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Abstract. From a spray space S on a manifold M we construct a new
geometric space P of larger dimension with the following properties: (i)
geodesics in P are in one-to-one correspondence with parallel Jacobi fields
of M ; (ii) P is complete if and only if S is complete; (iii) if two geodesics
in P meet at one point, the geodesics coincide on their common domain,
and P has no conjugate points; (iv) there exists a submersion that maps
geodesics in P into geodesics on M .

The space P is constructed by first taking two complete lifts of spray S.
This will give a spray Scc on the second iterated tangent bundle TTM .
Then space P is obtained by restricting tangent vectors of geodesics for
Scc onto a suitable (2 dim M + 2)-dimensional submanifold of TTTM .
Due to the last restriction, the space P is not a spray space. However,
the construction shows that conjugate points can be removed if we add
dimensions and relax assumptions on the geometric structure.
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Key words: spray space; geodesic spray; geodesic variation; complete lift; conjugate
points; sub-spray.

1 Introduction

Suppose S is a spray on a manifold M . In this paper we show how to construct a
new geometric space P that is based on S, but such that P has no conjugate points.
This is done in three steps:

(i) We start with a spray S on a manifold M . For example, S could be the geodesic
spray for a Riemannian metric, a Finsler metric, or a non-linear connection
[5, 7, 23, 24].

(ii) Next we take two complete lifts of S (see below). The first complete lift Sc

gives a spray on TM whose geodesics are Jacobi fields on M . Similarly, the
second complete lift gives a spray Scc on TTM whose geodesics can be described
as Jacobi fields for geodesics for Sc. That is, geodesics of Sc describe linear
deviation of nearby geodesics in M , and geodesics of Scc describe second order
deviation of nearby geodesics in M .
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(iii) In the last step, we restrict tangent vectors of geodesics of Scc onto a submanifold
∆ ⊂ TTTM that is invariant under the geodesic flow of Scc. By choosing
∆ in a suitable way, we obtain a space P where geodesics are in one-to-one
correspondence with parallel Jacobi fields in M .

In step (ii) the original spray S is lifted twice using the complete lift. Essentially,
the complete lift can be seen as a geometrization of the Jacobi equation. For example,
if we start with a (pseudo-)Riemannian metric g on M , the complete lift of g gives a
pseudo-Riemannian metric gc on TM whose geodesics are Jacobi fields on M . This
means that Jacobi fields on M can be treated as solutions to a geodesic equation on
TM , whence there is no need for a separate Jacobi equation. In this work we will use
the complete lift of a spray. For affine sprays, this complete lift was introduced by A.
Lewis [20]. In the Riemannian context, the complete lift is also known as the Riemann
extension, and for a discussion about the complete lift in other contexts, see [6]. In
step (ii), we need to study sprays on manifolds M, TM , and TTM and also complete
lifts of sprays on M and TM . To avoid studying all these cases separately we first
study sprays and complete lifts on iterated tangent bundles of arbitrary order. This
is the topic of Sections 2-6. One advantage of studying the Jacobi equation using the
complete lift is that it simplifies certain aspects of Jacobi fields. For example, using
the complete lift the Jacobi equation for a spray is essentially a direct consequence of
the chain rule and the canonical involutions on TTM and TTTM (see remark after
Proposition 6.3).

In step (iii) the phase space of spray Scc on TTM is restricted to a submanifold
∆ ⊂ TTTM . By choosing ∆ suitably, we define a geometry P where geodesics are in
one-to-one correspondence with parallel Jacobi fields. The geometry of sprays that
have been restricted in this way is described in Section 7. For previous work on sprays
with restricted phase space, see [2, 18, 19]. The space P is constructed and discussed
in Section 8. Here we show that P has no conjugate points. We also show that the
canonical submersion π : TTM → M maps geodesics in P into geodesics in M . Hence
the geometry of P can be used to study dynamical properties of M .

Let us emphasize that due to the restriction in step (iii), space P is not a spray
space. It seems that to remove conjugate points, some relaxation of the underlying
geometric structure is needed. For example, in Riemannian geometry the assumption
that a manifold has no conjugate points can have strong implications.

(i) Suppose M is an n-torus with a Riemannian metric. Then the no-conjugate
assumption implies that M is flat [8, 14].

(ii) Suppose M is a Riemannian manifold such that M is complete, simply con-
nected, dim M ≥ 3, and M is flat outside a compact set. Then the no-conjugate
assumption implies that M is isometric to Rn [10].

See also [9, 11, 22]. If one relaxes the assumption on the geometric structure, then the
no-conjugate assumption becomes weaker; on the 2-torus, there are non-flat affine con-
nections without conjugate points [15], and on the n-torus there are non-flat Finsler
metrics without conjugate points [11].

We will not study applications. However, let us note that there are many prob-
lems in both mathematics and physics where a proper understanding of conjugate
points and multi-path phenomena seem to be important. For example, in traveltime
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tomography a typical assumption is that the manifold has no conjugate points. See
[9, 25]. Another example is geometric optics, where conjugate points are problematic
since they lead to caustics, where the amplitude becomes infinite.

2 Preliminaries

We assume that M is a smooth manifold without boundary and with finite dimension
n ≥ 1. By smooth we mean that M is a topological Hausdorff space with countable
base that is locally homeomorphic to Rn, and transition maps are C∞-smooth. All
objects are assumed to be C∞-smooth on their domains.

By (TM, π0,M) we mean the tangent bundle of M . For r ≥ 1, let T rM =
T · · ·TM be the r:th iterated tangent bundle, and for r = 0 let T 0M = M . For
example, when r = 2 we obtain the second tangent bundle TTM [4, 13], and in
general T r+1M = TT rM for r ≥ 0.

For a tangent bundle T r+1M where r ≥ 0, we denote the canonical projection
operator by πr : T r+1M → T rM . Occasionally we also write πTTM→M , πTM→M , . . .
instead of π0 ◦ π1, π0, . . .. Unless otherwise specified, we always use canonical local
coordinates (induced by local coordinates on M) for iterated tangent bundles. If xi

are local coordinates for T rM for some r ≥ 0, we denote induced local coordinates
for T r+1M , T r+2M , and T r+3M by

(x, y), (x, y, X, Y ), (x, y, X, Y, u, v, U, V ).

As above, we usually leave out indices for local coordinates and write (x, y) instead
of (xi, yi).

For r ≥ 1, we treat T rM as a vector bundle over the manifold T r−1M with the
vector space structure induced by projection πr−1 : T rM → T r−1M unless otherwise
specified. Thus, if {xi : i = 1, . . . , 2r−1n} are local coordinates for T r−1M , and (x, y)
are local coordinates for T rM , then vector addition and scalar multiplication are
given by

(x, y) + (x, ỹ) = (x, y + ỹ),(2.1)
λ · (x, y) = (x, λy).(2.2)

If x ∈ T rM and r ≥ 0 we define

T r+1
x M = {ξ ∈ T r+1M : πr(ξ) = x}.

For r ≥ 0, a vector field on an open set U ⊂ T rM is a smooth map X : U → T r+1M
such that πr ◦X = idU . The set of all vector fields on U is denoted by X(U).

Suppose that γ is a smooth map γ : (−ε, ε)k → T rM where k ≥ 1 and r ≥ 0.
Suppose also that γ(t1, . . . , tk) = (xi(t1, . . . , tk)) in local coordinates for T rM . Then
the derivative of γ with respect to variable tj is the curve ∂tj γ : (−ε, ε)k → T r+1M
defined by ∂tj γ =

(
xi, ∂xi/∂tj

)
. When k = 1 we also write γ′ = ∂tγ and say that γ′

is the tangent of γ.
Unless otherwise specified we always assume that I is an open interval of R that

contains 0, and we do not exclude unbounded intervals. If φ : M → N is a smooth map
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between manifolds, we denote the tangent map TM → TN by Dφ, and if c : I → M
is a curve, then

(φ ◦ c)′(t) = Dφ ◦ c′(t), t ∈ I.(2.3)

2.1 Transformation rules in T rM

Suppose that x = (xi) and x̃ = (x̃i) are overlapping coordinates for T rM where
r ≥ 0. It follows that if ξ ∈ T r+1M has local representations (x, y) and (x̃, ỹ), we
have transformation rules

x̃i = x̃i(x), ỹi =
∂x̃i

∂xa
(x)ya.

Now (x, y) and (x̃, ỹ) are overlapping coordinates for T r+1M . It follows that if ξ ∈
T r+2M has local representations (x, y, X, Y ) and (x̃, ỹ, X̃, Ỹ ), we have transformation
rules

x̃i = x̃i(x),

ỹi =
∂x̃i

∂xa
(x)ya,

X̃i =
∂x̃i

∂xa
(x)Xa,

Ỹ i =
∂x̃i

∂xa
(x)Y a +

∂2x̃i

∂xa∂xb
(x)yaXb.

3 Lifts on iterated tangent bundles

3.1 Canonical involution on T rM

When r ≥ 2 there are two canonical projections T rM → T r−1M given by

πr−1 : T rM → T r−1M, Dπr−2 : T rM → T r−1M.(3.1)

This means that T rM contains two copies of T r−1M , and there are two ways to treat
T rM as a vector bundle over T r−1M . Unless otherwise specified, we always assume
that T rM is vector bundle (T rM,πr−1, T

r−1M), whence the vector structure of T rM
is locally given by equations (2.1)-(2.2). However, there is also another vector bundle
structure induced by projection Dπr−2 : T rM → T r−1M . If xi are local coordinates
for T r−2M and (x, y, X, Y ) are local coordinates for T rM , this structure is given by

(x, y,X, Y ) + (x, ỹ,X, Ỹ ) = (x, y + ỹ, X, Y + Ỹ ),(3.2)
λ · (x, y,X, Y ) = (x, λy,X, λY ).(3.3)

Next we define the canonical involution κr : T rM → T rM [6]. It is a linear isomor-
phism between the above two vector bundle structures for T rM defined such that the
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following diagram commutes.

T rM oo κr // T rM

Dπr−2

}}{{
{{

{{
{{

{{
{{

T r−1M
!!

πr−1

DDDDDDDDDDD

On TTM , this involution map is well known [4, 13, 16, 21, 23].

Definition 3.1 (Canonical involution on T rM). For r ≥ 2, the canonical invo-
lution κr : T rM → T rM is the unique diffeomorphism that satisfies

∂t∂sc(t, s) = κr ◦ ∂s∂tc(t, s)(3.4)

for all maps c : (−ε, ε)2 → T r−2M . For r = 1, we define κ1 = idTM .

Let r ≥ 2, let xi be local coordinates for T r−2M , and let (x, y, X, Y ) be local
coordinates for T rM . Then

κr(x, y,X, Y ) = (x,X, y, Y ).

For example, in local coordinates for TTM and TTTM we have

κ2(x, y,X, Y ) = (x,X, y, Y ),
κ3(x, y, X, Y, u, v, U, V ) = (x, y, u, v, X, Y, U, V ).

For r ≥ 1, we have identities

κ2
r = idT rM ,(3.5)

πr ◦Dκr = κr ◦ πr,(3.6)
Dπr−1 = πr ◦ κr+1,(3.7)

πr−1 ◦Dπr−1 = πr−1 ◦ πr,(3.8)
Dπr−1 ◦ πr+1 = πr ◦DDπr−1,(3.9)

DDπr−1 ◦ κr+2 = κr+1 ◦DDπr−1,(3.10)
πr−1 ◦ πr ◦ κr+1 = πr−1 ◦ πr.(3.11)

Let us point out that the two projections in (3.1) are not the only projections
from T r+1M → T rM . For example, when r = 3, there are (at least) 6 projections
T 3M → T 2M ; π2, κ2 ◦ π2, Dπ1, κ2 ◦Dπ1, DDπ0, and κ2 ◦DDπ0.

Let γ0 be a curve γ0 : I → T r−1M for some r ≥ 1, and let

X(γ0) = {η : I → T rM : πr−1 ◦ η = γ0}.
Elements in X(γ0) are called vector fields along γ0, and X(γ0) has a natural vector
space structure induced by the vector bundle structure of T rM in equations (2.1)-
(2.2).

If η ∈ X(γ0) and C ∈ R, then

κr+1 ◦ (Cη)′ = C(κr+1 ◦ η′),(3.12)

and if η1, η2 ∈ X(γ0), then

κr+1 ◦ (η1 + η2)′ = κr+1 ◦ η′1 + κr+1 ◦ η′2.(3.13)

It follows that κr+1 ◦ ∂t : X(γ0) → X(γ′0) is a linear map between vector spaces.
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3.2 Slashed tangent bundles T rM \ {0}
The slashed tangent bundle is the open set in TM defined as

TM \ {0} = {y ∈ TM : y 6= 0}.

For an iterated tangent bundle T rM where r ≥ 2 we define the slashed tangent bundle
as the open set

T rM \ {0} = {ξ ∈ T rM : (DπT r−1M→M )(ξ) ∈ TM \ {0}} .

For example,

TTM \ {0} = {(x, y, X, Y ) ∈ TTM : X 6= 0},
TTTM \ {0} = {(x, y, X, Y, u, v, U, V ) ∈ TTTM : u 6= 0},

where, say, TTM \ {0} = T 2M \ {0}. When r = 0, let us also define T rM \ {0} = M ,
and for any set A ⊂ T rM where r ≥ 0, let

A \ {0} = A ∩ T rM \ {0}.

For r ≥ 1 we have

κr+1(T r+1M \ {0}) = T (T rM \ {0}),(3.14)
(Dπr−1)(T r+1M \ {0}) = T rM \ {0},(3.15)

(Dκr)(T r+1M \ {0}) = T r+1M \ {0}.(3.16)

Before proving these equations, we define the Liouville vector field Er ∈ X(T rM).
For r ≥ 1, it is given by

Er(ξ) = ∂s((1 + s)ξ)|s=0, ξ ∈ T rM.

If r ≥ 1, and (x, y) and (x, y,X, Y ) are local coordinates for T rM and T r+1M ,
respectively, then

Er(x, y) = (x, y, 0, y).

Equation (3.14) follows using equation (3.7) and by writing

πT rM→M = πT r−1M→M ◦ πr−1, r ≥ 1.(3.17)

If r ≥ 1, we have

ξ = Dπr−1 ◦ κr+1 ◦ Er(ξ), ξ ∈ T rM,(3.18)

and equation (3.15) follows using equations (3.14) and (3.17). Equation (3.16) follows
using equations (3.8) and (3.17).
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3.3 Lifts for functions

Suppose f ∈ C∞(M) is a smooth function. Then we can lift f using the vertical lift
or the complete lift and obtain functions fv, f c ∈ C∞(TM) defined by

fv(ξ) = f ◦ π0(ξ), f c(ξ) = df(ξ), ξ ∈ TM.(3.19)

Here df is the exterior derivative of f . In local coordinates (x, y) for TM , it follows
that

fv(x, y) = f(x), f c(x, y) =
∂f

∂xi
(x)yi.

Using these lifts one can define vertical and complete lift for tensor fields on M of
arbitrary order. For a full development of these issues, see [26].

Next we generalize the vertical and complete lifts to functions defined on iterated
tangent bundles T rM of arbitrary order r ≥ 0.

Definition 3.2. For r ≥ 0, the vertical lift of a function f ∈ C∞(T rM \ {0}) is the
function fv ∈ C∞(T r+1M \ {0}) defined by

fv(ξ) = f ◦ πr ◦ κr+1(ξ), ξ ∈ T r+1M \ {0}.
If r = 0, Definition 3.2 reduces to lift fv in equation (3.19), and if r ≥ 1, equation

(3.7) implies that fv = f ◦Dπr−1, and equation (3.15) implies that fv is smooth. For
r ≥ 1, let xi be local coordinates for T r−1M , and let (x, y,X, Y ) be local coordinates
for T r+1M . Then

fv(x, y, X, Y ) = f(x,X), f ∈ C∞(T rM \ {0}).
Definition 3.3. For r ≥ 0, the complete lift of a function f ∈ C∞(T rM \ {0}) is the
function f c ∈ C∞(T r+1M \ {0}) defined by

fc(ξ) = (df) ◦ κr+1(ξ), ξ ∈ T r+1M \ {0}.
If r = 0, then Definition 3.3 reduces to lift f c in equation (3.19), and if r ≥ 1,

then equation (3.14) implies that f c is smooth. For r ≥ 1, let xi be local coordinates
for T r−1M , and let (x, y, X, Y ) be local coordinates for T r+1M . Then

f c(x, y, X, Y ) =
∂f

∂xa
(x,X)ya +

∂f

∂ya
(x,X)Y a, f ∈ C∞(T rM \ {0}).

Taking two complete lifts of f ∈ C∞(T rM \ {0}) yields

f cc = f c(x, Y, u, V )(3.20)

+
(

∂f

∂xa

)c

(x, y, u, v)Xa +
(

∂f

∂ya

)c

(x, y, u, v)Ua,

where argument (x, y, X, Y, u, v, U, V ) ∈ T r+2M \ {0} has been suppressed.
If f ∈ C∞(T rM \ {0}) for some r ≥ 1, then

fvv = fvv ◦ (Dκr+1),(3.21)
fvc = fcv ◦ (Dκr+1),(3.22)
f cc = fcc ◦ (Dκr+1).(3.23)

In Section 6 we use these identities to study geodesics of iterated complete lifts of a
spray.
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4 Sprays

A spray on M is a vector field S on TM \{0} that satisfies two conditions. Essentially,
these conditions state that (i) an integral curve of S is of the form c′ : I → TM \
{0} for a curve c : I → M , and (ii) integral curves of S are closed under affine
reparametrizations t 7→ Ct + t0. Then curve c : I → M is a geodesic of S. The
motivation for studying sprays is that they provides a unified framework for studying
geodesics for Riemannian metrics, Finsler metrics, and non-linear connections. See
[5, 7, 23, 24]. Next we generalize the definition of a spray to iterated tangent bundles
T rM for any r ≥ 0.

4.1 Sprays on T rM

Definition 4.1 (Spray space). Suppose S is a vector field S ∈ X(T r+1M \ {0})
where r ≥ 0. Then S is a spray on T rM if

(i) (Dπr)(S) = idT r+1M\{0},

(ii) [Er+1, S] = S for Liouville vector field Er+1 ∈ X(T r+1M).

Let S be a vector field S ∈ X(T r+1M \ {0}) where r ≥ 0. Then condition (i) in
Definition 4.1 states that if (x, y,X, Y ) are local coordinates for T r+2M , then locally

S(x, y) =
(
xi, yi, yi,−2Gi (x, y)

)
(4.1)

= yi ∂

∂xi

∣∣∣∣
(x,y)

− 2Gi(x, y)
∂

∂yi

∣∣∣∣
(x,y)

,

where Gi are locally defined functions Gi : T r+1M \{0} → R. Condition (ii) in Defini-
tion 4.1 states that functions Gi are positively 2-homogeneous; if (x, y) ∈ T r+1M \{0},
then

Gi(x, λy) = λ2Gi(x, y), λ > 0.

This is a consequence of Euler’s theorem for homogeneous functions [3].
Conversely, if S is a vector field S ∈ X(T r+1M \ {0}) that locally satisfies these

two conditions, then S is a spray on T rM . Functions Gi in equation (4.1) are called
spray coefficients for S.

When r = 0, Definition 4.1 is equivalent to the usual definition of a spray [7, 24].
However, when r ≥ 1, Definition 4.1 makes a slightly stronger assumption on the
smoothness of S. Namely, if r ≥ 1 and S is a spray on T rM (in the sense of Definition
4.1) then S is smooth on T r+1M \ {0}, but if S is a spray on manifold T rM (in the
usual sense) then S is smooth on T (T rM)\{0}. Since T (T rM)\{0} ⊃ T r+1M \{0},
it follows that if S is a spray on T rM (in the sense of Definition 4.1), then S is also
a spray on manifold T rM (in the usual sense). The stronger assumption on S will
be needed in Section 5 to prove that the complete lift of a spray on T rM is a spray
on T r+1M . In this work we only consider sprays on T rM that arise from complete
lifts of a spray on M . Therefore we do not distinguish between the weaker and
stronger definitions of a spray. These comments motivate the slightly non-standard
terminology in Definition 4.1.

The next proposition shows that a spray on T rM induces sprays on all lower order
tangent bundles M,TM, . . . , T r−1M .
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Proposition 4.2. If S is a spray on T r+1M where r ≥ 0, then

S∗ = (DDπr) ◦ S ◦ κr+2 ◦ Er+1

is a spray on T rM .

Proof. Equations (3.7), (3.9), and (3.17) imply that maps

κr+2 ◦ Er+1 : T r+1M \ {0} → T r+2M \ {0},
DDπr : T (T r+2M \ {0}) → T (T r+1M \ {0}),

are smooth, so S∗ : T r+1M \ {0} → T (T r+1M \ {0}) is a smooth map. Let (x, y)
be local coordinates for T r+1M , and let (x, y, X, Y ) be local coordinates for T r+2M .
Then S can be written as

S(x, y,X, Y ) =
(
x, y, X, Y, X, Y,−2Gi(x, y, X, Y ),−2Hi(x, y, X, Y )

)

for locally defined functions Gi,Hi : T r+2M\{0} → R that are positively 2-homogeneous
with respect to (X, Y ). It follows that

S∗(x, y) =
(
x, y, y,−2Gi(x, 0, y, y)

)
,

whence S∗ is a vector field S∗ ∈ X(T r+1M \ {0}), and (Dπr)(S∗) = idT r+1M\{0}.
Since functions (x, y) 7→ Gi(x, 0, y, y) are positively 2-homogeneous, S∗ is a spray. ¤

4.2 Geodesics on T rM

Suppose γ is a curve γ : I → T rM where r ≥ 0. Then we say that γ is regular
if γ′(t) ∈ T r+1M \ {0} for all t ∈ I. When r = 0, this coincides with the usual
definition of a regular curve, and when r ≥ 1, curve γ is regular if and only if curve
πT rM→M ◦ γ : I → M is regular.

Definition 4.3 (Geodesic). Suppose S is a spray on T rM where r ≥ 0. Then a
regular curve γ : I → T rM is a geodesic of S if and only if

γ′′ = S ◦ γ′.

Suppose S is a spray on T rM and locally S is given by equation (4.1). Then a
regular curve γ : I → T rM , γ = (xi), is a geodesic of S if and only if

ẍi = −2Gi ◦ γ′.(4.2)

In Definition 4.3 we have defined geodesics on open intervals. If γ is a curve on a
closed interval we say that γ is a geodesic if γ can be extended into a geodesic defined
on an open interval.

5 Complete lifts for a spray

Let S be a spray on M . Then the complete lift of S is a spray Sc on TM . That
is, if S determines a geometry on M , then Sc determines a geometry on TM . The
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characteristic feature of spray Sc is that its geodesics are essentially in one-to-one
correspondence with Jacobi fields of S. This correspondence will be the topic of
Section 6. In this section, we define the complete lift for a spray on an iterated tangent
bundle T rM of arbitrary order r ≥ 0. This makes it possible to take iterated complete
lifts; if we start with a spray S on M we can take iterated lifts Sc, Scc, Sccc, . . . and
lift S onto an arbitrary iterated tangent bundle.

The definition below for the complete lift of a spray can essentially be found in
[20, Remark 5.3]. For a further discussion about related lifts, see [6].

Definition 5.1 (Complete lift of spray). Suppose S is a spray on T rM for some
r ≥ 0. Then the complete lift of S is the spray Sc on T r+1M defined by

Sc = Dκr+2 ◦ κr+3 ◦DS ◦ κr+2,

where DS is the tangent map of S,

DS : T (T r+1M \ {0}) → T 2(T r+1M \ {0}).
Let us first note that equations (3.6), (3.7), (3.11), and (3.17) imply that

Dκr+2 ◦ κr+3 : T 2(T r+1M \ {0}) → T (T r+2M \ {0})
is a smooth map. Thus Sc is a smooth map T r+2M \ {0} → T (T r+2M \ {0}), and
by equations (3.6), (3.7), and (3.14), Sc is a vector field Sc ∈ X(T r+2M \ {0}). If S
is the spray in equation (4.1), then locally

Sc =
(
x, y, X, Y, X, Y,−2(Gi)v,−2

(
Gi

)c
)

(5.1)

= Xi ∂

∂xi
+ Y i ∂

∂yi
− 2(Gi)v ∂

∂Xi
− 2(Gi)c ∂

∂Y i
,

and Sc is a spray on T r+1M .
Suppose that S is a spray on T rM for some r ≥ 0, and suppose that γ is a regular

curve γ : I → T r+1M , γ = (x, y). Then γ is a geodesic of Sc if and only if

ẍi = −2Gi ◦ (πr ◦ γ)′,(5.2)
ÿi = −2(Gi)c ◦ γ′.(5.3)

It follows that πr ◦γ = (xi) is a geodesic of S. In fact, if S∗ is the spray in Proposition
4.2, then

S = (Sc)∗.(5.4)

Thus a spray can always be recovered from its complete lift. What is more, if S is a
spray on T r+1M for r ≥ 0, then S∗c = S if and only if S = Ac for a spray A on T rM .

The geodesic flow of a spray S is defined as the flow of S as a vector field.

Proposition 5.2 (Geodesic flow for the complete lift of a spray). Suppose S
is a spray on T rM where r ≥ 0 and Sc is the complete lift of S. Suppose furthermore
that

φ : D(S) → T r+1M \ {0}, φc : D(Sc) → T r+2M \ {0},
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are the geodesic flows of sprays S and Sc, respectively, with maximal domains

D(S) ⊂ T r+1M \ {0} × R, D(Sc) ⊂ T r+2M \ {0} × R.

Then

((Dπr)× idR)D(Sc) = D(S),(5.5)

and

φc
t(ξ) = κr+2 ◦Dφt ◦ κr+2(ξ), (ξ, t) ∈ D(Sc),(5.6)

where Dφt is the tangent map of the map ξ 7→ φt(ξ) where t is fixed.

Proof. To prove inclusion “⊂” in equation (5.5), let (ξ, t) ∈ D(Sc), and let γ : I →
T r+2M \ {0} be an integral curve of Sc such that γ(0) = ξ and t ∈ I. Then

DDπr ◦ Sc = S ◦Dπr,

so Dπr ◦ γ : I → T r+1M \ {0} is an integral curve of S, and ((Dπr)(ξ), t) ∈ D(S).
The other inclusion follows similarly since γ′ is an integral curve of Sc when γ is an
integral curve of S.

Suppose v is a curve v : (−ε, ε) → T r+1M \ {0}, and suppose that curve ξ : I ×
(−ε, ε) → T r+2M \ {0},

ξ(t, s) = κr+2 ◦ ∂s (φt ◦ v(s))(5.7)

is defined for some interval I and ε > 0. For (t, s) ∈ I × (−ε, ε) we then have

Sc ◦ ξ(t, s) = Dκr+2 ◦ κr+3 ◦DS ◦ ∂s (φt ◦ v(s))
= Dκr+2 ◦ κr+3 ◦ ∂s(S ◦ φt ◦ v(s))
= Dκr+2 ◦ κr+3 ◦ ∂s∂t(φt ◦ v(s))
= Dκr+2 ◦ ∂t∂s(φt ◦ v(s))
= Dκr+2 ◦ ∂t (κr+2 ◦ ξ(t, s))
= ∂tξ(t, s).

To prove equation (5.6), let (ξ0, t0) ∈ D(Sc). Let j(t) = φc
t(ξ0) be the integral curve

j : I∗ → T r+2M \ {0} of Sc with maximal domain I∗ ⊂ R. Then t0 ∈ I∗. For a
compact subset K ⊂ I∗ with 0 ∈ K we show that

j(t) = κr+2 ◦Dφt ◦ κr+2(ξ0), t ∈ K(5.8)

whence equation (5.6) follows. Since ξ0 ∈ T r+2M \ {0}, it follows that κr+2(ξ0) =
∂sv(s)|s=0 for a curve v : (−ε, ε) → T r+1M \ {0}. Suppose τ ∈ K. Then (ξ0, τ) ∈
D(Sc), and by equation (5.5), (v(0), τ) ∈ D(S). Since D(S) is open [1], there is an
open interval I 3 τ and an ε > 0 such that curve ξ(t, s) in equation (5.7) is defined
on I× (−ε, ε). Then, as K is compact, we can shrink ε and assume that K ⊂ I. Now
equation (5.8) follows since ξ(t, 0) = κr+2 ◦Dφt ◦ κr+2(ξ0), Sc ◦ ξ(t, 0) = ∂tξ(t, 0) for
t ∈ I, and ξ(0, 0) = ξ0. ¤
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6 Jacobi fields for a spray

Definition 6.1 (Jacobi field). Suppose S is a spray on T rM where r ≥ 0, and
suppose that γ : I → T rM is a geodesic of S. Then a curve J : I → T r+1M is a
Jacobi field along γ if

(i) J is a geodesic of Sc,

(ii) πr ◦ J = γ.

In Proposition 6.3 we will show that Definition 6.1 is equivalent with the usual
characterization of a Jacobi field in terms of geodesic variations. In view of Proposition
5.2, this should not be surprising. For example, in Riemannian geometry it is well
known that Jacobi fields are closely related to the tangent map of the exponential
map.

Definition 6.2 (Geodesic variation). Suppose S is a spray on T rM where r ≥ 0,
and suppose that γ : I → T rM is a geodesic of S. Then a geodesic variation of γ is a
smooth map V : I × (−ε, ε) → T rM such that

(i) V (t, 0) = γ(t) for all t ∈ I,

(ii) t 7→ V (t, s) is a geodesic for all s ∈ (−ε, ε).

Suppose that I is a closed interval. Then we say that a curve J : I → T rM is
a Jacobi field if we can extend J into a Jacobi field defined on an open interval.
Similarly, a map V : I × (−ε, ε) → T rM is a geodesic variation if there is a geodesic
variation V ∗ : I∗ × (−ε∗, ε∗) → T rM such that V = V ∗ on the common domain of V
and V ∗ and I ⊂ I∗.

The next proposition motivates the above non-standard definition for a Jacobi
field using the complete lift of a spray.

Proposition 6.3 (Jacobi fields and geodesic variations). Let S be a spray on
T rM where r ≥ 0, let J : I → T r+1M be a curve, where I is open or closed, and let
γ : I → T rM be the curve γ = πr ◦ J .

(i) If J can be written as

J(t) = ∂sV (t, s)|s=0 , t ∈ I(6.1)

for a geodesic variation V : I × (−ε, ε) → T rM , then J is a Jacobi field along
γ.

(ii) If J is a Jacobi field along γ and I is compact, then there exists a geodesic
variation V : I × (−ε, ε) → T rM such that equation (6.1) holds.

Proof. For (i), let us first assume that I is open. For t ∈ I we then have

Sc ◦ ∂tJ(t) = Dκr+2 ◦ κr+3 ◦DS ◦ κr+2 ◦ ∂t∂sV (t, s)|s=0

= Dκr+2 ◦ κr+3 ◦ ∂s(S ◦ ∂tV (t, s))|s=0

= Dκr+2 ◦ κr+3 ◦ ∂s∂t∂tV (t, s)|s=0

= Dκr+2 ◦ ∂t∂s∂tV (t, s)|s=0

= ∂t∂t∂sV (t, s)|s=0

= J ′′(t).
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If I is closed, we can extend V and J so that I is open and the result follows from
the case when I is open.

For (ii), we have J ′(0) ∈ T r+2M \ {0}, so we can find a curve w : (−ε, ε) →
T r+1M \ {0} such that κr+2(J ′(0)) = ∂sw(s)|s=0. Then w(0) = γ′(0). Since I is
compact and D(S) is open, we can extend I into an open interval I∗ and find an
ε > 0 such that V (t, s) = πr ◦ φt ◦ w(s) is a map V : I∗ × (−ε, ε) → T rM . We have
V (t, 0) = γ(t) for t ∈ I, and for each s ∈ (−ε, ε), the map t 7→ V (t, s) is a geodesic of
S. Proposition 5.2 and equations (3.7) and (2.3) imply that for t ∈ I,

J(t) = πr+1 ◦ φc
t ◦ J ′(0)

= πr+1 ◦ κr+2 ◦Dφt ◦ ∂sw(s)|s=0

= ∂s(πr ◦ φt ◦ w(s))|s=0.

We have shown that V is a geodesic variation for Jacobi field J . ¤

Remark 6.4. Suppose c : I → M is a geodesic for a Riemannian metric, where I is
compact. Then one can characterize Jacobi fields along c using geodesic variations as
in Proposition 6.3 [12]. Using the complete lift, we can therefore write the traditional
Jacobi equation in Riemannian geometry as J ′′ = Sc ◦ J ′. It is interesting to note
that the derivation of the latter equation only uses the definition of Sc, the geodesic
equation for S, the commutation rule (3.4) for κr, and the chain rule in equation
(2.3). In particular, there is no need for local coordinates, covariant derivatives, nor
curvature. For comparison, see the derivations of the Jacobi equations in Riemannian
geometry [23], in Finsler geometry [3], and in spray spaces [24]. All of these derivations
are considerably more involved than the proof of Proposition 6.3 (i). For semi-sprays,
see also [6] and [7].

6.1 Geodesics of Scc

Let S be a spray on T rM for some r ≥ 0. We know that a regular curve γ : I →
T r+1M , γ = (x, y), is a geodesic of Sc if and only if γ locally solves equations (5.2)-
(5.3). Let us next derive corresponding geodesic equations for spray Scc.

Let S be given by equation (4.1) in local coordinates (x, y) for T r+1M . Then the
complete lift of Sc is the spray Scc on T r+2M given by

Scc = (x, y, X, Y, u, v, U, V, u, v, U, V,

−2(Gi)vv,−2(Gi)cv,−2(Gi)vc,−2(Gi)cc
)
.

Suppose J is a regular curve J : I → T r+2M , J = (x, y, X, Y ). By equations (3.20)
and (3.22), J is a geodesic of Scc if and only if

ẍi = −2Gi ◦ c′,

ÿi = −2(Gi)c ◦ J ′1,

Ẍi = −2(Gi)c ◦ J ′2,

Ÿ i = −2(Gi)cc ◦ J ′

= −2(Gi)c(xi, Y i, ẋi, Ẏ i)

−2
((

∂Gi

∂xa

)c

(J ′1)X
a +

(
∂Gi

∂ya

)c

(J ′1)Ẋ
a

)
,
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where curves c : I → T rM , J1 : I → T r+1M , and J2 : I → T r+1M are given by

c = πT r+2M→T rM ◦ J, J1 = πr+1 ◦ J, J2 = (Dπr)(J),

and in local coordinates c = (xi), J1 = (xi, yi), and J2 = (xi, Xi).
We have shown that if J is a geodesic of spray Scc, then J contains two independent

Jacobi fields J1 and J2 along c. The interpretation of this is seen by writing J =
(x, y, X, Y ) using a geodesic variation. Then J1 = (x, y) is the base geodesic of
Sc, and J2 = (x, X) describes the variation of geodesic c : I → M . A geometric
interpretation of components Y i seems to be more complicated. For example, (x, Y )
does not define a vector field along c. However, for fixed local coordinates, Y i describe
the variation of the vector components of Jacobi field J1 = (x, y). If J2 = 0, that
is, the variation does not vary the base geodesic c, then equations for Y i simplify
and (xi, Y i) is a Jacobi field. In this case, curve (xi, Y i) is also independent of local
coordinates (see transformation rules in Section 2.1).

6.2 Iterated complete lifts

Let S0 be a spray on M . For r ≥ 1, let Sr be the rth iterated complete lift of S0,
that is, for r ≥ 1, let

Sr = (Sr−1)c.

Then S0, S1, S2, . . . are sprays on M,TM,TTM, . . ., and in general, Sr is a spray on
T rM .

Equation (5.4) shows that each Sr contains all geometry of the original spray S0.
A more precise description is given by equation (5.1). It shows that sprays S1, S2, . . .
also contain new geometry obtained from derivatives of spray coefficients Gi of S0.
Namely, the rth complete lift Sr depends on derivatives of Gi to order r. This
phenomena can also be seen from the geodesic flows of higher order lifts. If φ is the
flow of S0, then up to a permutation of coordinates, the flow of S1 is Dφ, the flow of
S2 is DDφ, and, in general, the flow of Sr is the rth iterated tangent map D · · ·Dφ.
This means that the flow of S1 describes the linear deviation of nearby geodesic of
S. That is, the flow of S1 describes the evolution of Jacobi fields. Similarly, flows of
higher order lifts describe higher order derivatives of geodesic deviations.

Proposition 6.5 (New Jacobi fields from old ones). Suppose S0, S1, S2, . . . are
defined as above, and suppose that j : I → T rM is a geodesic for some Sr.

(i) If r ≥ 0, t0 ∈ R, and C > 0, then j(Ct + t0) is a geodesic of Sr.

(ii) If r ≥ 1 and k : I → T rM is another geodesic of Sr such that πr−1 ◦ j(t) =
πr−1 ◦ k(t), then

αj + βk, α, β ∈ R
is a geodesic of Sr.

(iii) If r ≥ 1, then κr ◦ j : I → T rM is a geodesic of Sr.

(iv) If r ≥ 1, then πr−1 ◦ j : I → T r−1M is a geodesic of Sr−1.
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(v) If r ≥ 2, then (Dπr−2)(j) : I → T r−1M is a geodesic of Sr−1.

(vi) If r ≥ 0, then j′ : I → T r+1M is a geodesic of Sr+1.

(vii) If r ≥ 0, then tj′(t) : I → T r+1M is a geodesic of Sr+1.

(viii) If r ≥ 1, then Er ◦ j : I → T r+1M is a geodesic of Sr+1.

Proof. Properties (i), (ii), and (iv) follow using equations (4.2), (5.2), and (5.3). Pro-
perties (vi), (vii), and (viii) follow by locally studying geodesic variations

V (t, s) = j(t + s),
V (t, s) = j((1 + s)t),
V (t, s) = (1 + s)j(t),

and using Proposition 6.3 (i). Property (iii) follows using geodesic equations for Scc

in Section 6.1 and equation (3.23). Property (v) follows using equation (3.7). ¤

6.3 Conjugate points

Suppose S is a spray on T rM for some r ≥ 0. If a, b are distinct points in T rM that
can be connected by a geodesic γ : [0, L] → T rM , then a and b are conjugate points if
there is a Jacobi field J : [0, L] → T r+1M along γ that vanishes at a and b, but J is
not identically zero (with respect to vector space structure in equations (2.1)-(2.2)).

The next proposition shows that S has conjugate points if and only if Sc has
conjugate points. Thus the complete lift alone does not remove conjugate points.

Proposition 6.6 (Conjugate points and complete lift). Suppose S is a spray
on T rM for some r ≥ 0.

(i) If a, b ∈ T rM are conjugate points for S, then zero vectors in T r+1
a M and

T r+1
b M are conjugate points for Sc.

(ii) If a, b ∈ T rM are conjugate points for S, then there are non-zero conjugate
points in T r+1

a M and T r+1
b M for Sc.

(iii) If a, b ∈ T r+1M are conjugate points for Sc, then πr(a), πr(b) are conjugate
points for S.

Proof. For property (i), suppose J : [0, L] → T r+1M is a Jacobi field of S that shows
that a and b are conjugate points. Then the claim follows by studying Jacobi field
Er+1 ◦ J . For property (ii), suppose that J : [0, L] → T r+1M is as in (i), and let
γ : [0, L] → T rM be the geodesic γ = πr ◦ J for S. We will show that γ′(0), γ′(L) ∈
T r+1M \ {0} are conjugate points for Sc. This follows by considering Jacobi field
j : [0, L] → T r+2M ,

j(t) = ∂s (γ′(t) + sJ(t)) |s=0.

For property (iii), suppose J : [0, L] → T r+2M is a Jacobi field of Sc that shows
that a and b are conjugate points. Then J is a geodesic of Scc, and locally J satisfy
equations in Section 6.1. If Jacobi field j = (Dπr)(J) does not vanish identically, the
claim follows. Otherwise (Dπr)(J) vanishes identically, and the result follows by the
last comment in Section 6.1. ¤
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7 Sprays restricted to a semi-distribution

From a spray S on M one can construct a new geometric space by restricting the spray
to a geodesically invariant distribution ∆ ⊂ TM . This is done by requiring that all
geodesics are tangent to the distribution. For example, geodesics in Euclidean space
R3 can in this way be constrained to xy-planes. See [2, 18, 19].

In this section we study a slightly more general geometry, where one can not only
restrict possible directions, but also basepoints for geodesics. For example, geodesics
in R3 can in this way be constrained to one line or one plane. For a spray on T rM ,
this is done by requiring that geodesics are tangent to a suitable geodesically invariant
submanifold ∆ ⊂ T r+1M . Such a submanifold will be called a semi-distribution and
the restricted geometry will be called a sub-spray. There does not seem to be any
work on this type of geometry. The terms semi-distribution and sub-spray neither
seem to have been used before.

Definition 7.1. A set ∆ ⊂ T r+1M where r ≥ 0 is a semi-distribution on T rM if

(i) πr(∆) is a submanifold in T rM .

(ii) B = πr ◦ κr+1(∆) is a submanifold in T rM .

(iii) There is a k ≥ 1 such that every b ∈ B has an open neighborhood U ⊂ B, and
there are k maps V1, . . . , Vk : U → T r+1M such that

(a) πr ◦ Vi = ι for i = 1, . . . , k, where ι is inclusion U ↪→ T rM ,

(b) Vi are pointwise linearly independent,

(c) for all u ∈ U we have

κr+1(∆) ∩ π−1
r (u) = span{V1(u), . . . , Vk(u)}.

(In (b) and (c), the linear structure of T r+1M is with respect to equations
(2.1)-(2.2).)

We say that k is the rank of ∆ and write rank ∆ = k.

In condition (ii), B = π0(∆) when r = 0, and B = (Dπr−1)(∆) when r ≥ 1. Thus,
if r = 0 and π0(∆) = M , a semi-distribution is a distribution in the usual sense.

Condition (iii) states that there is a k dimensional vector space associated to each
b ∈ B, and 1 ≤ k ≤ 2r dim M . When r = 0, the structure of these vector spaces in ∆
is given by equations (2.1)-(2.2), and when r ≥ 1, the structure is given by equations
(3.2)-(3.3). The next example motivates the use of vector space structure in equations
(3.2)-(3.3) when r ≥ 1. Namely, these equations describe the natural vector space
structure for tangents to Jacobi fields.

Example 7.2. Let S be a spray on T rM for some r ≥ 0, let γ : I → T rM be a
geodesic of S, and let X(γ) be the set of vector fields along γ with the vector space
structure defined by equations (2.1)-(2.2). Furthermore, let J1, J2 ∈ X(γ) be Jacobi
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fields along γ, such that locally γ = (x), J1 = (x, y), and J2 = (x, z). For α, β ∈ R we
then have

αJ1 + βJ2 = (x, αy + βz),
(αJ1 + βJ2)′ = (x, αy + βz, ẋ, αẏ + βż)

= α · J ′1 + β · J ′2,
where on the last line, + and · are as in equations (3.2)-(3.3). Thus, if we define
the vector space structure for Jacobi fields by equations (2.1)-(2.2), then the natural
vector structure for tangents (and initial values) is given by equations (3.2)-(3.3). On
the other hand, the multiplication operator in equation (2.2) appears naturally when
reparametrizing a curve. If J : I → T rM is a curve for r ≥ 0, and j(t) = J(Ct + t0),
then j′(t) = C · J ′(Ct + t0), where multiplication · is as in equation (2.2).

Proposition 7.3. Suppose ∆ is a semi-distribution on T rM and B = πr ◦ κr+1(∆).
Then ∆ is a sub-manifold in T r+1M and

dim∆ = dim B + rank∆.

The proof of Proposition 7.3 follows by setting A = κr+1(∆) in the lemma below.
We also use this lemma to prove Proposition 8.3.

Lemma 7.4. Suppose A is a subset A ⊂ T r+1M for some r ≥ 0 such that

(i) πr(A) is a submanifold in T rM .

(ii) There is a k ≥ 1 such that every b ∈ πr(A) has an open neighborhood U ⊂ πr(A),
and there are k maps V1, . . . , Vk : U → T r+1M such that

(a) πr ◦ Vi = ι for i = 1, . . . , k, where ι is inclusion U ↪→ T rM ,

(b) V1, . . . , Vk are pointwise linearly independent in U ,

(c) for all u ∈ U we have

A ∩ π−1
r (u) = span{V1(u), . . . , Vk(u)}.

(In (b) and (c), the linear structure of T r+1M is with respect to equations (2.1)-
(2.2).)

Then A is a submanifold of T r+1M of dimension dim πr(A)+k. Moreover, if we can
assume that U = πr(A), then A is diffeomorphic to πr(A)× Rk.

Proof. Let ξ ∈ A. Then πr(ξ) has an open neighborhood U ⊂ πr(A) with k maps
V1, . . . , Vk : U → T r+1M such that (a), (b), and (c) hold. By possibly shrinking U
we can find maps Vk+1, . . . , VN : U → T r+1M , where N = dim T r+1

πr(ξ)M , such that
πr ◦ Vi = ι for i = 1, . . . , N , and

π−1
r (u) = span{V1(u), . . . , VN (u)}.

Let f be the diffeomorphism f : U × RN → π−1
r (U) defined as

f(u, α1, . . . , αN ) = α1V1(u) + · · ·+ αNVN (u).
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Let g : U × Rk → π−1
r (U) be the restriction of f onto U × Rk. Then g is a smooth

injection and immersion such that g(U×Rk) = A∩π−1
r (U), and map f−1◦g : U×Rk →

U × RN is the inclusion (u, α1, . . . , αk) 7→ (u, α1, . . . , αk, 0, . . . , 0). Since a closed set
in a compact Hausdorff space is compact, f−1 ◦ g is proper. Thus g is proper, and
the claim follows from the following result: If f : M → N is a smooth map between
manifolds that is proper, injective, and an immersion, then f(M) is a submanifold
in N of dimension dimM , and f restricts to a diffeomorphism f : M → F (M). See
results 7.4, 8.3, and 8.25 in [17]. ¤

7.1 Geodesics in a sub-spray

Definition 7.5 (Geodesically invariant set). Let S be a spray on T rM where
r ≥ 0. Then a set ∆ ⊂ T r+1M is a geodesically invariant set for S provided that:

If γ : I → T rM is a geodesic of S with γ′(t0) ∈ ∆ for some t0 ∈ I, then γ′(t) ∈ ∆
for all t ∈ I.

Definition 7.6 (Sub-spray). Suppose S is a spray on T rM for some r ≥ 0, and
∆ is a geodesically invariant semi-distribution on T rM . Then we say that triple
Σ = (S, T rM, ∆) is a sub-spray. A curve γ : I → T rM is a geodesic in Σ if

(i) γ : I → T rM is a geodesic of S,

(ii) γ′(t0) ∈ ∆ for some t0 ∈ I (whence γ′(t) ∈ ∆ for all t ∈ I).

By taking ∆ = T r+1M , we may treat any spray as a sub-spray. Let us also note
that if ∆ ⊂ T r+1M \ {0} where r ≥ 0, then

πr(∆) ⊂ T rM, πr ◦ κr+1(∆) ⊂ T rM \ {0}.

Then

∆ \ {0} = {γ′(0) : γ : (−ε, ε) → T rM is a geodesic in Σ } ,

πr(∆ \ {0}) = {γ(0) : γ : (−ε, ε) → T rM is a geodesic in Σ } .

In other words, a vector ξ ∈ T r+1M is in ∆ \ {0} if and only if there is a geodesic
in Σ whose tangent passes through ξ, and a point x ∈ T rM is in πr(∆ \ {0}) if and
only if there is a geodesic in Σ that passes through x. We therefore say that ∆ \ {0}
is phase space for Σ, and πr(∆ \ {0}) is configuration space for Σ. When r ≥ 1, the
set B = (Dπr−1)(∆) satisfies

B \ {0} = {(πr−1 ◦ γ)′(0) : γ : (−ε, ε) → T rM is a geodesic in Σ } .

and we can interpret B\{0} as phase space of geodesics in Σ that have been projected
onto T r−1M .

Example 7.7 (Geodesics through a point). Let Σ = (S, T rM, ∆) be a sub-spray
for some r ≥ 0, and let z ∈ πr(∆ \ {0}) be a point in configuration space. Then the
set

∆(z) = ∆ ∩ (T r+1
z M \ {0})



A geometric space without conjugate points 35

parameterizes initial values for geodesics that pass through z. Let us study the struc-
ture and the degrees of freedom for ∆(z).

When r = 0, the structure of ∆(z) is easy to understand; the set ∆(z) is a
punctured vector subspace of TzM whose dimension is the rank of ∆.

When r ≥ 1, the structure of ∆(z) becomes more complicated. For example, in
Section 8, we construct a sub-spray where configuration space and phase space are
diffeomorphic, and ∆(z) contains only one vector. To understand this, let us assume
that ∆ is represented in canonical local coordinates (x, y, X, Y ) for T r+1M . That is,
we here only consider coordinates (x, y,X, Y ) that belong to ∆. Then coordinates
(x, y, X, Y ) have dim ∆ = dim B + rank ∆ degrees of freedom. Coordinates (x,X)
represent submanifold B. They have dim B degrees of freedom, and once (x,X) ∈ B is
fixed, coordinates (y, Y ) parameterize the rank∆ dimensional vector space associated
with (x, X). If z = (x0, y0), then geodesics that pass through z are parameterized by
(x0, y0, X, Y ), but very little can be said about possible values for (X,Y ). Coordinates
(x,X) have dim B degrees of freedom, but we do not know how these divide between
x- and X-coordinates. Similarly, coordinates (y, Y ) have rank ∆ degrees of freedom,
but we do not know how these divide between y- and Y -coordinates.

The next proposition shows that geodesics in a sub-spray on T rM have a lin-
ear structure when r ≥ 1, but geodesics are not necessarily invariant under affine
reparametrizations.

Proposition 7.8. Let Σ = (S, T rM, ∆) be a sub-spray where r ≥ 0.

(i) Suppose that j : I → T rM is a geodesic in Σ. If t0 ∈ R, and C > 0, then
j(Ct + t0) is a geodesic in Σ if r = 0 or C = 1.

(ii) Suppose that r ≥ 1. If j, k : I → T rM are geodesics in Σ such that πr−1 ◦ j(t) =
πr−1 ◦ k(t), then

αj + βk, α, β ∈ R
is a geodesic in Σ.

Proof. Property (i) follows since reparametrizations scale tangent vectors as in equa-
tion (2.2), and this multiplication is only compatible with the vector structure of ∆
when r = 0 or C = 1. Property (ii) follows using equations (3.12)-(3.13). ¤

7.2 Jacobi fields for a sub-spray

Proposition 6.3 shows that for sprays, Jacobi fields on compact intervals can be char-
acterized using geodesic variations. For sub-sprays, we take this characterization as
the definition of a Jacobi field.

Definition 7.9 (Jacobi field in a sub-spray). Let γ : I → T rM be a geodesic in
a sub-spray Σ = (S, T rM, ∆) where r ≥ 0. Suppose that J : K → T r+1M is a curve
where K ⊂ I is compact, and V is a map V : I × (−ε, ε) → T rM such that

(i) t 7→ V (t, s), t ∈ I is a geodesic in sub-spray Σ for all s ∈ (−ε, ε),

(ii) V (t, 0) = γ(t) for t ∈ I,

(iii) J(t) = ∂sV (t, s)|s=0 for t ∈ K.
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Then J : K → T r+1M is a Jacobi field along γ.

By Proposition 6.3 (ii), a Jacobi field for a sub-spray (S, T rM, ∆) is a Jacobi field
for the spray S. The converse also holds when ∆ = T r+1M .

8 A sub-spray for parallel Jacobi fields

This section contains the main results of this paper. We construct a sub-spray P
whose geodesics are in one-to-one correspondence with parallel Jacobi fields, and
study its geodesics.

Definition 8.1 (Parallel Jacobi field). Let S be a spray on M , and let J : I → TM
be a curve. Then J is called a parallel Jacobi field for S if there are α, β ∈ R, and a
geodesic c : I → M such that

J(t) = αc′(t) + βtc′(t), t ∈ I.(8.1)

If I is closed we say that a curve J : I → TM is a parallel Jacobi field if J can
be extended into a parallel Jacobi defined on an open interval. Proposition 6.5 shows
that a parallel Jacobi field is a Jacobi field.

Lemma 8.2. Suppose J : I → TM is a parallel Jacobi field.

(i) If C > 0 and t0 ∈ R, then J(Ct + t0) is a parallel Jacobi field.

(ii) J can be extended to the maximal domain of geodesic c = πTM→M ◦ J , and the
extension is a parallel Jacobi field.

To construct sub-spray P , let S be a spray on a manifold M , let Scc be the second
complete lift of S, and let ∆ be the geodesically invariant semi-distribution on TTM
defined in Proposition 8.3. Then we define sub-spray P as

P = (Scc, TTM, ∆).

Proposition 8.3. Suppose S is a spray on a manifold M , and let ∆ be the set

∆ = {(κ2 ◦ J ′)′(0) : J : (−ε, ε) → TM is parallel Jacobi field for S} .

Then

(i) ∆ ⊂ TTTM \ {0},
(ii) ∆ is a geodesically invariant semi-distribution on TTM of rank 2,

(iii) phase space ∆ and configuration space π2(∆) are diffeomorphic.

Proof. Let us first note that ∆ consists of points

(x(0), ẋ(0), αẋ(0), αẍ(0) + βẋ(0),
ẋ(0), ẍ(0), αẍ(0) + βẋ(0), α

...
x (0) + 2βẍ(0)) ,



A geometric space without conjugate points 37

where α, β ∈ R and c : (−ε, ε) → M is a geodesic c(t) = (x(t)). By Lemma 7.4 (and
by the result used to prove Lemma 7.4), it follows that sets

π2(∆) = {αS(y) + βE1(y) : y ∈ TM \ {0}, α, β ∈ R},
(Dπ1)(∆) = {S(y) : y ∈ TM \ {0}},

are submanifolds in TTM diffeomorphic to TM \ {0} × R2 and TM \ {0}, respec-
tively. Let ι be the inclusion B ↪→ TTM , where B = (Dπ1)(∆), and let Ŝ be the
diffeomorphism Ŝ : TM \ {0} → B such that S = ι ◦ Ŝ and Ŝ−1 = π1 ◦ ι. By the
geodesic equation for Sc and the definition of Sc it follows that

κ3(∆) = (DS)(π2(∆))
= {αV1(ξ) + βV2(ξ) : ξ ∈ B,α, β ∈ R},

where V1, V2 : B → TTTM are smooth maps

V1 = DS ◦ ι, V2 = DS ◦ E1 ◦ π1 ◦ ι.

Now π2 ◦ Vi = ι for i = 1, 2. A local calculation shows that V1 and V2 are pointwise
linearly independent. Hence ∆ is a semi-distribution on TTM , and by Lemma 7.4,
κ3(∆) is diffeomorphic to B × R2.

To prove that ∆ is geodesically invariant, let γ : I → TTM be a geodesic of Scc

with γ′(0) ∈ ∆. By Proposition 6.5, it follows that

γ(t) = κ2 ◦ J ′(t), t ∈ (−ε, ε)(8.2)

for a parallel Jacobi field J : (−ε, ε) → TM . By Lemma 8.2 (ii) we can extend J into
a parallel Jacobi field J : I → TM such that (8.2) holds for all t ∈ I. If t0 ∈ I, we
have γ′(t0) = (κ2 ◦ J̃ ′)′(0) for parallel Jacobi field J̃(t) = J(t + t0), and (ii) follows.
Property (iii) follows since both submanifolds are diffeomorphic to B × R2. ¤

Let us note that configuration space π2(∆) is a proper subset of TTM , and

dim π2(∆) = 2n + 2, dim ∆ = 2n + 2, dim(Dπ1)(∆) = 2n.

The next proposition shows that geodesics in P are in one-to-one correspondence with
parallel Jacobi fields for M .

Proposition 8.4 (Geodesics in P ). Suppose γ : I → TTM is a curve. Then the
following are equivalent:

(i) γ is a geodesic in P .

(ii) There is a parallel Jacobi field J : I → TM such that

γ(t) = κ2 ◦ J ′(t), t ∈ I.

(iii) There is a geodesic c : I → M and α, β ∈ R such that

γ(t) = (α + βt)c′′(t) + βE1 ◦ c′(t), t ∈ I.
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Moreover, in (ii) and (iii) J and c, α, β are uniquely determined by γ.

The next proposition shows that the geometry of P can be used to study dynamical
properties of M .

Proposition 8.5. The projection πTTM→M : TTM → M is a submersion that maps
geodesics in P into geodesics on M .

A sub-spray (S, T rM, ∆) where r ≥ 0 is complete if any geodesic γ : I → T rM can
be extended into a geodesic γ : R→ T rM .

Proposition 8.6. Sub-spray P is complete if and only if M is complete.

Proof. Suppose P is complete. By Proposition 8.4, any geodesic c : I → M can
be lifted into a geodesic c′′ : I → TTM for P . The converse direction follows by
Proposition 8.4 and Lemma 8.2 (ii). ¤

In general, a geodesic c : I → M for a spray S on M is uniquely determined by
c′(0). The next proposition shows that in sub-spray P , a geodesic γ : I → TTM is
uniquely determined by γ(0). This is not surprising in view of Proposition 8.3 (iii).

Proposition 8.7. If γ1 : I1 → TTM and γ2 : I2 → TTM are geodesics in P with
γ1(0) = γ2(0), then γ1 = γ2 on their common domain.

Proof. By Proposition 8.4 we have that γi = κ2 ◦ J ′i for parallel Jacobi fields Ji : I →
TM , i = 1, 2. Hence J ′1(0) = J ′2(0), and the claim follows. ¤

Proposition 8.7 imposes a strong restriction on the behavior of geodesics in P .
For example, if two points in TTM can be connected with a geodesic in P , then the
geodesic is unique (up to loops). Also, any piece-wise geodesic curve that is continuous
must be smooth. Therefore P has no broken geodesics nor geodesic triangles.

For a sub-spray we define conjugate points as for sprays (see Section 6.3).

Proposition 8.8. Sub-spray P has no conjugate points.

Proof. If a Jacobi field vanishes once, Proposition 8.7 implies that the corresponding
geodesic variation is trivial. ¤
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