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Abstract. In this paper we construct the jet geometrical extensions of
the KCC-invariants, which characterize a given second-order system of
differential equations on the 1-jet space J1(R, M). A generalized theorem
of characterization of our jet geometrical KCC-invariants is also presented.
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1 Geometrical objects on 1-jet spaces

We remind first several differential geometrical properties of the 1-jet spaces. The
1-jet bundle

ξ = (J1(R,M), π1,R×M)

is a vector bundle over the product manifold R × M , having the fibre of type Rn,
where n is the dimension of the spatial manifold M . If the spatial manifold M has
the local coordinates (xi)i=1,n, then we shall denote the local coordinates of the 1-jet
total space J1(R,M) by (t, xi, xi

1); these transform by the rules [13]

(1.1)





t̃ = t̃(t)

x̃i = x̃i(xj)

x̃i
1 =

∂x̃i

∂xj

dt

dt̃
· xj

1.

In the geometrical study of the 1-jet bundle, a central role is played by the distin-
guished tensors (d−tensors).

Definition 1.1. A geometrical object D =
(
D

1i(j)(1)...
1k(1)(l)...

)
on the 1-jet vector bundle,

whose local components transform by the rules

(1.2) D
1i(j)(1)...
1k(1)(u)... = D̃

1p(m)(1)...
1r(1)(s)...

dt

dt̃

∂xi

∂x̃p

(
∂xj

∂x̃m

dt̃

dt

)
dt̃

dt

∂x̃r

∂xk

(
∂x̃s

∂xu

dt

dt̃

)
...,

is called a d−tensor field.
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Remark 1.2. The use of parentheses for certain indices of the local components

D
1i(j)(1)...
1k(1)(l)...

of the distinguished tensor field D on the 1-jet space is motivated by the fact that
the pair of indices ” (j)

(1) ” or ” (1)
(l) ” behaves like a single index.

Example 1.3. The geometrical object

C = C(i)
(1)

∂

∂xi
1

,

where C(i)
(1) = xi

1, represents a d−tensor field on the 1-jet space; this is called the
canonical Liouville d−tensor field of the 1-jet bundle and is a global geometrical
object.

Example 1.4. Let h = (h11(t)) be a Riemannian metric on the relativistic time axis
R. The geometrical object

Jh = J
(i)
(1)1j

∂

∂xi
1

⊗ dt⊗ dxj ,

where J
(i)
(1)1j = h11δ

i
j is a d−tensor field on J1(R,M), which is called the h-normalization

d−tensor field of the 1-jet space and is a global geometrical object.

In the Riemann-Lagrange differential geometry of the 1-jet spaces developed in
[12], [13] important rôles are also played by geometrical objects as the temporal or
spatial semisprays, together with the jet nonlinear connections.

Definition 1.5. A set of local functions H =
(
H

(j)
(1)1

)
on J1(R,M), which transform

by the rules

(1.3) 2H̃
(k)
(1)1 = 2H

(j)
(1)1

(
dt

dt̃

)2
∂x̃k

∂xj
− dt

dt̃

∂x̃k
1

∂t
,

is called a temporal semispray on J1(R, M).

Example 1.6. Let us consider a Riemannian metric h = (h11(t)) on the temporal
manifold R and let

H1
11 =

h11

2
dh11

dt
,

where h11 = 1/h11, be its Christoffel symbol. Taking into account that we have the
transformation rule

(1.4) H̃1
11 = H1

11

dt

dt̃
+

dt̃

dt

d2t

dt̃2
,

we deduce that the local components

H̊
(j)
(1)1 = −1

2
H1

11x
j
1

define a temporal semispray H̊ =
(
H̊

(j)
(1)1

)
on J1(R,M). This is called the canonical

temporal semispray associated to the temporal metric h(t).
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Definition 1.7. A set of local functions G =
(
G

(j)
(1)1

)
, which transform by the rules

(1.5) 2G̃
(k)
(1)1 = 2G

(j)
(1)1

(
dt

dt̃

)2
∂x̃k

∂xj
− ∂xm

∂x̃j

∂x̃k
1

∂xm
x̃j

1,

is called a spatial semispray on J1(R, M).

Example 1.8. Let ϕ = (ϕij(x)) be a Riemannian metric on the spatial manifold M
and let us consider

γi
jk =

ϕim

2

(
∂ϕjm

∂xk
+

∂ϕkm

∂xj
− ∂ϕjk

∂xm

)

its Christoffel symbols. Taking into account that we have the transformation rules

(1.6) γ̃p
qr = γi

jk

∂x̃p

∂xi

∂xj

∂x̃q

∂xk

∂x̃r
+

∂x̃p

∂xl

∂2xl

∂x̃q∂x̃r
,

we deduce that the local components

G̊
(j)
(1)1 =

1
2
γj

klx
k
1xl

1

define a spatial semispray G̊ =
(
G̊

(j)
(1)1

)
on J1(R, M). This is called the canonical

spatial semispray associated to the spatial metric ϕ(x).

Definition 1.9. A set of local functions Γ =
(
M

(j)
(1)1, N

(j)
(1)i

)
on J1(R,M), which

transform by the rules

(1.7) M̃
(k)
(1)1 = M

(j)
(1)1

(
dt

dt̃

)2
∂x̃k

∂xj
− dt

dt̃

∂x̃k
1

∂t

and

(1.8) Ñ
(k)
(1)l = N

(j)
(1)i

dt

dt̃

∂xi

∂x̃l

∂x̃k

∂xj
− ∂xm

∂x̃l

∂x̃k
1

∂xm
,

is called a nonlinear connection on the 1-jet space J1(R,M).

Example 1.10. Let us consider that (R, h11(t)) and (M, ϕij(x)) are Riemannian
manifolds having the Christoffel symbols H1

11(t) and γi
jk(x). Then, using the trans-

formation rules (1.1), (1.4) and (1.6), we deduce that the set of local functions

Γ̊ =
(
M̊

(j)
(1)1, N̊

(j)
(1)i

)
,

where
M̊

(j)
(1)1 = −H1

11x
j
1 and N̊

(j)
(1)i = γj

imxm
1 ,

represents a nonlinear connection on the 1-jet space J1(R,M). This jet nonlinear
connection is called the canonical nonlinear connection attached to the pair of Rie-
mannian metrics (h(t), ϕ(x)).
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In the sequel, let us study the geometrical relations between temporal or spatial
semisprays and nonlinear connections on the 1-jet space J1(R,M). In this direction,
using the local transformation laws (1.3), (1.7) and (1.1), respectively the transfor-
mation laws (1.5), (1.8) and (1.1), by direct local computation, we find the following
geometrical results:

Theorem 1.11. a) The temporal semisprays H = (H(j)
(1)1) and the sets of temporal

components of nonlinear connections Γtemporal = (M (j)
(1)1) are in one-to-one corre-

spondence on the 1-jet space J1(R,M), via:

M
(j)
(1)1 = 2H

(j)
(1)1, H

(j)
(1)1 =

1
2
M

(j)
(1)1.

b) The spatial semisprays G = (G(j)
(1)1) and the sets of spatial components of

nonlinear connections Γspatial = (N (j)
(1)k) are connected on the 1-jet space J1(R,M),

via the relations:

N
(j)
(1)k =

∂G
(j)
(1)1

∂xk
1

, G
(j)
(1)1 =

1
2
N

(j)
(1)mxm

1 .

2 Jet geometrical KCC-theory

In this Section we generalize on the 1-jet space J1(R,M) the basics of the KCC-
theory ([1], [4], [7], [14]). In this respect, let us consider on J1(R,M) a second-order
system of differential equations of local form

(2.1)
d2xi

dt2
+ F

(i)
(1)1(t, x

k, xk
1) = 0, i = 1, n,

where xk
1 = dxk/dt and the local components F

(i)
(1)1(t, x

k, xk
1) transform under a change

of coordinates (1.1) by the rules

(2.2) F̃
(r)
(1)1 = F

(j)
(1)1

(
dt

dt̃

)2
∂x̃r

∂xj
− dt

dt̃

∂x̃r
1

∂t
− ∂xm

∂x̃j

∂x̃r
1

∂xm
x̃j

1.

Remark 2.1. The second-order system of differential equations (2.1) is invariant
under a change of coordinates (1.1).

Using a temporal Riemannian metric h11(t) on R and taking into account the
transformation rules (1.3) and (1.5), we can rewrite the SODEs (2.1) in the following
form:

d2xi

dt2
−H1

11x
i
1 + 2G

(i)
(1)1(t, x

k, xk
1) = 0, i = 1, n,

where
G

(i)
(1)1 =

1
2
F

(i)
(1)1 +

1
2
H1

11x
i
1

are the components of a spatial semispray on J1(R,M). Moreover, the coefficients
of the spatial semispray G

(i)
(1)1 produce the spatial components N

(i)
(1)j of a nonlinear
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connection Γ on the 1-jet space J1(R, M), by putting

N
(i)
(1)j =

∂G
(i)
(1)1

∂xj
1

=
1
2

∂F
(i)
(1)1

∂xj
1

+
1
2
H1

11δ
i
j .

In order to find the basic jet differential geometrical invariants of the system (2.1)
(see Kosambi [11], Cartan [9] and Chern [10]) under the jet coordinate transformations
(1.1), we define the h−KCC-covariant derivative of a d−tensor of kind T

(i)
(1)(t, x

k, xk
1)

on the 1-jet space J1(R,M) via

h

DT
(i)
(1)

dt
=

dT
(i)
(1)

dt
+ N

(i)
(1)rT

(r)
(1) −H1

11T
(i)
(1) =

=
dT

(i)
(1)

dt
+

1
2

∂F
(i)
(1)1

∂xr
1

T
(r)
(1) −

1
2
H1

11T
(i)
(1),

where the Einstein summation convention is used throughout.

Remark 2.2. The h−KCC-covariant derivative components

h

DT
(i)
(1)

dt
transform under

a change of coordinates (1.1) as a d−tensor of type T (i)
(1)1.

In such a geometrical context, if we use the notation xi
1 = dxi/dt, then the system

(2.1) can be rewritten in the following distinguished tensorial form:

h

Dxi
1

dt
= −F

(i)
(1)1(t, x

k, xk
1) + N

(i)
(1)rx

r
1 −H1

11x
i
1 =

= −F
(i)
(1)1 +

1
2

∂F
(i)
(1)1

∂xr
1

xr
1 −

1
2
H1

11x
i
1,

Definition 2.3. The distinguished tensor

h
ε
(i)
(1)1 = −F

(i)
(1)1 +

1
2

∂F
(i)
(1)1

∂xr
1

xr
1 −

1
2
H1

11x
i
1

is called the first h−KCC-invariant on the 1-jet space J1(R,M) of the SODEs (2.1),
which is interpreted as an external force [1], [7].

Example 2.4. It can be easily seen that for the particular first order jet rheonomic
dynamical system

(2.3)
dxi

dt
= X

(i)
(1)(t, x

k) ⇒ d2xi

dt2
=

∂X
(i)
(1)

∂t
+

∂X
(i)
(1)

∂xm
xm

1 ,

where X
(i)
(1)(t, x) is a given d−tensor on J1(R, M), the first h−KCC-invariant has the

form
h
ε
(i)
(1)1 =

∂X
(i)
(1)

∂t
+

1
2

∂X
(i)
(1)

∂xr
xr

1 −
1
2
H1

11x
i
1.
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In the sequel, let us vary the trajectories xi(t) of the system (2.1) by the nearby
trajectories (xi(t, s))s∈(−ε,ε), where xi(t, 0) = xi(t). Then, considering the variation
d−tensor field

ξi(t) =
∂xi

∂s

∣∣∣∣
s=0

,

we get the variational equations

(2.4)
d2ξi

dt2
+

∂F
(i)
(1)1

∂xj
ξj +

∂F
(i)
(1)1

∂xr
1

dξr

dt
= 0.

In order to find other jet geometrical invariants for the system (2.1), we also
introduce the h−KCC-covariant derivative of a d−tensor of kind ξi(t) on the 1-jet
space J1(R,M) via

h

Dξi

dt
=

dξi

dt
+ N

(i)
(1)mξm =

dξi

dt
+

1
2

∂F
(i)
(1)1

∂xm
1

ξm +
1
2
H1

11ξ
i.

Remark 2.5. The h−KCC-covariant derivative components

h

Dξi

dt
transform under a

change of coordinates (1.1) as a d−tensor T
(i)
(1).

In this geometrical context, the variational equations (2.4) can be rewritten in the
following distinguished tensorial form:

h

D

dt




h

Dξi

dt


 =

h

P i
m11ξ

m,

where

h

P i
j11 = −

∂F
(i)
(1)1

∂xj
+

1
2

∂2F
(i)
(1)1

∂t∂xj
1

+
1
2

∂2F
(i)
(1)1

∂xr∂xj
1

xr
1 −

1
2

∂2F
(i)
(1)1

∂xr
1∂xj

1

F
(r)
(1)1 +

+
1
4

∂F
(i)
(1)1

∂xr
1

∂F
(r)
(1)1

∂xj
1

+
1
2

dH1
11

dt
δi
j −

1
4
H1

11H
1
11δ

i
j .

Definition 2.6. The d−tensor
h

P i
j11 is called the second h−KCC-invariant on the

1-jet space J1(R,M) of the system (2.1), or the jet h−deviation curvature d−tensor.

Example 2.7. If we consider the second-order system of differential equations of the
harmonic curves associated to the pair of Riemannian metrics (h11(t), ϕij(x)), system
which is given by (see the Examples 1.6 and 1.8)

d2xi

dt2
−H1

11(t)
dxi

dt
+ γi

jk(x)
dxj

dt

dxk

dt
= 0,

where H1
11(t) and γi

jk(x) are the Christoffel symbols of the Riemannian metrics h11(t)
and ϕij(x), then the second h−KCC-invariant has the form

h

P i
j11 = −Ri

pqjx
p
1x

q
1,
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where

Ri
pqj =

∂γi
pq

∂xj
− ∂γi

pj

∂xq
+ γr

pqγ
i
rj − γr

pjγ
i
rq

are the components of the curvature of the spatial Riemannian metric ϕij(x). Conse-
quently, the variational equations (2.4) become the following jet Jacobi field equations:

h

D

dt




h

Dξi

dt


 + Ri

pqmxp
1x

q
1ξ

m = 0,

where
h

Dξi

dt
=

dξi

dt
+ γi

jmxj
1ξ

m.

Example 2.8. For the particular first order jet rheonomic dynamical system (2.3)
the jet h−deviation curvature d−tensor is given by

h

P i
j11 =

1
2

∂2X
(i)
(1)

∂t∂xj
+

1
2

∂2X
(i)
(1)

∂xj∂xr
xr

1 +
1
4

∂X
(i)
(1)

∂xr

∂X
(r)
(1)

∂xj
+

1
2

dH1
11

dt
δi
j −

1
4
H1

11H
1
11δ

i
j .

Definition 2.9. The distinguished tensors

h

Ri
jk1 =

1
3




∂
h

P i
j11

∂xk
1

− ∂
h

P i
k11

∂xj
1


 ,

h

Bi
jkm =

∂
h

Ri
jk1

∂xm
1

and

Di1
jkm =

∂3F
(i)
(1)1

∂xj
1∂xk

1∂xm
1

are called the third, fourth and fifth h−KCC-invariant on the 1-jet vector bundle
J1(R,M) of the system (2.1).

Remark 2.10. Taking into account the transformation rules (2.2) of the components
F

(i)
(1)1, we immediately deduce that the components Di1

jkm behave like a d−tensor.

Example 2.11. For the first order jet rheonomic dynamical system (2.3) the third,
fourth and fifth h−KCC-invariants are zero.

Theorem 2.12 (of characterization of the jet h−KCC-invariants). All the five
h−KCC-invariants of the system (2.1) cancel on J1(R, M) if and only if there exists
a flat symmetric linear connection Γi

jk(x) on M such that

(2.5) F
(i)
(1)1 = Γi

pq(x)xp
1x

q
1 −H1

11(t)x
i
1.

Proof. ”⇐” By a direct calculation, we obtain

h
ε
(i)
(1)1 = 0,

h

P i
j11 = −Ri

pqjx
p
1x

q
1 = 0 and Di1

jkl = 0,
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where Ri
pqj = 0 are the components of the curvature of the flat symmetric linear

connection Γi
jk(x) on M.

”⇒” By integration, the relation

Di1
jkl =

∂3F
(i)
(1)1

∂xj
1∂xk

1∂xl
1

= 0

subsequently leads to

∂2F
(i)
(1)1

∂xj
1∂xk

1

= 2Γi
jk(t, x) ⇒

∂F
(i)
(1)1

∂xj
1

= 2Γi
jpx

p
1 + U (i)

(1)j(t, x) ⇒

⇒ F
(i)
(1)1 = Γi

pqx
p
1x

q
1 + U (i)

(1)px
p
1 + V(i)

(1)1(t, x),

where the local functions Γi
jk(t, x) are symmetrical in the indices j and k.

The equality
h
ε
(i)
(1)1 = 0 on J1(R,M) leads us to V(i)

(1)1 = 0 and to U (i)
(1)j = −H1

11δ
i
j .

Consequently, we have

∂F
(i)
(1)1

∂xj
1

= 2Γi
jpx

p
1 −H1

11δ
i
j and F

(i)
(1)1 = Γi

pqx
p
1x

q
1 −H1

11x
i
1.

The condition
h

P i
j11 = 0 on J1(R,M) implies the equalities Γi

jk = Γi
jk(x) and

Ri
pqj + Ri

qpj = 0, where

Ri
pqj =

∂Γi
pq

∂xj
− ∂Γi

pj

∂xq
+ Γr

pqΓ
i
rj − Γr

pjΓ
i
rq.

It is important to note that, taking into account the transformation laws (2.2), (1.3)
and (1.1), we deduce that the local coefficients Γi

jk(x) behave like a symmetric linear
connection on M. Consequently, Ri

pqj represent the curvature of this symmetric linear
connection.

On the other hand, the equality
h

Ri
jk1 = 0 leads us to Ri

qjk = 0, which infers that
the symmetric linear connection Γi

jk(x) on M is flat. ¤
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E-mail: mircea.neagu@unitbv.ro
Website: http://www.2collab.com/user:mirceaneagu


