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Abstract. Let M be an n(n ≥ 3)-dimensional complete connected hyper-
surface in a unit sphere Sn+1(1). In this paper, we show that (1) if M has
non-zero mean curvature and constant scalar curvature n(n−1)r and two
distinct principal curvatures, one of which is simple, then M is isometric
to the Riemannian product S1(

√
1− c2) × Sn−1(c), c2 = n−2

nr if r ≥ n−2
n−1

and S ≤ (n−1)n(r−1)+2
n−2 + n−2

n(r−1)+2 . (2) if M has non-zero constant mean
curvature and two distinct principal curvatures, one of which is simple,
then M is isometric to the Riemannian product S1(

√
1− c2) × Sn−1(c),

c2 = n−2
nr if one of the following conditions is satisfied: (i) r ≥ n−2

n−1

and S ≤ (n − 1)n(r−1)+2
n−2 + n−2

n(r−1)+2 ; or (ii) r > 1 − 2
n , r 6= n−2

n−1 and

S ≥ (n − 1)n(r−1)+2
n−2 + n−2

n(r−1)+2 , where S is the squared norm of the
second fundamental form of M .

M.S.C. 2000: 53C42, 53A10.
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1 Introduction

Let M be an n-dimensional hypersurface in a unit sphere Sn+1(1) of dimension
n + 1. If scalar curvature n(n − 1)r of M is constant and r ≥ 1. S. Y. Cheng and
Yau [1] and Li [5] obtained some characterization theorems in terms of the sectional
curvature or the squared norm of the second fundamental form of M respectively. We
should notice that the condition r ≥ 1 plays an essential role in their proofs of theo-
rems. On the other hand, for any 0 < c < 1, by considering the standard immersions
Sn−1(c) ⊂ Rn, S1(

√
1− c2) ⊂ R2 and taking the Riemannian product immersion

S1(
√

1− c2)× Sn−1(c) ↪→ R2 ×Rn, we obtain a hypersurface S1(
√

1− c2)× Sn−1(c)
in Sn+1(1) with constant scalar curvature n(n− 1)r, where r = n−2

nc2 > 1− 2
n . Hence,

not all Riemannian products S1(
√

1− c2) × Sn−1(c) appear in the results of [1] and
[5]. Since the Riemannian product S1(

√
1− c2)× Sn−1(c) has only two distinct prin-

cipal curvatures and its scalar curvature n(n− 1)r is constant and satisfies r > 1− 2
n ,
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Cheng[2] asked the following interesting problem:

Problem 1.1 ([2]). Let M be an n-dimensional complete hypersurface with con-
stant scalar curvature n(n− 1)r in Sn+1(1). If r > 1− 2

n and

S ≤ (n− 1)
n(r − 1) + 2

n− 2
+

n− 2
n(r − 1) + 2

,

then is M isometric to either a totally umbilical hypersurface or the Riemannian
product S1(

√
1− c2)× Sn−1(c)?

Cheng [2] said that when r = n−2
n−1 , he answered the Problem 1.1 affirmatively. For

the general case, Problem 1.1 is still open.
In this paper, we try to solve Problem 1.1 and give a partial affirmative answer.

We obtain the following:

Theorem 1.1. Let M be an n(n ≥ 3)-dimensional complete connected hypersur-
face in Sn+1(1) with non-zero mean curvature and constant scalar curvature n(n−1)r
and with two distinct principal curvatures, one of which is simple. If r ≥ n−2

n−1 and

S ≤ (n− 1)
n(r − 1) + 2

n− 2
+

n− 2
n(r − 1) + 2

,

then M is isometric to the Riemannian product S1(
√

1− c2) × Sn−1(c), where c2 =
n−2
nr .

If M has constant mean curvature, we can obtain the following:

Theorem 1.2. Let M be an n(n ≥ 3)-dimensional complete connected hypersur-
face in Sn+1(1) with non-zero constant mean curvature and with two distinct principal
curvatures, one of which is simple. If r ≥ n−2

n−1 and

S ≤ (n− 1)
n(r − 1) + 2

n− 2
+

n− 2
n(r − 1) + 2

,

then M is isometric to the Riemannian product S1(
√

1− c2) × Sn−1(c), where
c2 = n−2

nr .

Remark 1.1. We shall note that in [9], the author had given a topological answer
to problem 1.1 when M is compact. In [3] and [4], Cheng and the author and Suh
had given a partial affirmative answer to problem 1.1 when M is compact.

On the other hand, Cheng [2] also proved the following theorem:

Theorem 1.3 ([2]). Let M be an n-dimensional complete hypersurface in Sn+1(1)
with constant scalar curvature n(n − 1)r and with two distinct principal curvatures,
one of which is simple. Then r > 1− 2

n and M is isometric to the Riemannian product
S1(

√
1− c2)× Sn−1(c) if r 6= n−2

n−1 and

S ≥ (n− 1)
n(r − 1) + 2

n− 2
+

n− 2
n(r − 1) + 2

,
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where c2 = n−2
nr .

If M has constant mean curvature, we can obtain the following:

Theorem 1.4. Let M be an n(n ≥ 3)-dimensional complete connected hypersur-
face in Sn+1(1) with constant mean curvature and with two distinct principal curva-
tures, one of which is simple. If r > 1− 2

n , r 6= n−2
n−1 and

S ≥ (n− 1)
n(r − 1) + 2

n− 2
+

n− 2
n(r − 1) + 2

,

then M is isometric to the Riemannian product S1(
√

1− c2) × Sn−1(c), where
c2 = n−2

nr .

Remark 1.2. Recently, the authors also studied the complete hypersurfaces in a
hyperbolic space with constant scalar curvature or with constant k-th mean curvature
and with two distinct principal curvatures, one can see [7] and [8]. On the study of
stable spacelike hyersurfaces with constant scalar curvature, one can see [6].

2 Preliminaries

Let M be an n-dimensional hypersurface in Sn+1(1). We choose a local or-
thonormal frame e1, · · · , en+1 in Sn+1(1) such that e1, · · · , en are tangent to M .
Let ω1, · · · , ωn+1 be the dual coframe. We use the following convention on the range
of indices:

1 ≤ A, B,C, · · · ≤ n + 1; 1 ≤ i, j, k, · · · ≤ n.

The structure equations of Sn+1(1) are given by

(2.1) dωA =
∑

B

ωAB ∧ ωB , ωAB + ωBA = 0,

(2.2) dωAB =
∑

C

ωAC ∧ ωCB + ΩAB ,

where

(2.3) ΩAB = −1
2

∑

C,D

KABCDωC ∧ ωD,

(2.4) KABCD = δACδBD − δADδBC .

Restricting to M ,

(2.5) ωn+1 = 0,

(2.6) ωn+1i =
∑

j

hijωj , hij = hji.

The structure equations of M are

(2.7) dωi =
∑

j

ωij ∧ ωj , ωij + ωji = 0,
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(2.8) dωij =
∑

k

ωik ∧ ωkj − 1
2

∑

k,l

Rijklωk ∧ ωl,

(2.9) Rijkl = δikδjl − δilδjk + hikhjl − hilhjk,

(2.10) Rij = (n− 1)δij + nHhij −
∑

k

hikhkj ,

(2.11) n(n− 1)r = n(n− 1) + n2H2 − S,

where n(n−1)r is the scalar curvature, H is the mean curvature and S is the squared
norm of the second fundamental form of M .

3 Proof of theorem

Let M be an n(n ≥ 3)-dimensional complete connected hypersurface in Sn+1(1)
with constant scalar curvature n(n− 1)r and with two distinct principal curvatures,
one of which is simple. Without lose of generality, we may assume

(3.1) λ1 = λ2 = · · · = λn−1 = λ, λn = µ,

where λi for i = 1, 2, · · · , n are the principal curvatures of M . From (2.11) and (3.1),
we have

(3.2) n(n− 1)(r − 1) = (n− 1)(n− 2)λ2 + 2(n− 1)λµ.

If λ = 0 at a point of M , then from above equation, we obtain that r = 1 at this
point. Since the scalar curvature n(n− 1)r is constant, we obtain r ≡ 1 on M . Since
the principal curvatures λ and µ are continuous on M , by the same assertion we can
deduce from (3.2) that λ ≡ 0 on M . By (2.9), we know that the sectional curvature
of M is not less than 1. Therefore, we know that M is compact by use of Bonnet-
Myers Theorem. According to Theorem 2 in Cheng and Yau [1], we have Mn is totally
umbilical. This is impossible, therefore, we get λ 6= 0. From (3.2), we have

(3.3) µ =
n(r − 1)

2λ
− n− 2

2
λ,

Since

λ− µ = n
λ2 − (r − 1)

2λ
6= 0,

we know that λ2 − (r − 1) 6= 0. If λ2 − (r − 1) < 0, we deduce that r > 1 and
λ2−λµ = n

2 [λ2− (r−1)] < 0. Therefore λµ > λ2. From (2.9), we obtain the sectional
curvature of M is not less than 1. Therefore, we know that M is compact by use of
Bonnet-Myers Theorem. According to Theorem 2 in Cheng and Yau [1], we have Mn

is totally umbilical. This is impossible, therefore, we get λ2 − (r − 1) > 0.
Let $ = [λ2 − (r − 1)]−

1
n . Cheng [2] proved the following:

Proposition 3.1 ([2]). Let M be an n(n ≥ 3)-dimensional connected hyper-
surface with constant scalar curvature n(n− 1)r and with two distinct principal cur-
vatures, and the space of principal vectors corresponding to one of them is of one
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dimension. Then M is a locus of moving (n− 1)-dimensional submanifold Mn−1
1 (s),

along which the principal curvature λ of multiplicity n − 1 is constant and which is
locally isometric to an (n − 1)-dimensional sphere Sn−1(c(s)) = En(s) ∩ Sn+1(1) of
constant curvature and $ = [λ2−(r−1)]−

1
n satisfies the ordinary differential equation

of order 2

(3.4)
d2$

ds2
−$

(
n− 2

n
$−n − r

)
= 0,

where En(s) is an n-dimensional linear subspace in the Euclidean space Rn+2 which
is parallel to a fixed En(s0).

The following Lemma 3.1 in Wei and Suh [10] is important to us.

Lemma 3.1 ([10]). Equations (3.4) is equivalent to its first order integral

(3.5)
(

d$

ds

)2

+ r$2 +
1

$n−2
= C,

where C is a constant; for a constant solution equal to $0, one has that r > 0 and
$n

0 = n−2
2r , so

(3.6) C0 =
n

2

(
2r

n− 2

)(n−2)/n

.

Moreover, the constant solution of (3.4) corresponds to S1(
√

1− c2)×Sn−1(c), where
c2 = n−2

nr .
In [10], Wei and Suh proved the following:

Proposition 3.2 ([10]). Let M be an n(n ≥ 3)-dimensional complete connected
hypersurface in Sn+1(1) with constant scalar curvature n(n−1)r and with two distinct
principal curvatures, one of which is simple. If λµ + 1 ≤ 0, then M is isometric to
S1(

√
1− c2)× Sn−1(c), where c2 = n−2

nr .
By the same method in [10], we can prove the following:

Proposition 3.3. Let M be an n(n ≥ 3)-dimensional complete connected hy-
persurface in Sn+1(1) with constant scalar curvature n(n− 1)r and with two distinct
principal curvatures, one of which is simple. If λµ + 1 ≥ 0, then M is isometric to
the Riemannian product S1(

√
1− c2)× Sn−1(c), where c2 = n−2

nr .

Proof. From (3.3), we have

(3.7) λµ + 1 =
n(r − 1)

2
− n− 2

2
λ2 + 1.

If λµ + 1 ≥ 0, we have from (3.7), n−2
2 [λ2 − (r − 1)] ≤ r, it follows that

(3.8)
n− 2

2
$−n − r ≤ 0.
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From (3.4), we have d2$
ds2 ≤ 0. Thus d$

ds is a monotonic function of s ∈ (−∞,+∞).
Therefore, $(s) must be monotonic when s tends to infinity. We see from (3.5) that
the positive function of $(s) is bounded. Since $(s) is bounded and is monotonic
when s tends infinity, we find that both lims→−∞$(s) and lims→+∞$(s) exist and
then we have

(3.9) lim
s→−∞

d$(s)
ds

= lim
s→+∞

d$(s)
ds

= 0.

By the monotonicity of d$
ds , we see that d$

ds ≡ 0 and $(s) is a constant. Then,
by Lemma 3.1, it is easily see that M is isometric to the Riemannian product
S1(

√
1− c2)× Sn−1(c), where c2 = n−2

nr .
Since M has two distinct principal curvatures, we know that M has no umbilical

points. From (3.1), we have

(3.10) (n− 1)λ + µ = nH, S = (n− 1)λ2 + µ2.

From (3.10) and (2.11), we have

(3.11) λµ = (n− 1)(r − 1)− (n− 2)H2 + (n− 2)H
√

H2 − (r − 1),

or

(3.12) λµ = (n− 1)(r − 1)− (n− 2)H2 − (n− 2)H
√

H2 − (r − 1).

From (2.11), we obtain

λµ =(r − 1)− (n− 2)
n2

[S − n(r − 1)](3.13)

+
(n− 2)

n2

√
[S + n(n− 1)(r − 1)][S − n(r − 1)],

or

λµ =(r − 1)− (n− 2)
n2

[S − n(r − 1)](3.14)

− (n− 2)
n2

√
[S + n(n− 1)(r − 1)][S − n(r − 1)].

Proof of theorem 1.1. If there exists a point x on M such that (3.13) and (3.14) hold
at x, that is, we have S = −n(n−1)(r−1) or S = n(r−1) at x. If S = −n(n−1)(r−1)
at x, from (2.11), we have H = 0 at x, this is a contradiction to H 6= 0 on M . If
S = n(r−1) at x, from (2.11) we have S = nH2 at x, that is, x is a umbilical point on
M , this is a contradiction to M has no umbilical points. Therefore, we only consider
two cases:

Case (1). If (3.13) holds on M , since r ≥ n−2
n−1 , then we get r − 1 ≥ − 1

n−1 and
n(r − 1) + 2 ≥ n−2

n−1 . From

S ≤ (n− 1)
n(r − 1) + 2

n− 2
+

n− 2
n(r − 1) + 2

,

we have
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n+n(r − 1)− n− 2
n

[S − n(r − 1)](3.15)

≥ n + 2(n− 1)(r − 1)− n− 2
n

[
(n− 1)

n(r − 1) + 2
n− 2

+
n− 2

n(r − 1) + 2

]

= n + 2(n− 1)(r − 1)− n− 1
n

[n(r − 1) + 2]− (n− 2)2

n

1
n(r − 1) + 2

=
n2 − 2(n− 1)

n
+ (n− 1)(r − 1)− (n− 2)2

n

1
n(r − 1) + 2

≥ n2 − 2(n− 1)
n

− 1− (n− 2)2

n

n− 1
n− 2

= 0,

From (3.13) and (3.15), obviously, we have λµ+1 ≥ 0. By Proposition 3.3, we obtain
that M is isometric to the Riemannian product S1(

√
1− c2) × Sn−1(c), where c2 =

n−2
nr .

Case (2). If (3.14) holds on M , since S ≤ (n − 1)n(r−1)+2
n−2 + n−2

n(r−1)+2 , we know
that this is equivalent to

{n + n(r − 1)−n− 2
n

[S − n(r − 1)]}2(3.16)

≥ (n− 2)2

n2
{n(n− 1)(r − 1) + S}{S − n(r − 1)}.

Let f2 =
∑
i

(λi−H)2 = S−nH2. Obviously, by (2.11), we have n(n−1)(r−1)+S ≥ 0

and f2 = n−1
n [S − n(r − 1)]. Therefore, we know that S − n(r − 1) ≥ 0. From (3.15)

and (3.16), we have

n + n(r − 1)−n− 2
n

[S − n(r − 1)](3.17)

≥ n− 2
n

√
[n(n− 1)(r − 1) + S][S − n(r − 1)].

Therefore, (3.14) and (3.17) imply that λµ+1 ≥ 0. By Proposition 3.3, we obtain that
M is isometric to the Riemannian product S1(

√
1− c2) × Sn−1(c), where c2 = n−2

nr .
This completes the proof of Theorem 1.1.

In order to prove Theorem 1.2 and Theorem 1.4, we need the following Proposi-
tions due to [11].

Proposition 3.4 ([11]). Let M be an n(n ≥ 3)-dimensional connected hyper-
surface with constant mean curvature H and with two distinct principal curvatures λ
and µ with multiplicities (n − 1) and 1, respectively. Then M is a locus of moving
(n − 1)-dimensional submanifold Mn−1

1 (s) along which the principal curvature λ of
multiplicity n− 1 is constant and which is locally isometric to an (n− 1)-dimensional
sphere Sn−1(c(s)) = En(s) ∩ Sn+1(1) of constant curvature and $ = |λ − H|− 1

n

satisfies the ordinary differential equation of order 2

(3.18)
d2$

ds2
+ $[1 + H2 + (2− n)H$−n + (1− n)$−2n] = 0,

for λ−H > 0 or
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(3.19)
d2$

ds2
+ $[1 + H2 + (n− 2)H$−n + (1− n)$−2n] = 0,

for λ − H < 0, where En(s) is an n-dimensional linear subspace in the Euclidean
space Rn+2 which is parallel to a fixed En(s0).

Lemma 3.2 ([11]). Equation (3.18) or (3.19) is equivalent to its first order
integral

(3.20)
(

d$

ds

)2

+ (1 + H2)$2 + 2H$2−n + $2−2n = C,

for λ−H > 0 or

(3.21)
(

d$

ds

)2

+ (1 + H2)$2 − 2H$2−n + $2−2n = C,

for λ − H < 0, where C is a constant. Moreover, the constant solution of (3.18) or
(3.19) corresponds to the Riemannian product S1(

√
1− c2)× Sn−1(c).

We can prove the following:

Proposition 3.5. Let M be an n(n ≥ 3)-dimensional complete connected hyper-
surface in Sn+1(1) with constant mean curvature H and with two distinct principal
curvatures λ and µ with multiplicities (n− 1) and 1, respectively. If λµ + 1 ≥ 0, then
M is isometric to the Riemannian product S1(

√
1− c2)× Sn−1(c).

Proof. Let λ and µ be the two distinct principal curvatures of M with mul-
tiplicities (n − 1) and 1, respectively. Then, from nH = (n − 1)λ + µ, we have
λµ = nHλ − (n − 1)λ2. Let $ = |λ − H|− 1

n . Then we have λ = H + $−n for
λ−H > 0 and λ = H −$−n for λ−H < 0. If λ−H > 0, we have

λµ + 1 = 1 + H2 + (2− n)H$−n + (1− n)$−2n,

and if λ−H < 0, we have

λµ + 1 = 1 + H2 + (n− 2)H$−n + (1− n)$−2n.

Therefore, if λµ + 1 ≥ 0, we obtain

1 + H2 + (2− n)H$−n + (1− n)$−2n ≥ 0,

for λ−H > 0 and

1 + H2 + (n− 2)H$−n + (1− n)$−2n ≥ 0,

for λ − H < 0. From (3.18) and (3.19), we have d2$
ds2 ≤ 0. Thus d$

ds is a monotonic
function of s ∈ (−∞,+∞). Therefore, $(s) must be monotonic when s tends to
infinity. We see from (3.20) and (3.21) that the positive function of $(s) is bounded.
Since $(s) is bounded and is monotonic when s tends infinity, we find that both
lims→−∞$(s) and lims→+∞$(s) exist and then we have
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(3.22) lim
s→−∞

d$(s)
ds

= lim
s→+∞

d$(s)
ds

= 0.

By the monotonicity of d$
ds , we see that d$

ds ≡ 0 and $(s) is a constant. Then,
by Lemma 3.2, it is easily see that M is isometric to the Riemannian product
S1(

√
1− c2)× Sn−1(c). This completes the proof of Proposition 3.5.

On the other hand, if λµ+1 ≤ 0, from above, we can obtain d2$
ds2 ≥ 0. We see from

(3.20) and (3.21) that the positive function of $(s) is bounded. Combining d2$
ds2 ≥ 0

with the boundedness of $(s), similar to the proof of Proposition 3.5, we know that
$(s) is constant. Then, by Lemma 3.2, it is easily see that M is isometric to the
Riemannian product S1(

√
1− c2)× Sn−1(c). Therefore, we have the following:

Proposition 3.6. Let M be an n(n ≥ 3)-dimensional complete connected hyper-
surface in Sn+1(1) with constant mean curvature H and with two distinct principal
curvatures λ and µ with multiplicities (n− 1) and 1, respectively. If λµ + 1 ≤ 0, then
M is isometric to the Riemannian product S1(

√
1− c2)× Sn−1(c).

Proof of theorem 1.2. Since M has non-zero mean curvature, by the same as-
sertion in the proof of Theorem 1.1, we only have two cases: (3.13) holds on M or
(3.14) holds on M . If (3.13) holds on M , from the proof of Theorem 1.1, we have
λµ + 1 ≥ 0. By Proposition 3.5, we obtain that M is isometric to the Riemannian
product S1(

√
1− c2)×Sn−1(c), where c2 = n−2

nr . If (3.14) holds on M , from the proof
of Theorem 1.1, we have λµ+1 ≤ 0. By Proposition 3.6, we obtain that M is isometric
to the Riemannian product S1(

√
1− c2)× Sn−1(c), where c2 = n−2

nr . This completes
the proof of Theorem 1.2.

Proof of theorem 1.4. We firstly prove that H 6= 0. In fact, if H = 0, from (2.11)
we have S = −n(n−1)(r−1) on M . Since S ≥ (n−1)n(r−1)+2

n−2 + n−2
n(r−1)+2 is equivalent

to

(n− 2)2

n2
[S + n(n− 1)(r − 1)][S − n(r − 1)]

≥ {n + n(r − 1)− (n− 2)
n

[S − n(r − 1)]}2,

we have from S = −n(n− 1)(r − 1) that

(3.23) 0 ≥ {n + n(n− 1)(r − 1)}2.

From (2.23), we have r = n−2
n−1 , this is a contradiction to the assumption that r 6= n−2

n−1 .
If there exists a point x on M such that (3.13) and (3.14) hold at x, that is, we

have S = −n(n− 1)(r − 1) or S = n(r − 1) at x. If S = −n(n− 1)(r − 1) at x, from
(2.11), we have H = 0 at x, this is a contradiction to H 6= 0 on M . If S = n(r − 1)
at x, from (2.11) we have S = nH2 at x, that is, x is a umbilical point on M , this is
a contradiction to M has no umbilical points. Therefore, we only consider two cases:

Case (1). If (3.13) holds on M , we can prove λµ+1 ≥ 0 on M . In fact, if λµ+1 < 0
at a point of M , then at this point
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(n− 2)
n2

√
[S + n(n− 1)(r − 1)][S − n(r − 1)]

< −1− (r − 1) +
(n− 2)

n2
[S − n(r − 1)].

Therefore, we have at this point

(n− 2)2

n2
[S + n(n− 1)(r − 1)][S − n(r − 1)]

< {n + n(r − 1)− (n− 2)
n

[S − n(r − 1)]}2,

this is equivalent to S < (n − 1)n(r−1)+2
n−2 + n−2

n(r−1)+2 at this point, we have a con-

tradiction to S ≥ (n − 1)n(r−1)+2
n−2 + n−2

n(r−1)+2 on M . Therefore, in case (1) we have
λµ + 1 ≥ 0. By Proposition 3.5, we obtain that M is isometric to the Riemannian
product S1(

√
1− c2)× Sn−1(c), where c2 = n−2

nr .
Case (2). If (3.14) holds on M , next we shall prove that λµ + 1 ≤ 0 on M . We

consider three subcases:
(i) If 1 + (r − 1) − (n−2)

n2 [S − n(r − 1)] ≤ 0 on M , then from (3.14), it is obvious
that λµ + 1 ≤ 0 on M .

(ii) If 1+(r−1)− (n−2)
n2 [S−n(r−1)] > 0 on M , from S ≥ (n−1)n(r−1)+2

n−2 + n−2
n(r−1)+2 ,

we have

(n− 2)[n(r − 1) + 2]S ≥ (n− 1)n2(r − 1)2 + 4n(n− 1)(r − 1) + n2,

that is

(n− 2){4n(n− 1)(r − 1) + 2n2 + (n− 2)2n(r − 1)}S
≥ {2n(n− 1)(r − 1) + n2}2 + (n− 2)2n2(n− 1)(r − 1)2.

Hence

{n + n(r − 1)−n− 2
n

[S − n(r − 1)]}2(3.24)

≤ (n− 2)2

n2
{n(n− 1)(r − 1) + S}{S − n(r − 1)}.

Since 1 + (r − 1)− (n−2)
n2 [S − n(r − 1)] > 0 on M , from (3.24), we have

n + n(r − 1)−n− 2
n

[S − n(r − 1)](3.25)

≤ (n− 2)
n

√
[n(n− 1)(r − 1) + S][S − n(r − 1)].

From (3.14), we infer that λµ + 1 ≤ 0 on M .
(iii) If 1 + (r − 1)− (n−2)

n2 [S − n(r − 1)] ≤ 0 at a point p of M and 1 + (r − 1)−
(n−2)

n2 [S−n(r−1)] > 0 at other points of M , in this case, from (i) and (ii), we have at
point p, λµ + 1 ≤ 0 and at other points of M , also λµ + 1 ≤ 0. Therefore, we obtain
λµ + 1 ≤ 0 on M .
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Therefore, we know that if (3.14) holds on M , then λµ + 1 ≤ 0 on M . By Propo-
sition 3.6, we obtain that M is isometric to the Riemannian product S1(

√
1− c2) ×

Sn−1(c), where c2 = n−2
nr . This completes the proof of Theorem 1.4.
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