1




,

M t
3 =




1 0 0 0 0 0 0 0 0 0
0 et − 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 e−t − 1 0 0 0 0 0 0
0 0 0 0 et − 1 0 0 0 0 0
0 0 0 0 0 et − 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 e−t − 1 0
0 0 0 0 0 0 0 0 0 e−t − 1




,

M t
4 =




1 0 0 0 0 0 0 0 0 0
0 1 t t2/2 0 0 0 0 0 0
0 0 1 t 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 t 0 t2/2 0
0 0 0 0 0 1 0 t 0 t2/2
0 0 0 0 0 0 1 0 t 0
0 0 0 0 0 0 0 1 0 t
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




,

M t
5 =




1 t2/2 0 0 0 0 t 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 −t 0 0 0 0 0
0 −t2/2 0 1 0 0 −t 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 t 0 −t2/2 0 0 0 1 0
t t3/6 0 0 0 0 t2/2 0 0 1




,
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M t
6 =




1 0 0 0 −t 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 −t 0 0 0 0
0 −t2/2 0 1 0 0 0 −t 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
−t 0 0 0 t2/2 0 0 0 1 0
0 0 t 0 0 t2/2 0 0 0 1




,

M t
7 =




cos t 0 0 0 0 0 t sin t 0 0
0 cos t 0 0 sin t 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 cos t 0 0 0 0 − sin t 0
0 − sin t 0 0 cos t 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0

− sin t 0 0 0 0 0 0 cos t 0 0
0 0 0 sin t 0 0 0 0 cos t 0
0 0 0 0 0 0 0 0 0 1




,

M t
8 =




cos t 0 0 0 0 0 − sin t 0 0 0
0 cos t 0 0 0 sin t 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 cos t 0 0 0 0 0 − sin t
0 0 0 0 1 0 0 0 0 0
0 − sin t 0 0 0 cos t 0 0 0 0

sin t 0 0 0 0 0 cos t 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 sin t 0 0 0 0 0 cos t




,

M t
9 =




1 0 0 0 0 0 0 0 0 t
0 1 0 −t2/2 0 0 t 0 0 0
0 0 1 0 0 0 0 0 t 0
0 0 0 1 0 0 0 0 0 0
0 0 −t 0 1 0 0 0 −t2/2 0
t 0 0 0 0 1 0 0 0 t2/2
0 0 0 −t 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




,

M t
10 =




1 0 0 0 0 0 0 0 −t 0
0 1 0 −t2/2 0 0 0 t 0 0
0 0 1 0 0 0 0 0 0 t
0 0 0 1 0 0 0 0 0 0
−t 0 0 0 1 0 0 0 t2/2 0
0 0 −t 0 0 1 0 0 0 −t2/2
0 0 0 0 0 0 1 0 0 0
0 0 0 −t 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1




.
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Let Y =
10∑

i=1

aiYi, then

F t10
10 ◦ F t9

9 ◦ · · · ◦ F t1
1 : Y 7→

((
cos t7 cos t8 + t5 sin t8 +

(1
2
t25 cos t7 + t6 sin t7

)
t9 sin t8 −

(1
2
t25 sin t7 − t6 cos t7

)
t10

)
a1 + · · ·+

((
−

(1
2
t25 sin t7 − t6 cos t7

)
t9t10

)
− 1

2

(1
2
t25 cos t7 + t6 sin t7

)
t210 sin t8 +

(cos t7 cos t8 + t5 sin t8)t9 +
1
2

(1
2
t25 cos t7 + t6 sin t7

)
t29 sin t8

)
a10

)
Y1

...

+

{[(((1
4
t22t

2
4(e

st − 1) cos t1 − t2t4 cos t1

)
t5 −

(1
4
t22t

2
4(e

t3 − 1) sin t1 −

t2t4 sin t1 + (e−t3 − 1) sin t1 + (e−t3 − 1) cos t1

)
t6

)
cos t7 −

(1
2
t22t4(e

t3 − 1) cos t1 − t2 cos t1

)
sin t7

)
cos t8 + · · · −

(
1
6

(1
4
t22t

2
4(e

t3 − 1) cos t1 − t2t4 cos t1

)
t35 sin t7 +

(
−

(1
4
t22t

2
4(e

t3 − 1) cos t1 − t2t4 cos t1

)
t5t6 +

1
2
t22(e

t3 − 1) sin t1 −
1
2

(1
4
t22t

2
4(e

t3 − 1) sin t1 − t2t4 sin t1 + (e−t3 − 1) sin t1 + (e−t3 − 1) cos t1

)
t25 +

1
2

(1
4
t22t

2
4(e

t3 − 1) sin t1 − t2t4 sin t1 + (et3 − 1) sin t1 +

(e−t3 − 1) cos t1

)
t26

)
cos t7

)
t10

]
a1 + · · ·+

[((1
4
t22t

2
4(e

t3 − 1) sin t1 − t2t4 sin t1 +

(e−t3 − 1) sin t1 + (e−t3 − 1) cos t1

)
t5 + · · ·+ (e−t3 − 1) sin t1 + · · ·

)
t10 +

· · ·+
(1

4
t22t

2
4(e

t3 − 1) sin t1 − t2t4 sin t1 + (e−t3 − 1) sin t1 +

(e−t3 − 1) cos t1 +
1
4
t22t

2
4(e

t3 − 1) cos t1 − t2t4 cos t1

)
cos t8

]
a10

}
Y10.

Then, if ai = 0, for i = 2, 3, 4, 5, 6, 9, 10, and a1, a7, a8, are non-zero then we can
make the coefficients of Y8, vanish, by F t1

2 and F t2
3 . Scaling Y if necessary, we can

assume that a1 = a7 = a8 = 1. And Y is reduced to Case 1, 4, 5 and 18.
If ai = 0, for i = 2, 4, 5, 6, 9, 10, and a1, a3, a7, a8, are non-zero then we can make

the coefficients of Y8, vanish, by F t1
2 and F t2

3 . Scaling Y if necessary, we can assume
that a3 = a9 = 1. And Y is reduced to Case 2, 7, 9, 12, 13 and 15.
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If ai = 0, for i = 2, 3, 5, 6, 7, 10, and a1, a4, a8, a9, are non-zero then we can make
the coefficients of Y4 and Y8 vanish, by F t1

2 and F t2
3 . Scaling Y if necessary, we can

assume that a4 = 1. And Y is reduced to Case 3, 6, 8, 11, 14 and 16.
If ai = 0, for i = 2, 4, 5, 6, 9, 10, and a1, a3, a7, a8, are non-zero then we can make

the coefficients of Y8, vanish, by F t1
2 and F t2

3 . Scaling Y if necessary, we can assume
that a1 = 1. And Y is reduced to Case 10, 17, 19, 20, and 21. 2

According to our optimal system of one-dimensional subalgebras of the full sym-
metry algebra g1, we need only find group-invariant solutions for 21 one-parameter
subgroups generated by Y as Theorem (2.6).

3 Conclusions

In this paper by using the criterion of invariance of the equation under the infinitesimal
prolonged infinitesimal generators, we find the most Lie point symmetry group of
the cylindrical Laplace equation. Looking the adjoint representation of the obtained
symmetry group on its Lie algebra, we have found the preliminary classification of
group-invariants solutions.
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