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1 Introduction

The tangent sphere bundle TrM consisting of spheres of constant radius r centered
in the null tangent vectors are hyper-surfaces of the tangent bundle TM , obtained by
considering only the tangent vectors having the norm equal to r.

In the most part of the papers, like [3]-[6], [17], [25], [27], [28], the metric considered
on the tangent bundle TM was the Sasaki metric (see [26]), but E. Boeckx noticed
that the unit tangent bundle equipped with the induced Cheeger-Gromoll metric is
isometric to the tangent sphere bundle T 1√

2
M , of radius 1√

2
endowed with the metric

induced by the Sasaki metric. This suggested to O. Kowalski and M. Sekizawa the
idea that the tangent sphere bundles with different constant radii and with the metrics
induced from the Sasaki metric might possess different geometrical properties, and in
the paper [11] from 2000 they showed how the geometry of the tangent sphere bundles
depends on the radius.

Some other metrics on the tangent sphere bundles may be constructed by using a
few lifts to the tangent bundle, which have been considered in [21]-[24], [29]-[31], and
studied in some very recent papers, such as [2], [7] and [14].

In the last years some interesting results were obtained by endowing the tangent
sphere bundles with Riemannian metrics induced by the natural lifted metrics from
TM , which are not Sasakian (see [1], [16], [18] – [20]).

Roughly speaking, a natural operator (in the sense of [8] – [10], [13]) is a fibred ma-
nifold mapping, which is invariant with respect to the group of local diffeomorphisms
of the base manifold.
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In the present paper we consider on the tangent bundle TM of a Riemannian
manifold M a natural metric G̃, obtained by the second author in [24] as the diagonal
lift of the Riemannian metric g from the base manifold. We prove that the tangent
sphere bundle TrM endowed with the Riemannian metric G induced from G̃ may
never have constant sectional curvature, then we find the conditions under which
(TrM, G) is an Einstein manifold.

The manifolds, tensor fields and other geometric objects considered in this paper
are assumed to be differentiable of class C∞ (i.e. smooth). The Einstein summation
convention is used throughout this paper, the range of the indices h, i, j, k, l, m, r,
being always {1, . . . , n}.

2 Preliminary results

Let (M, g) be a smooth n-dimensional Riemannian manifold and denote its tangent
bundle by τ : TM → M . The total space TM has a structure of a 2n-dimensional
smooth manifold, induced from the smooth manifold structure of M . This structure
is obtained by using local charts on TM induced from usual local charts on M .
If (U,ϕ) = (U, x1, . . . , xn) is a local chart on M , then the corresponding induced
local chart on TM is (τ−1(U),Φ) = (τ−1(U), x1, . . . , xn, y1, . . . , yn), where the local
coordinates xi, yj , i, j = 1, . . . , n, are defined as follows. The first n local coordinates
of a tangent vector y ∈ τ−1(U) are the local coordinates in the local chart (U,ϕ) of
its base point, i.e. xi = xi ◦ τ , by an abuse of notation. The last n local coordinates
yj , j = 1, . . . , n, of y ∈ τ−1(U) are the vector space coordinates of y with respect
to the natural basis in Tτ(y)M defined by the local chart (U,ϕ). Due to this special
structure of differentiable manifold for TM , it is possible to introduce the concept of
M -tensor field on it (see [15]). The vertical lift to TM of a vector field X defined on
M will be denoted by XV .

Denote by ∇̇ the Levi Civita connection of the Riemannian metric g on M . Then
we have the direct sum decomposition

(2.1) TTM = V TM ⊕HTM

of the tangent bundle to TM into the vertical distribution V TM = Ker τ∗ and
the horizontal distribution HTM defined by ∇̇ (see [32]). The set of vector fields
{ ∂

∂y1 , . . . , ∂
∂yn } on τ−1(U) defines a local frame field for V TM and for HTM we have

the local frame field { δ
δx1 , . . . , δ

δxn }, where δ
δxi = ∂

∂xi − Γh
0i

∂
∂yh , Γh

0i = ykΓh
ki, and

Γh
ki(x) are the Christoffel symbols of g.

The set { ∂
∂yi ,

δ
δxj }i,j=1,n, denoted also by {∂i, δj}i,j=1,n, defines a local frame on

TM , adapted to the direct sum decomposition (2.1). The horizontal lift to TM of a
vector field X defined on M will be denoted by XH . Remark that δi = ( ∂

∂xi )H and
∂i = ( ∂

∂xi )V .
The second author considered in [24] a Riemannian metric, which is obtained as

a natural diagonal lift of the Riemannian metric g from the base manifold M to the
tangent bundle TM , the coefficients being functions of the energy density defined by
the tangent vector y as follows

t =
1
2
‖y‖2 =

1
2
gτ(y)(y, y) =

1
2
gik(x)yiyk, y ∈ τ−1(U).
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Obviously, we have t ∈ [0,∞) for all y ∈ TM .
Let us denote by G̃ the natural diagonal Riemannian metric on TM , defined by:

G̃(XH
y , Y H

y ) = c1(t)gτ(y)(X,Y ) + d1(t)gτ(y)(X, y)gτ(y)(Y, y),

G̃(XV
y , Y V

y ) = c2(t)gτ(y)(X, Y ) + d2(t)gτ(y)(X, y)gτ(y)(Y, y),

G̃(XV
y , Y H

y ) = G̃(XH
y , XV

y ) = 0,

(2.2)

∀X,Y ∈ T 1
0 (TM), ∀y ∈ TM, where c1, c2, d1, d2 are smooth functions of the energy

density on TM . The conditions for G̃ to be a Riemannian metric on TM (i.e. to be
positive definite) are c1 > 0, c2 > 0, c1 + 2td1 > 0, c2 + 2td2 > 0 for every t ≥ 0.

The symmetric matrix of type 2n× 2n
(

G̃
(1)
ij 0
0 G̃

(2)
ij

)
=

(
c1(t)gij + d1(t)g0ig0j 0

0 c2(t)gij + d2(t)g0ig0j

)
,

associated to the metric G̃ in the adapted frame {δj , ∂i}i,j=1,n, has the inverse
(

H̃kl
(1) 0
0 H̃kl

(2)

)
=

(
p1(t)gkl + q1(t)ykyl 0

0 p2(t)gkl + q2(t)ykyl

)
,

where gkl are the entries of the inverse matrix of (gij)i,j=1,n, and p1, q1, p2, q2,
are some real smooth functions of the energy density. More precisely, they may be
expressed as rational functions of c1, d1, c2, d2 :

p1 =
1
c1

, p2 =
1
c2

, q1 = − d1

c1(c1 + 2td1)
, q2 = − d2

c2(c2 + 2td2)
.(2.3)

Proposition 2.1. The Levi-Civita connection ∇̃ associated to the Riemannian metric
G̃ from the tangent bundle TM has the form




∇̃XV Y V = Q(XV , Y V ), ∇̃XH Y V = (∇̇XY )V + P (Y V , XH)

∇̃XV Y H = P (XV , Y H), ∇̃XH Y H = (∇̇XY )H + S(XH , Y H),
,∀X, Y ∈ T 1

0 (M),

where the M -tensor fields Q, P, S, have the following components with respect to the
adapted frame {∂i, δj}i,j=1,n:

(2.4)

Qh
ij = 1

2 (∂iG̃
(2)
jk + ∂jG̃

(2)
ik − ∂kG̃

(2)
ij )H̃kh

(2),

Ph
ij = 1

2 (∂iG̃
(1)
jk + Rl

0jkG̃
(2)
li )H̃kh

(1),

Sh
ij = − 1

2 (∂kG̃
(2)
ij + Rl

0ijG̃
(2)
lk )H̃kh

(2),

Rh
kij being the components of the curvature tensor field of the Levi Civita connection

∇̇ from the base manifold (M, g) and Rh
0ij = ykRh

kij. The vector fields Q(XV , Y V )
and S(XH , Y H) are vertically valued, while the vector field P (Y V , XH) is horizontally
valued.
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Using the relations (2.4), we may easily prove that the M -tensor fields Q, P, S,
have invariant expressions of the forms

Q(XV , Y V ) = c′2
2c2

[g(y, X)Y V + g(y, Y )XV ]− c′2−2d2
2(c2+2td2)

g(X,Y )yV

+ c2d′2−2c′2d2
2c2(c2+2td2)

g(y,X)g(y, Y )yV ,

P (XV , Y H) = c′1
2c1

g(y, X)Y H + d1
2c1

g(y, Y )XH + d1
2(c1+2td1)

g(X,Y )yH

+ c1d′1−c′1d1−d2
1

2c1(c1+2td1)
g(y, X)g(y, Y )yH − c2

2c1
(R(X, y)Y )H

− c2d1
2c1(c1+2td1)

g(X,R(Y, y)y)yH ,

S(XH , Y H) = − d1
2c2

[g(y,X) Y V + g(y, Y ) XV ]− c′1
2(c2+2td2)

g(X, Y ) yV

− c2d′1−2d1d2
2c2(c2+2td2)

g(y,X)g(y, Y )yV − 1
2 (R(X, Y )y)V ,

for every vector fields X, Y ∈ T 1
0 (M) and every tangent vector y ∈ TM .

Since in the following sections we shall work on the subset TrM of TM consisting
of spheres of constant radius r, we shall consider only the tangent vectors y for which
the energy density t is equal to r2

2 , and the coefficients from the definition (2.2) of the
metric G̃ become constant. So we may consider them constant from the beginning.
Then the M -tensor fields involved in the expression of the Levi-Civita connection
become simpler:

(2.5)

Q(XV , Y V ) = d2
c2+r2d2

g(X, Y )yV ,

P (XV , Y H) = d1
2c1

g(Y, y)XH + d1
2c1(c1+r2d1)

[c1g(X, Y )− d1g(X, y)g(Y, y)]yH

− c2
2c1

(R(X, y)Y )H − c2d1
2c1(c1+r2d1)

g(X, R(Y, y)y)yH ,

S(XH , Y H) = − d1
2c2

[g(X, y)Y V + g(Y, y)XV ]

+ d1d2
c2(c2+2td2)

g(y, X)g(y, Y )yV − 1
2
(R(X, Y )y)V .

3 Tangent sphere bundles of constant radius r

Let TrM = {y ∈ TM : gτ(y)(y, y) = r2}, with r ∈ (0,∞), and the projection
τ : TrM → M , τ = τ ◦ i, where i is the inclusion map.

The horizontal lift of any vector field on M is tangent to TrM , but the vertical
lift is not always tangent to TrM . The tangential lift of a vector X to (p, y) ∈ TrM ,
used in some recent papers like [4], [11], [12], [18], [25], is defined by

XT
y = XV

y − 1
r2

gτ(y)(X, y)yV
y .

The tangent bundle to TrM is spanned by δi and ∂T
j = ∂j− 1

r2 g0jy
k∂k, i, j, k = 1, n.

Remark that the vector fields {∂T
j }j=1,n are not independent; there is the relation

yj∂T
j = 0, which can be directly checked. In any point of TrM the vectors ∂T

i ; i =
1, . . . n span an (n− 1)-dimensional subspace of TTrM . The vector field

N = yi∂i
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is normal to TrM in TM .
Denote by G the metric on TrM induced from the metric G̃ defined on TM . If

we consider only the tangent vectors y ∈ TrM , the energy density t defined by them
is equal to r2

2 , and the coefficients from the definition (2.2) of the metric G̃ become
constants. Thus, the metric G from TrM has the form





G(XH
y , Y H

y ) = c1gτ(y)(X, Y ) + d1gτ(y)(X, y)gτ(y)(Y, y),

G(XT
y , Y T

y ) = c2[gτ(y)(X,Y )− 1
r2 gτ(y)(X, y)gτ(y)(Y, y)],

G(XH
y , Y T

y ) = G(Y T
y , XH

y ) = 0,

(3.1)

for every vector fields X, Y on M and every tangent vector y, where c1, d1, c2 are
constants. The conditions for G to be positive are c1 > 0, c2 > 0, c1 + r2d1 > 0.

Proposition 3.1. The Levi-Civita connection ∇, associated to the Riemannian met-
ric G on the tangent sphere bundle TrM of constant radius r has the expression




∇∂T

i
∂T

j = Ah
ij∂

T
h , ∇δi

∂T
j = Γh

ij∂
T
h + Bh

jiδh,

∇∂T
i
δj = Bh

ijδh, ∇δiδj = Γh
ijδh + Ch

ij∂
T
h ,

where the M -tensor fields involved as coefficients have the expressions:

Ah
ij = − 1

r2 g0jδ
h
i , Ch

ij = − d1
2c2

(δh
j g0i − δh

i g0j)− 1
2Rh

0ij ,

Bh
ij = Ph

ij − 1
r2 gi0P

h
0j = d1

2c1
δh
i g0j + d1

2(c1+r2d1)
(gij − 2c1+r2d1

r2c1
g0ig0j)yh

− c2
2c1

Rh
jikyk − c2d1

2c1(c1+r2d1)
Rikjly

hykyl,

(3.2)

where g0j = gj0 = yigij and Ph
0j = yiPh

ij.

We mention that A and C have these quite simple expressions, since they are
the coefficients of the tangential part of the Levi-Civita connection. All the terms
containing yh∂T

h = 0 have been canceled.
The invariant form of the Levi-Civita connection from TrM is





∇XT Y T = − 1
r2 g(Y, y)XT ,

∇XT Y H = d1
2c1

g(Y, y) XH + d1
2(c1+d1r2)g(X, Y )yH

− d1(2c1+r2d1)
2r2c1(c1+r2d1)

g(X, y)g(Y, y)yH − c2
2c1

(R(X, y)Y )H − c2d1
2c1(c1+r2d1)

g(X, R(Y, y)y)yH ,

∇XH Y T = (∇̇XY )T + d1
2c1

g(X, y) Y H + d1
2(c1+r2d1)

g(X, Y )yH

− d1(2c1+r2d1)
2r2c1(c1+r2d1)

g(X, y)g(Y, y)yH − c2
2c1

(R(Y, y)X)H − c2d1
2c1(c1+r2d1)

g(Y, R(X, y)y)yH ,

∇XH Y H = (∇̇XY )H − d1
2c2

[g(X, y) Y T − g(Y, y) XT ]− 1
2 (R(X,Y )y)T .

The covariant derivatives ∇̇kQh
ij , ∇̇kPh

ij , ∇̇kSh
ij of the M -tensor fields Q,P, S are

defined by some formulas similar to those from the classical cases. The covariant
derivative of P is given by

∇̇kPh
ij = δkPh

ij + Γh
klP

l
ij − Γl

kiP
h
lj − Γl

kjP
h
il .
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Remark that instead of the partial derivative ∂
∂xk we use the operator δk = δ

δxk =
∂

∂xk − Γh
k0

∂
∂yk . Similar expressions are obtained for ∇̇kQh

ij and for ∇̇kSh
ij . It can be

proved by a straightforward computation that ∇̇kQh
ij , ∇̇kPh

ij , ∇̇kSh
ij are M -tensors

of type (1, 3). The expression of the covariant derivative of an arbitrary M -tensor can
be obtained easily. It follows that ∇̇kyi = 0, ∇̇kgij = 0. In the case where Q,P, S
are given by (2.5), their covariant derivatives are:

∇̇kQh
ij = 0, ∇̇kSh

ij = − 1
2∇̇kRh

lijy
l

∇̇kPh
ij = − c2

2c1
∇̇kRh

jily
l − c2d1

2c1(c1+r2d1)
∇̇kRiljry

lyryh,

where ∇̇kRh
kij , ∇̇kRhkij are the usual local coordinate expressions of the covariant

derivatives of the curvature tensor field and the Riemann-Christoffel tensor field of
the Levi Civita connection ∇̇ on the base manifold M . If the base manifold (M, g) is
locally symmetric then, obviously, ∇̇kQh

ij = 0, ∇̇kPh
ij = 0, ∇̇kSh

ij = 0.
In a similar way we obtain

∇̇kAh
ij = 0, ∇̇kCh

ij = − 1
2∇̇kRh

lijy
l,

∇̇kBh
ij = − c2

2c1
∇̇kRh

jily
l − c2d1

2c1(c1+r2d1)
∇̇kRiljry

lyryh,

The curvature tensor field K of the connection ∇ from TrM is defined by the formula

K(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ T 1
0 (TrM).

We obtain by a standard straightforward computation the horizontal and tangential
components of the curvature tensor field K

K(δi, δj)δk = HHHHh
kijδh + HHHTh

kij∂
T
h ,

K(δi, δj)∂T
k = HHTHh

kijδh + HHTTh
kij∂

T
h ,

K(∂T
i , ∂T

j )δk = TTHHh
kijδh, K(∂T

i , ∂T
j )∂T

k = TTTTh
kij∂

T
h ,

K(∂T
i , δj)δk = THHHh

kijδh + THHTh
kij∂

T
h , K(∂T

i , δj)∂T
k = THTHh

kijδh,

where the non-zero M -tensor fields which appear as coefficients are given by

HHHHh
kij = Rh

kij + Bh
liC

l
jk −Bh

ljC
l
ik + Bh

lkRl
0ij ,

HHHTh
kij = 1

2 (∇̇jR
h
likyl − ∇̇iR

h
ljkyl),

HHTHh
kij = c2

2c1
(∇̇jR

h
ikl − ∇̇iR

h
jkl)y

l + c2d1
2c1(c1+r2d1)

(∇̇jRilkm − ∇̇iRjlkm)ylymyh,

HHTTh
kij∂

T
h = (Rh

kij + Ch
ilB

l
kj − Ch

jlB
l
ki + Ah

lkRl
0ij)∂

T
h ,

TTHHh
kij = ∂T

i Bh
jk − ∂T

j Bh
ik + Bh

ilB
l
jk −Bh

jlB
l
ik − 1

r2 (gi0B
h
jk − gj0B

h
ik),

TTTTh
kij = 1

r2 (gjkδh
i − gikδh

j ) + 1
r4 (δh

j g0ig0k − δh
i g0jg0k),

THHHh
kij = c2

2c1
∇̇jR

h
kily

l + c2d1
2c1(c1+r2d1)

∇̇jRilkry
lyryh,

THHTh
kij∂

T
h = (∂T

i Ch
jk + Ah

ilC
l
jk − Ch

jlB
l
ik − ∇̇jR

h
likyl)∂T

h ,

THTHh
kij = ∂T

i Bh
kj + Bl

kjB
h
il −Al

ikBh
lj , THTTh

kij = −∇̇jA
h
ik = 0.
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We mention that from the final values of HHTTh
kij∂

T
h and THHTh

kij∂
T
h , obtained by

replacing the expressions (3.2) of Ah
ij , B

h
ij , C

h
ij , we shall eliminate the terms containing

yh∂T
h , because they vanish.
We want to find the manifolds (TrM, G) of constant sectional curvature k, i.e the

manifolds for which the curvature tensor field K satisfies the relation

(3.3) K(X, Y )Z − k[G(Y , Z)X −G(X, Z)Y ] = 0, ∀X, Y , Z ∈ T 1
0 (TrM).

Let us consider X, Y , Z ∈ T 1
0 (TrM) as being the tangential lifts of X,Y, Z ∈

T 1
0 (M). We have to study the vanishing conditions for the difference

K(XT , Y T )ZT − k[G(Y T , ZT )XT −G(XT , ZT )Y T ] = 0, ∀X,Y, Z ∈ T 1
0 (M),

which has the detailed expression

1
r2 [g(Y,Z)XT − g(X,Z)Y T ] + 1

r4 g(y, Z)[g(y, X)Y T − g(y, Y )XT ]
−k[G(Y T , ZT )XT −G(XT , ZT )Y T ] = 0,

(3.4)

for all the vector fields X, Y, Z and for every vector y tangent to M .
The local coordinate form of (3.4) is

kr2c2 − 1
r2

[
gjkδh

i − gikδh
j −

1
r2

(δh
j g0ig0k − δh

i g0jg0k)
]

= 0,

from which we obtain a first necessary condition for the manifold (TrM,G) to have
constant sectional curvature k:

(3.5) c2 =
1

kr2
.

If in the relation (3.3) we take instead of X, Y , Z ∈ T 1
0 (TrM) the horizontal lifts of

X, Y, Z ∈ T 1
0 (M), we obtain that the following vanishing condition must be satisfied:

K(XH , Y H)ZH − k[G(Y H , ZH)XH −G(XH , ZH)Y H ] = 0,(3.6)

for every tensor fields X, Y, Z ∈ T 1
0 (M).

Since

K(XH , Y H)ZH = (R(X, Y )Z)H − d2
1

4c1c2
[g(y, X)Y H − g(y, Y )XH ]g(y, Z)

+ d12

4c2(c1+r2d1)
[g(Y,Z)g(y, X)− g(X,Z)g(y, Y )]yH + d1

4c1
[(R(y, Y )Z)Hg(y, X)

−(R(y, X)Z)Hg(y, Y ) + (R(X, Y )y)Hg(y, Z)] + 3d1
4(c1+r2d1)

g(X,R(Z, y)Y )yH

− d2
1

4c1(c1+r2d1)
[g(Y,R(Z, y)y)g(X, y)− g(X, R(Z, y)y)g(Y, y)]yH

+ c2
4c1

[R(R(Y, Z)y, y)X −R(R(X,Z)y, y)Y ]H − c2
2c1

[R(R(X,Y )y, y)Z]H

+ c2d1
4c1(c1+r2d1)

[g(X, R(R(Y, Z)y, y)y)− g(X,R(R(Y, y)y, y)Z)
−2g(X,R(R(Z, y)y, y)Y )]yH + 1

2 (∇̇ZR(X, Y )y)T ,

the coefficient of the horizontal part of the difference (3.6) has the following local
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coordinate expression:

HHHHh
kij − k[(c1gjk + d1g0jg0k)δh

i − (c1gik + d1g0ig0k)δh
j ] =

= Rh
kij + c1k(gikδh

j − gjkδh
i ) + d1(4c1c2k−d1)

4c1c2
(δh

j g0ig0k − δh
i g0jg0k)

+ d2
1

4c2(c1+r2d1)
(gjkg0i − gikg0j)yh + d1

4c1
(Rh

k0jg0i −Rh
k0ig0j + Rh

0ijg0k)

+ 3d1
4(c1+r2d1)

Rijk0y
h − d2

1
4c1(c1+r2d1)

(Rj0k0g0i −Ri0k0g0j)yh

+ c2
4c1

(Rl
0jkRh

il0 −Rl
0ikRh

jl0 − 2Rl
0ijR

h
kl0)

+ c2d1
4c1(c1+r2d1)

(Rl
0i0Rjkl0 −Rl

0ikRj0l0 − 2Rl
0ijRk0l0)yh.

(3.7)

For the indices h, i, j, k fixed, the condition for HHHHh
kij − k[(c1gjk + d1g0jg0k)δh

i −
(c1gik + d1g0ig0k)δh

j ] to be zero leads to an equation of the type A + Al1l2y
l1yl2 +

Al1l2l3l4y
l1yl2yl3yl4 = 0, in the tangential coordinates yi; i = 1, n, where the coeffi-

cients A’s are obtained from the above expression by full symmetrization. Differenti-
ating the obtained expression four times, it follows that Al1l2l3l4 = 0. Then differen-
tiating the remaining expression A + Al1l2y

l1yl2 two times, it follows Al1l2 = 0. We
conclude that the constant term A is zero, whence the base manifold must be a space
form, with the curvature of the form:

(3.8) Rh
kij = c1k(gjkδh

i − gikδh
j ).

Replacing this expression and the value (3.5) of c2 into (3.7), we obtain the following
vanishing condition:

k(3c1 − r2d1)
4r2

[c1 + r2d1

c1
(δh

j g0i − δh
i g0j)g0k − (gjkg0i − gikg0j)yh

]
= 0,

which is satisfied if and only if c1 has the form

(3.9) c1 =
r2d1

3
.

The same values (3.5) of c2 and (3.9) of c1 lead to the identity TTHHh
kij = 0, which

is another necessary condition for (TrM, G) to be a space form. More precisely, after
imposing the expression (3.8) for the curvature of the base manifold, and the value
(3.5) of c2 into the expression of TTHHh

kij , this becomes

TTHHh
kij =

3c1 − r2d1

4c1r2
[gjkδh

i − gikδh
j + (δh

j g0i − δh
i g0j)g0k − (gjkg0i − gikg0j)yh],

which vanishes if and only if c1 takes the value (3.9).
Due to the condition for the base manifold to be a space form, the components

HHHTh
kij ,HHTHh

kij , THHHh
kij of the curvature tensor field of (Tr, G) and the cor-

responding components of the difference from (3.3) become zero. Since HHTTh
kij is

also vanishing when we substitute the expression of the curvature (3.8) and the values
(3.9) for c1 and (3.5) for c2, we have immediately that

K(XH , Y H)ZT = k[G(Y H , ZT )XH −G(XH , ZT )Y H ], ∀X, Y, Z ∈ T 1
0 (M).
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The identity

K(XT , Y H)ZH = k[G(Y H , ZH)XT −G(XT , ZH)Y H ], ∀X, Y, Z ∈ T 1
0 (M),

reduces, after imposing the conditions (3.8), (3.9), (3.5), to the relation

−d1kr2

3 [g(Y, Z)XT + g(X, Z)Y T + g(X, Y )ZT

−g(y, X)g(y, Y )ZT − g(y, X)g(y, Z)Y T − g(y, Y )g(y, Z)XT ] = 0,

which is true for every vector fields X, Y, Z ∈ T 1
0 (M), and for every tangent vector

y ∈ TM , if and only if d1 = 0 or k = 0 (i.e the manifold (Tr, G) is flat).
Finally, we have that the manifold (TrM, G) may never be a space form, since the

relation

K(XT , Y H)ZT = k[G(Y H , ZT )XT −G(XT , ZT )Y H ], ∀X, Y, Z ∈ T 1
0 (M),

which has the final form
1
r2 [g(Y, Z)XT + g(X, Z)Y T + g(X, Y )ZT ]

− 1
r4 {g(y, X)g(y, Y )ZT + g(y,X)g(y, Z)Y T + g(y, Y )g(y, Z)XT

+[g(Y,Z)g(y, X) + g(X,Z)g(y, Y ) + g(X, Y )g(y, Z)

− 3
r2 g(y, X)g(y, Y )g(y, Z)]yh} = 0,

(3.10)

may never be satisfied. Hence we may state

Theorem 3.2. The tangent sphere bundle TrM , with the Riemannian metric G
induced from the metric G̃ of diagonal lift type on the tangent bundle TM , has never
constant sectional curvature.

Corollary 3.3. The tangent sphere bundle TrM , endowed with the metric induced
by the Sasaki metric gs from the tangent bundle TM is never a space form.

In fact, the Sasaki metric can be obtained as a particular case of our natural
diagonal lifted metric, with the coefficients c1 = c2 = 1, d1 = 0.

4 Einstein tangent sphere bundles

We shall find the conditions under which the manifold (TrM, G), with G given by
the relations (3.1), is Einstein. To this aim, we shall compute the Ricci tensor of the
manifold (TrM,G).

First, let us remark some facts concerning the obtaining of the Ricci tensor field
for the tangent bundle TM . We have the well known formula

Ric(Y, Z) = trace(X → K(X, Y )Z),

where X,Y, Z are vector fields on TM . Then we get easily the components of the
Ricci tensor field on TM

R̃icHHjk = R̃ic(δj , δk) = HHHHh
khj + V HHV h

khj ,

R̃icV Vjk = R̃ic(∂j , ∂k) = V V V V h
khj − V HV Hh

kjh,
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where the components V V V V h
kij , V HV Hh

kij , V HHV h
kij , are obtained from the cur-

vature tensor field on TM in a similar way as the components TTTTh
kij , THTHh

kij ,

THHTh
kij are obtained from the curvature tensor field on TrM . In the expression

of R̃icHVjk = R̃ic(δj , ∂k) = R̃icV Hjk = R̃ic(∂j , δk) there are involved the covari-
ant derivatives of the curvature tensor field R. If (M, g) is locally symmetric then
RicHVjk = RicV Hjk = 0. In particular we have RicHVjk = RicV Hjk = 0 in the
case where (M, g) has constant sectional curvature.

Equivalently, we may use an orthonormal frame (E1, . . . , E2n) on TM and we may
use the formula

R̃ic(Y, Z) =
2n∑

i=1

G(Ei,K(Ei, Y )Z).

We may choose the orthonormal frame (E1, . . . , E2n) such that the first n vectors
E1, . . . , En are the vectors of a (orthonormal) frame in HTM and the last n vectors
En+1, . . . E2n are the vectors of a (orthonormal) frame in V TM . Moreover, we may
assume that the last vector E2n is the unitary vector of the normal vector N = yi∂i

to TrM .
The components of the Ricci tensor field of TrM can be obtained in a similar

way by using the above traces. However the vector fields ∂T
1 , . . . , ∂T

n are not in-
dependent. On the open set from TrM , where yn 6= 0 we can consider the basis
δ1, ..., δn, ∂T

1 , ..., ∂T
n−1 for TTrM . The last vector ∂T

n is expressed as

∂T
n = − 1

yn

n−1∑

i=1

yi∂T
i .

Remark that the basis δ1, ..., δn, ∂T
1 , ..., ∂T

n−1 can be completed with the normal vector
N = yV = yh∂h.

For the components HHHHh
kij and HTTHh

kij the traces can pe computed easily,
just like in the case of TM . The components for which we must compute more
carefully the traces are TTTTh

kij , and THHTh
kij . We have:

THHTh
kij∂

T
h =

∑n−1
l=1 THHT l

kij∂
T
l + THHTn

kij∂
T
n

=
∑n−1

l=1 THHT l
kij∂

T
l − THHTn

kij
1

yn

∑n−1
l=1 yl∂T

l

= THHTh
kij∂

T
h − THHTn

kij
1

yn yh∂T
h .

Thus the trace involved in the definition of RicHH on TrM is

THHTh
khj −

1
yn

yhTHHTn
khj .

A short computation made by using the above expression of of THHTh
kij gives

yiTHHTh
kij =

d1(4c1 + r2d1)
4c1c2r2

g0jg0kyh,

thus we get
1
yn

yiTHHTn
kij =

d1(4c1 + r2d1)
4c1c2r2

g0jg0k.



Tangent sphere bundles of natural diagonal lift type 63

It follows that

RicHHjk = HHHHh
khj + THHTh

khj −
d1(4c1 + r2d1)

4c1c2r2
g0jg0k.

In a similar way we get that the trace involved in the definition of RicTT on TrM is

TTTTh
khj −

1
yn

yhTTTTn
khj .

Then

yhTTTTn
khj =

1
r2

gjkyn − 1
r4

g0jg0kyn.

Hence

RicTTjk = Ric(∂T
j , ∂T

k ) = HTTHh
khj + TTTTh

khj −
1
r2

gjk +
1
r4

g0jg0k.

After the computations we obtain the detailed expressions of RicHHjk and RicTTjk:

RicHHjk = Ricjk − d1(2c1+r2d1)
2c2(c1+r2d1)

gjk + d1(2c1+r2d1)[c1n+r2d1(n−1)]
2r2c1c2(c1+r2d1)

g0jg0k

− c2
2c1

Rh
0klR

l
jh0 + c2d1

2c1(c1+r2d1)
Rh

0k0Rh0j0,

RicTTjk = r4d2
1−2c1(c1+r2d1)(n−2)

2c1r2(c1+d1r2) ( 1
r2 g0jg0k − gjk) + c2

2
4c2

1
Rhik0R

hi
j0

− c2
2d1

2c2
1(c1+r2d1)

Rh
0j0Rh0k0.

The components Rh
0kl, R

l
jh0, R

h
0k0, Rh0j0, etc. are obtained as usual from the com-

ponents of the curvature tensor field R of ∇̇ by transvecting with y’s. E.g. Rh
0kl =

Rh
ikly

i, Rl
jh0 = Rl

jhiy
i, Rh

0k0 = Rh
ikjy

iyj , Rh0j0 = Rhijkyiyk. Recall that
Rhijk = ghlR

l
ijk are the components of the Riemann-Christoffel tensor field of ∇̇.

Taking the above relations into account, we obtain that the differences between the
components of the Ricci tensor and the corresponding components of the metric G
multiplied by a constant ρ have the following forms:

RicHHjk − ρG
(1)
jk = Ricjk − d1(2c1+r2d1)+2ρc1c2(c1+r2d1)

2c2(c1+r2d1)
gjk

+d1(2c1+r2d1)[c1n+r2d1(n−1)]−2ρr2c1c2d1(c1+r2d1)
2c1c2r2(c1+r2d1)

g0jg0k

+ c2
4c1

(Rl
kh0R

h
0jl + Rl

jh0R
h
0kl) + c2d1

2c1(c1+r2d1)
Rh0j0R

h
0k0,

RicTTjk − ρG
(2)
jk = c2

2
4c2

1
Rhik0R

hi
j0 − c2

2d1

2c2
1(c1+r2d1)

Rh0j0R
h
0k0

+ r4d2
1+2c1(c1+r2d1)(n−2)+ρ2c1c2r2)

2r2c1(c1+r2d1)
( 1

r2 g0jg0k − gjk).

When the base manifold (M, g) has constant sectional curvature c, i.e. when

(4.1) Rh
kij = c(gjkδh

i − gikδh
j ),
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the above differences take the forms

RicHHjk − ρG
(1)
jk = cc2[2(n−1)(c1+r2d1)−cc2r2]−d1(2c1+r2d1)−2ρc1c2(c1+r2d1)

2c2(c1+d1r2) gjk

+d1[2c2
1n+r4(d2

1−c2c2
2)(n−1)]+r2c1[d

2
1(3n−2)−c2c2

2(n−2)]−2ρr2c1c2d1(c1+r2d1)
2r2c1c2(c1+d1r2) g0jg0k,

RicTTjk − ρG
(2)
jk = r4(d2

1−c2c2
2)+2c1(c1+r2d1)(2−n+ρc2r2)

2r2c1(c1+r2d1)

(
1
r2 g0jg0k − gjk

)

The difference RicTTjk − ρG
(2)
jk vanishes if and only if the constant ρ has the value

ρ = 2c2
1(n−2)+r2[2c1d1(n−2)+r2(c2c2

2−d2
1)]

2r2c1c2(c1+r2d1)
.

After replacing this expression, the difference RicHHjk − ρG
(1)
jk becomes

RicHHjk − ρG
(1)
jk = 2(cc2r2−c1)

r2 {c1(n− 2)− r2[cc2 − d1(n− 1)]}gjk

+{4c2
1d1 + r2c1[d2

1(n + 2)− c2c2
2(n− 2)] + r4d1(d2

1 − c2c2
2)n}g0jg0k.

(4.2)

By doing a detailed analysis of all the situations in which the difference expressed by
(4.2) vanishes, we may prove the following theorem.

Theorem 4.1. The tangent sphere bundle TrM of an n-dimensional Riemannian
(M, g) of constant sectional curvature c is Einstein with respect to the metric G in-
duced from the natural diagonal lifted metric G̃ defined on TM , i.e. it exists a real
constant ρ such that

Ric(X, Y ) = ρG(X, Y ), ∀X, Y ∈ T 1
0 (TrM),

if and only if

c1 =
r2d1n

n− 2
, c2 =

d1n

c(n− 2)
, ρ =

c(n− 1)2(n− 2)
r2d1n2

.

Proof. The difference expressed by (4.2) vanishes if and only if the both coefficients
are equal to zero. The vanishing condition for the coefficient of gjk leads to two cases
which must be studied:

I) c1 = cc2r
2, II) c1 =

r2[cc2 − d1(n− 1)]
n− 2

.

In the case I, the coefficient of g0jg0k from (4.2) becomes

−(cc2 + d1)2[cc2(n− 2)− d1n]r4 = 0,

so we have two possible values for c2:

(4.3) c2 = −d1

c
, or c2 =

d1n

c(n− 2)
.

Replacing the first one into the expression of c1, we obtain that c1 + r2d1 = 0, thus
the constant ρ, some components of K as well as the Levi Civita connection are not
defined. So this situation should be excluded.
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When c2 takes the second value from (4.3), c1 and ρ have the forms presented in
the case I from the theorem.

If c1 has the expression from case II the coefficient of g0jg0k given in (4.2) decom-
poses as

(4.4) −r4(cc2 − d1){c2c2
2(n− 2)2 + d1[d1n

2 + 2cc2(n2 − 4n + 2)]}
(n− 2)2

= 0.

The vanishing condition for the first factor and the value of c1 from case II lead us
again to the situation where c1 + r2d1 = 0, so it should be excluded.

The second factor which appears in (4.4) is a second degree function of c2. The
discriminant of the attached equation is

∆ = 16c2d2
1(1− n)(n2 − 3n + 1).

Since the dimension n of the base manifold is a natural number bigger then one, ∆ is
positive only for n = 2, value which makes vanish the denominator of the expression
(4.4), so the case must be treated separately, starting with the expressions of the
differences RicHHjk − ρG

(1)
jk and RicTTjk − ρG

(2)
jk , which become of the forms

RicHHjk − ρG
(1)
jk = cc2[2(c1+r2d1)−cc2r2]−d1(2c1+r2d1)−2ρc1c2(c1+r2d1)

2c2(c1+d1r2) gjk

+d1[4c2
1+r4(d2

1−c2c2
2)]+4r2c1d2

1−2ρr2c1c2d1(c1+r2d1)
2r2c1c2(c1+d1r2) g0jg0k,

RicTTjk − ρG
(2)
jk =

r4(d2
1 − c2c2

2) + 2ρr2c1c2(c1 + r2d1)
2r2c1(c1 + r2d1)

(
1
r2

g0jg0k − gjk

)
.

From these relations we get

ρ =
r2(c2c2

2 − d2
1)

2c1c2(c1 + r2d1)
,

and then

RicHHjk − ρG
(1)
jk = 2(cc2r

2 − c1)(d1 − cc2)gjk

+2d1[2c1(c1 + r2d1) + r4(d2
1 − c2c2

2)]g0jg0k.

This last difference vanishes if and only if c1 = r2cc2 and d1 = −cc2, or d1 = cc2 and
c1 = −r2cc2, but the both cases must be excluded, since they lead to c1 + r2d1 = 0.
Thus the theorem is proved. ¤

Corollary 4.2. The tangent sphere bundle TrM of an n-dimensional Riemannian
space form (M, g) may never be Einstein with respect to the metric induced by the
Sasaki metric gs from TM .

In fact, in this case, the coefficients should be c1 = c2 = 1, d1 = 0, and they do
not satisfy the condition from theorem 4.1.
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