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Abstract. In this paper we construct the jet geometrical extensions of
the KCC-invariants, which characterize a given second-order system of
differential equations on the 1-jet space J*(R, M). A generalized theorem
of characterization of our jet geometrical KCC-invariants is also presented.
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1 Geometrical objects on 1-jet spaces

We remind first several differential geometrical properties of the 1-jet spaces. The
1-jet bundle
&= (J'R, M), m,R x M)

is a vector bundle over the product manifold R x M, having the fibre of type R",
where n is the dimension of the spatial manifold M. If the spatial manifold M has
the local coordinates (z%) i—Tm» then we shall denote the local coordinates of the 1-jet

total space JY(R, M) by (t,z¢,2}); these transform by the rules [13]

(1) T =)
o oxtdt
LT i g

In the geometrical study of the 1-jet bundle, a central role is played by the distin-
guished tensors (d—tensors).

Definition 1.1. A geometrical object D = (Di;(é))((llg) on the 1-jet vector bundle,
whose local components transform by the rules

(12)  DHOW- _ piam)..di 0z’ (axﬂ' dt~> di 93" <ais dt>

*y

(@) = Zr W) groge \ ozm dt | dt 0x% \ 9z dt )

is called a d—tensor field.
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Remark 1.2. The use of parentheses for certain indices of the local components

Li(j)(1)...
le(Jl)(l)...

of the distinguished tensor field D on the 1-jet space is motivated by the fact that

the pair of indices ” 8% 7 or” Ell)) ” behaves like a single index.

Example 1.3. The geometrical object

_cw 9
c=C () 3t
where CE?) = z¢, represents a d—tensor field on the 1-jet space; this is called the

canonical Liouville d—tensor field of the 1-jet bundle and is a global geometrical
object.

Example 1.4. Let h = (h11(t)) be a Riemannian metric on the relativistic time axis
R. The geometrical object

_ 7@ J
Jy = ‘](l)lj 81‘11 ® dt @ dz’?,
where J((;;lj = h115§ is a d—tensor field on J*(R, M), which is called the h-normalization

d—tensor field of the 1-jet space and is a global geometrical object.

In the Riemann-Lagrange differential geometry of the 1-jet spaces developed in
[12], [13] important roles are also played by geometrical objects as the temporal or
spatial semisprays, together with the jet nonlinear connections.

Definition 1.5. A set of local functions H = (H((i))l) on J*(R, M), which transform
by the rules

dt

1.3 ofg ™) — o9 I
(1.3) 1 oxi  dt ot’

dt\? oz*  dt ozt
()1 ()1

is called a temporal semispray on J'(R, M).

Example 1.6. Let us consider a Riemannian metric h = (h11(¢)) on the temporal

manifold R and let
At dhyy

2 at’
where h'! = 1/hq1, be its Christoffel symbol. Taking into account that we have the
transformation rule

1 _
Hll_

~ dt  dt d*t
14 I‘I1 = I{1 *~+ T T~
( ) 11 Hdt dt 42

we deduce that the local components

o (s 1 .
H{), = —5 Hirl

define a temporal semispray H= (H((f))l) on JY(R, M). This is called the canonical

temporal semispray associated to the temporal metric h(t).
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Definition 1.7. A set of local functions G = (GE{%I) , which transform by the rules

- z
Ori 97 Hxzm”V

~ . 2 ~k m ~L 4
(15) 2G()) =:2G8§1<j;> 57~ 57 g

is called a spatial semispray on J1(R, M).

Example 1.8. Let ¢ = (p;;(x)) be a Riemannian metric on the spatial manifold M

and let us consider ,
e <3<ij Ookm 880jk)

Tik = 2 oxk oxJ ox™

its Christoffel symbols. Taking into account that we have the transformation rules

, 07P 027 9xF  oxP 9%t

e B
(1.6) Yar = Vik g0t 974 97" Ol 07107

we deduce that the local components

o (s 1 .
68, = fut

define a spatial semispray G = (GE{%) on JY(R, M). This is called the canonical
spatial semispray associated to the spatial metric p(x).

Definition 1.9. A set of local functions I"' = (M(j) N(j)

OI% (1)z’) on J'(R, M), which

transform by the rules

2 gzk ~k
TR _ g (dt\T0z"  dt Oy
.7 Mm—Mmgﬁaﬂ dt ot

and

k) _ (j)@@@_@@
(1.8) N =Ny 5o 907 ~ 0 g’

is called a nonlinear connection on the 1-jet space J'(R, M).

Example 1.10. Let us consider that (R,hi1(t)) and (M, ¢;;(x)) are Riemannian
manifolds having the Christoffel symbols Hj, (t) and ~}; (). Then, using the trans-
formation rules (1.1), (1.4) and (1.6), we deduce that the set of local functions

S () Ar(G)

I'= (M(1)17N(1)¢) J
where - ‘ ) 4

M3, = —H};x} and Ny = Vil

represents a nonlinear connection on the 1-jet space J!(R, M). This jet nonlinear
connection is called the canonical nonlinear connection attached to the pair of Rie-
mannian metrics (h(t), p(z)).
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In the sequel, let us study the geometrical relations between temporal or spatial
semisprays and nonlinear connections on the 1-jet space J'(R, M). In this direction,
using the local transformation laws (1.3), (1.7) and (1.1), respectively the transfor-
mation laws (1.5), (1.8) and (1.1), by direct local computation, we find the following
geometrical results:

Theorem 1.11. a) The temporal semisprays H = (H((f))l) and the sets of temporal

— €)
Fzfempoml = (M(1)1
spondence on the 1-jet space J*(R, M), via:

components of nonlinear connections ) are in one-to-one corre-

G) _ opr(d) G _ L0
Mgy, = 2H 3, Hiy = 2M(1)1.

b) The spatial semisprays G = (nglgl

N((f))k) are connected on the 1-jet space J'(R, M),

) and the sets of spatial components of

nonlinear connections I spatial = (

via the relations:

, oG4 , 1
G _ (1)1 @) _ A m
N, = aak G(1)1 = 2N(1)mx1 :

2 Jet geometrical KCC-theory

In this Section we generalize on the 1-jet space J!(R, M) the basics of the KCC-
theory ([1], [4], [7], [14]). In this respect, let us consider on J!(R, M) a second-order
system of differential equations of local form

'zt G

(2.1) ==+ Fon

(t,xk,xk) =0, i=1,n,

where 2% = dz* /dt and the local components F((li; L(t, 2%, z}) transform under a change
of coordinates (1.1) by the rules

(2.2) E =FY

dt\? oz dt oz da™ T
M1~ Fan

=) 5 e o g

Remark 2.1. The second-order system of differential equations (2.1) is invariant
under a change of coordinates (1.1).

Using a temporal Riemannian metric hi1(t) on R and taking into account the
transformation rules (1.3) and (1.5), we can rewrite the SODEs (2.1) in the following
form: .y

d=z' i i .
proe Hz\ + QGgl))l(tgrk,xk) =0, i=1,n,

where 1 L
(i) _ (1) 1,
G(l)l = §F(1)1 + §H111‘1

are the components of a spatial semispray on J!(R, M). Moreover, the coefficients
of the spatial semispray Ggll))l produce the spatial components IV ((11;] of a nonlinear
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connection I' on the 1-jet space J!(R, M), by putting

(9 (@)
yo 2% 1900 1 s
W7 e 2 02 20T

In order to find the basic jet differential geometrical invariants of the system (2.1)
(see Kosambi [11], Cartan [9] and Chern [10]) under the jet coordinate transformations

(1.1), we define the h— KCC-covariant derivative of a d—tensor of kind T((li; (t, 2%, xF)
on the 1-jet space J1(R, M) via

h . .
pr) ary) , 4
W _ Y, no g0 g6
@ = a TN To T HnTh =
0 0
Aoy 1980000 1 )
a2 gzp (M 27y

where the Einstein summation convention is used throughout.

DT®
dé D) transform under

Remark 2.2. The h—KCC-covariant derivative components

a change of coordinates (1.1) as a d—tensor of type T((li))l.

In such a geometrical context, if we use the notation x} = dx?/dt, then the system
(2.1) can be rewritten in the following distinguished tensorial form:

h .
Da? i i) r i
dtl = _F((1§1(t7$k7$11€) + N((lgriﬁ —Hjj2} =
(1)
i 10Fqy, 1 i
= _F((1§1+§ 83(:3 1_§H111x17
1

Definition 2.3. The distinguished tensor

(4)
10F 1 .
(1)155; - §H1113311

hiy _ () =
Eapn = —Fan + 2 Oat

is called the first h— KCC-invariant on the 1-jet space J'(R, M) of the SODEs (2.1),
which is interpreted as an external force [1], [7].

Example 2.4. It can be easily seen that for the particular first order jet rheonomic
dynamical system

i i (4) (4)
(2.3) B x4ty » T8 20 K
dt O dt? ot dam "1
where X((g (t,z) is a given d—tensor on J(R, M), the first h—KCC-invariant has the
form

}El(;)l = :'Cl llxi.
) ot 2 Oxr 2
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In the sequel, let us vary the trajectories x (t) of the system (2.1) by the nearby
trajectories (T'(t,5))se(—ec,c), Where T'(¢,0) = z*(t). Then, considering the variation
d—tensor field

4 o'
2
)= ==
€)= 5, »
we get the variational equations
i (@) @
(2.4) e Wlei 4 OFander _
' dt? OxI ozt dt

In order to find other jet geometrical invariants for the system (2.1), we also
introduce the h—KCC-covariant derivative of a d—tensor of kind £'(t) on the 1-jet
space JY(R, M) via

f a (1)

1)m€ = +5 ) 8 m f *H111§-

ho
D¢ dfz
dt dt

h

i

Remark 2.5. The h— KCC-covariant derivative components transform under a

dt
change of coordinates (1.1) as a d—tensor T((1§

In this geometrical context, the variational equations (2.4) can be rewritten in the
following distinguished tensorial form:

D [pei|
df dt = P;zllgmv
where
h aF(l) 1 aZF(Z) 1 aQF(Z) . 1 a2F(Z)

11 (1)1 T
Piy = ——wr 17701 L g

drl 2 otoxd 2azrax1 b 281:’6x ™

(4)
1 8F(1)1 8F(1)1 1 dHll 51
4 8.231 axl 2 dt J

1 7
- ZH}lHlllaj.

Definition 2.6. The d—tensor P 111 is called the second h—KCC-invariant on the
1-jet space J1(R, M) of the system (2.1), or the jet h—deviation curvature d—tensor.

Example 2.7. If we consider the second-order system of differential equations of the
harmonic curves associated to the pair of Riemannian metrics (h11(t), pi;(x)), system
which is given by (see the Examples 1.6 and 1.8)
d%x dx? , dx? dx®
-2 Hl -
at? ()dt )

where H{;(t) and v}, () are the Christoffel symbols of the Riemannian metrics hy1(t)
and ¢;;(x), then the second h—KCC-invariant has the form

=0,

h
1 7
lel quy‘rlzla
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where ) )
_ g Oy

R;qj T i Oxd TpgVri — 71)]'7:'11

are the components of the curvature of the spatial Riemannian metric ¢;;(x). Conse-
quently, the variational equations (2.4) become the following jet Jacobi field equations:

h [h .
D Dgl 7 m
i | | + Bramtaten =0,
where
Bﬁi df’
= T hmae

Example 2.8. For the particular first order jet rheonomic dynamical system (2.3)
the jet h—deviation curvature d—tensor is given by

(i) <>
]hD? 10X 1) 1 82X(1) e 19X, aX 1 dHllé*z 1
T 9 9oz | 20030z L 4 axr 8901 2 dt 7 4

~H{,H} 5;'. )

Definition 2.9. The distinguished tensors

h h h
P _ 1 8P3’11 _ 8P}€11 b _ aRzkl
and 0
O3F
Dil (1)1

jkm — i
! Oz 0zkox

are called the third, fourth and fifth h— KCC-invariant on the 1-jet vector bundle
JYR, M) of the system (2.1).

Remark 2.10. Taking into account the transformation rules (2.2) of the components

F ((1;1, we immediately deduce that the components D% behave like a d—tensor.

jkm

Example 2.11. For the first order jet rheonomic dynamical system (2.3) the third,
fourth and fifth h—KCC-invariants are zero.

Theorem 2.12 (of characterization of the jet h—KCC-invariants). All the five
h—KCC-invariants of the system (2.1) cancel on J*(R, M) if and only if there exists
a flat symmetric linear connection F;k(x) on M such that

(2.5) Fy), =Th (x)ahaf — H}, (t)}

Proof. 7<” By a direct calculation, we obtain

h

E))l =0, P3‘11 = m;q]xlxl =0 and ngl 0,
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where i)‘i;qj = 0 are the components of the curvature of the flat symmetric linear
connection I'%; () on M.
”=" By integration, the relation

3 (%)
pDil — 0 F(l)l —
gkl — k) ja kol -
11027107
subsequently leads to
9*F) oF) ,
mr i ML _ opi (1)
oo 205, (t,2) = ol = 20,08 + Uy, (t @) =
(1) _ v (4) (i)
= F(l)l = quxii)xtll +u(1)p.%'11) + V(l)l(t,l‘),

where the local functions I‘;k(t, x) are symmetrical in the indices j and k.

The equality 28))1 =0 on JY(R, M) leads us to V((gl =0 andto Z/l((ligj = 7H1115§.

Consequently, we have

OF )

1)1 i i i i i

ol = 2I,x) — Hlll(S;» and F((lgl =T,z ] — Hizy.
1

h . 4
. The chdition Py =0 on JY(R, M) implies the equalities I = T (x) and
R+ R . =0, where

Pqj qpj

) or ort . ) )
7 _ rq pJ s 7 s 7
s)E{qu T oz Ozt + qurrj - Fm'rrq'

It is important to note that, taking into account the transformation laws (2.2), (1.3)
and (1.1), we deduce that the local coefficients F; () behave like a symmetric linear

connection on M. Consequently, %;qj represent the curvature of this symmetric linear
connection. .

On the other hand, the equality ;kl = 0 leads us to %éjk = 0, which infers that
the symmetric linear connection F;k(x) on M is flat. ]
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