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1 Introduction

The tangent sphere bundle T, M consisting of spheres of constant radius r centered
in the null tangent vectors are hyper-surfaces of the tangent bundle T'M, obtained by
considering only the tangent vectors having the norm equal to 7.

In the most part of the papers, like [3]-[6], [17], [25], [27], [28], the metric considered
on the tangent bundle TM was the Sasaki metric (see [26]), but E. Boeckx noticed
that the unit tangent bundle equipped with the induced Cheeger-Gromoll metric is
isometric to the tangent sphere bundle T+ M, of radius % endowed with the metric

induced by the Sasaki metric. This suggfsted to O. Kowalski and M. Sekizawa the
idea that the tangent sphere bundles with different constant radii and with the metrics
induced from the Sasaki metric might possess different geometrical properties, and in
the paper [11] from 2000 they showed how the geometry of the tangent sphere bundles
depends on the radius.

Some other metrics on the tangent sphere bundles may be constructed by using a
few lifts to the tangent bundle, which have been considered in [21]-[24], [29]-[31], and
studied in some very recent papers, such as [2], [7] and [14].

In the last years some interesting results were obtained by endowing the tangent
sphere bundles with Riemannian metrics induced by the natural lifted metrics from
T M, which are not Sasakian (see [1], [16], [18] — [20]).

Roughly speaking, a natural operator (in the sense of [8] — [10], [13]) is a fibred ma-
nifold mapping, which is invariant with respect to the group of local diffeomorphisms
of the base manifold.
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In the present paper we consider on the tangent bundle T'M of a Riemannian
manifold M a natural metric G, obtained by the second author in [24] as the diagonal
lift of the Riemannian metric g from the base manifold. We prove that the tangent
sphere bundle T,.M endowed with the Riemannian metric G induced from G may
never have constant sectional curvature, then we find the conditions under which
(T, M, @) is an Einstein manifold.

The manifolds, tensor fields and other geometric objects considered in this paper
are assumed to be differentiable of class C*° (i.e. smooth). The Einstein summation
convention is used throughout this paper, the range of the indices h,1,j,k,l,m,r,
being always {1,...,n}.

2 Preliminary results

Let (M, g) be a smooth n-dimensional Riemannian manifold and denote its tangent
bundle by 7 : TM — M. The total space T'M has a structure of a 2n-dimensional
smooth manifold, induced from the smooth manifold structure of M. This structure
is obtained by using local charts on TM induced from usual local charts on M.
If (U,p) = (Uat,...,2") is a local chart on M, then the corresponding induced
local chart on TM is (17 1(U),®) = (r~Y(U), 2, ..., 2", y',...,y"), where the local
coordinates z%,47, i,j = 1,...,n, are defined as follows. The first n local coordinates
of a tangent vector y € 771(U) are the local coordinates in the local chart (U, ¢) of
its base point, i.e. ' = 2% o 7, by an abuse of notation. The last n local coordinates
v/, j=1,....n, of y € 771(U) are the vector space coordinates of y with respect
to the natural basis in T,y M defined by the local chart (U, ¢). Due to this special
structure of differentiable manifold for T'M, it is possible to introduce the concept of
M-tensor field on it (see [15]). The vertical lift to TM of a vector field X defined on
M will be denoted by XV.

Denote by V the Levi Civita connection of the Riemannian metric gon M. Then
we have the direct sum decomposition

(2.1) TTM = VTM & HTM

of the tangent bundle to T'M into the vertical distribution VI'M = Ker 7, and
the horizontal distribution HTM defined by V (see [32]). The set of vector fields
{%, e %} on 77 H(U) defines a local frame field for VT'M and for HT' M we have
the local frame field {%, o 5%}, where % = % - ng%7 Iy = y*Th,, and
I'2.(x) are the Christoffel symbols of g.

The set {%, %}i’j:ﬁ, denoted also by {81,6j}i,j:1}7, defines a local frame on
TM, adapted to the direct sum decomposition (2.1). The horizontal lift to TM of a
vector field X defined on M will be denoted by X#. Remark that §; = (52) and
0; = (327 )V-

The second author considered in [24] a Riemannian metric, which is obtained as
a natural diagonal lift of the Riemannian metric g from the base manifold M to the
tangent bundle T'M, the coefficients being functions of the energy density defined by
the tangent vector y as follows

1 1 1 . _
t= §||y||2 = 597 (¥:y) = 9 (2)y vk, yer'(U).
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Obviously, we have t € [0,00) for all y € TM.
Let us denote by G the natural diagonal Riemannian metric on 7'M, defined by:

(2'2) é(X;/7ny) (t)g‘r ( ’ ) + dQ(t) )(X y)gr(y) (Y y)
G(x) v =GX} X)) =0,

)

VX,Y € T3 (T M), Vy € TM, where ¢y, ca, d1, da are smooth functions of the energy

density on T'M. The conditions for G to be a Riemannian metric on TM (i.e. to be

positive definite) are ¢; > 0, c2 > 0, ¢1 + 2tdy > 0, co + 2tds > 0 for every ¢ > 0.
The symmetric matrix of type 2n x 2n

65]1) 0 (Cl(t)gij + d1(t)goigo; 0 )
0 G 0 c2(t)gi; + da(t)goigo; )’

associated to the metric G in the adapted frame {d;, 0;} has the inverse

ij=T,m°

a0 :(muMM+qmwwy 0 )
0 HY 0 p2(t)g + g2 (t)y*y' )

where ¢*' are the entries of the inverse matrix of (gij)i,j=17w and p1, q1, P2, 42,
are some real smooth functions of the energy density. More precisely, they may be
expressed as rational functions of ¢y, di, ¢, ds:

1 1 d; do

2.3 = = =%
( ) P C1 P2 Co « 01(61+2td1) % CQ(CQ+2td2)

Proposition 2.1. The Levi-Civita connection V associated to the Riemannian metric
G from the tangent bundle TM has the form

VoYY =Q(XV, YY), VYV = (VxY)V + PYY, xH)
VXY € T)H(M),
Vv Y = P(XV V), VY = (V)7 + 5(xH v,

where the M -tensor fields @, P, S, have the following components with respect to the
adapted frame {0;,0;}

ij=T,n"

~(2 ~(2 ~2)\ 17
L= 106 + 0,6 — o, G H,

1 2
(2.4) Pl =1(0:GY) + RL, GV HE,

SZ]—; = _%(816G1(2) + ROZ]Gl(Iz )Hklg

Rkw being the components of the curvature tensor field of the Levi Civita connection
V from the base manifold (M,g) and RO” = ykRkU The vector fields Q(XV,Y")

and S(XH Y H) are vertically valued, while the vector field P(YY, X*) is horizontally
valued.
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Using the relations (2.4), we may easily prove that the M-tensor fields @, P, S,
have invariant expressions of the forms

ch ch—2d
QIXVYY) =329y, X)YY +9(y. Y)XV] = 525107 9(X, Y)y¥

202

dl,—2chd.
+om o 9 X)9(y, Y)y",

2c1 2¢1
21 (i t+2tdy) I\Y> A )9\Y, 1)y 20; Y
— et (X RO, )y,

S(XHaYH) :_QdTlZ[g(:%X) Yv+g(y,y) XV]—WQ(XJ/) yV
cod, —2dy d
— gy, X)g(y, Y)yY — 3(R(X, Y)y),

for every vector fields X,Y € 73 (M) and every tangent vector y € T M.

Since in the following sections we shall work on the subset T,-M of T'M consisting
of spheres of constant radius r, we shall consider only the tangent vectors y for which
the energy density t is equal to %, and the coefficients from the definition (2.2) of the
metric G become constant. So we may consider them constant from the beginning.
Then the M-tensor fields involved in the expression of the Levi-Civita connection
become simpler:

Q(XV7YV) = szﬁg(xﬂ/)y‘a

P(XV, YT = gV, )X + ot [ag(X,Y) — dig(X, y)g(Y, y)ly™

(2.5) =32 (RX, )Y — g2 las g (X, R(Y, y)y)y ™,
SXT YY) = - [g(X,y)YY +g(Y,9)X"]

ez g(y, X)g(y, YV)yY = S(R(X,Y)y)Y.

3 Tangent sphere bundles of constant radius r

Let T,M = {y € TM : g.(,)(y,y) = r*}, with r € (0,00), and the projection
T:T.M — M, T =71 o1, where 7 is the inclusion map.

The horizontal lift of any vector field on M is tangent to T;.M, but the vertical
lift is not always tangent to T,.M. The tangential lift of a vector X to (p,y) € T,.M,
used in some recent papers like [4], [11], [12], [18], [25], is defined by

1
T _ yV v
Xy =Xy - 72 97() (X, 9)yy -

The tangent bundle to T,- M is spanned by &; and 97 = 8;—%g0;y* 0k, i, 4,k = T,n.
Remark that the vector fields {8JT} are not independent; there is the relation
Y 8JT = 0, which can be directly checked. In any point of T}, M the vectors O} ;
1,...n span an (n — 1)-dimensional subspace of TT, M. The vector field

N = yzaz

j=ln
i=
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is normal to T,.M in T M. B
Denote by G the metric on T, M induced from the metric G defined on T M. If
we consider only the tangent vectors y € T,.M, the energy density ¢ defined by them

is equal to g, and the coefficients from the definition (2.2) of the metric G become

constants. Thus, the metric G from T,.M has the form
G(XJ1YT) = e19-(5) (X, Y) + d1gr () (X, 9) 9 () (Y5 9),
(3.1) G(Xy,Y)) = e2lgr() (X,Y) = 59-(5) (X, 9) 97 (Yo 9)],
GxryhH=acw ,x) =o,

for every vector fields X,Y on M and every tangent vector y, where ¢y, di, co are
constants. The conditions for G to be positive are ¢; > 0, c3 >0, ¢ + r2d; > 0.

Proposition 3.1. The Levi-Civita connection V, associated to the Riemannian met-
ric G on the tangent sphere bundle T, M of constant radius r has the expression

Vord] = Aloy, V5,0] =T, + Bjion,
Vord; = Bjon, V5,05 =T}50n + Cli0y
where the M -tensor fields involved as coefficients have the expressions:

h _ 1 sh h _ _di(sh, _ sh, \_ 1ph
Aij_ _7290%51‘7 Cij_ 2c2(5j90Z 51‘90J) 2R0ij7

1 d d 2¢;4+r2d
(3:2) By = Plj — zgioFo; = 5270090 + er+ran) (9id — S 90ig0;)y"
h ok d bkl
“2e Y~ Setenrzan Bikity VY

We mention that A and C have these quite simple expressions, since they are
the coefficients of the tangential part of the Levi-Civita connection. All the terms
containing 4”07 = 0 have been canceled.

The invariant form of the Levi-Civita connection from T,.M is

V_XT}/T = _,,,%g(y, y)XT7

VxrYH = g(Yy) X7 + 5ty g (X, Y )y

2(11
d C 7‘2d C: C
— oot L g (X, y)g (Vo )y — 52 (RO, y)Y )T — 52 g (X, R(Y, y)y)y™,

VYT = (VxY)T + i g(X,y) YH + 5l g (X, V)y™

dy (2¢14+1%dy
— g CAE ) g(X, ) g (Vo )y — £ (R, 9) X)H — 522 g(V, R(X, y)y)y™,

VxnYH = (VxY) = [g(X,y) YT — g(Y,y) XT] - 3(R(X,Y)y)T.

The covariant derivatives VkQ?j, VkPZZL, VkSihj of the M-tensor fields @, P, S are
defined by some formulas similar to those from the classical cases. The covariant

derivative of P is given by

ka)i}} = 5161:)1}; + FZlPilj - Fgeipl}; - Fiﬁjpi}ll'
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Remark that instead of the partial derivative % we use the operator d, = &% =

% — FZO%. Similar expressions are obtained for VkQZ and for VkSZhj. It can be

proved by a straightforward computation that VkQ?j, VkajL, VkaLj are M-tensors
of type (1,3). The expression of the covariant derivative of an arbitrary M-tensor can
be obtained easily. It follows that Viy* = 0, Vig;; = 0. In the case where @, P, S

are given by (2.5), their covariant derivatives are:
kaZ =0, Vka; = —%kaZ-jyl

VPl = =52V Rl gt — 7261(§filrzdl)kailjrylyTyhu

261

where VkRZij, Vthkij are the usual local coordinate expressions of the covariant
derivatives of the curvature tensor field and the Riemann-Christoffel tensor field of
the Levi Civita connection V on the base manifold M. If the base manifold (M, g) is
locally symmetric then, obviously, VkQ% =0, VkP[]L- =0, VkSlhj =0.
In a similar way we obtain

VkA?j = 0, chl-hj = —%VkRﬁ-jyl,

- Cco © cod - r

VBl = =32 ViRly' — o2y Ve Ry 'y y",
The curvature tensor field K of the connection V from T,.M is defined by the formula

K(X,Y)Z =VxVyZ—-VyVxZ—-VxyZ, XY, 7Ty (T,M).

We obtain by a standard straightforward computation the horizontal and tangential
components of the curvature tensor field K

K(6:,0;)6, = HHHH. .6, + HHHT}"

T
kij ‘8}7, )

J
K(6:,0;)00 = HHTH},;0n + HHTT}' 0,
K(9],0] )0, = TTHH]};;0n, K(0F,0])0f = TTTT{,;0},
K(0F,6;)0, = THHH,’;ij&L + THHT,%@,?, K(oF,6;)0f = THTH,’:ijéh,
where the non-zero M-tensor fields which appear as coefficients are given by
HHHH}; = R}, + B[:Cl, — BCl, + BJ\ R,

HHHT}; = L(V; Ry — ViRl ),

kij
HHTH;:U = %(VJR?M - ViR;?kl)yl + #j_;zdl)(vj]%ilkm - vilekm)ylymyhv
HHTT};;0f = (R},; + CliBi; — CliB, + Al Rb;;) 0},
TTHHI?Z’]’ = 81'TB;‘11<: -9 B + BﬁBé‘k - B;‘Lszl‘k: - %2(9103?1@ — gjoBly),

TTTT/Z:IU = riz(gjk(szh - gikéj-’) + %4(5;-’902'901@ - 5?90;‘9%)7
THHH},; = $2V;Riy' + 5285V Rk vy
THHT};0f = (97 Ch, + ALCY, — ClBY — VRl yHOT,

THTH],, = 0T B}, + B}, Bl — AL Bl\, THTT}!, = —V;AL = 0.
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We mention that from the final values of HHTT}" 8T and THHT}) y OF | obtained by
replacing the expressions (3.2) of A}, Bfy, CJt,
y"OT, because they vanish.

We want to find the manifolds (7, M, G) of constant sectional curvature k, i.e the
manifolds for which the curvature tensor field K satisfies the relation

we bhall eliminate the terms containing

(3.3) KX, Y)Z - klGY,2)X - G(X,2)Y] =0,VX,Y,Z € T} (T.M).

Let us consider X,Y,Z € 7 (T.M) as being the tangential lifts of X,Y,Z €
73 (M). We have to study the vanishing conditions for the difference

KXt vzt —klcy™, z0)xT —G(XT,z0yY"] =0,VX,Y, Z € T (M),
which has the detailed expression

(3.4) PV DXT —g(X, 2)VT] + Seg(y, Z)lgly, X)YT — g(y, Y)XT]
' —KGYT, ZD)XT D G(XT, ZT)YT] =0,

for all the vector fields X, Y, Z and for every vector y tangent to M.
The local coordinate form of (3.4) is

kr2cy —1 1
# (9107 — gindl} — 72(5;‘1901‘9% — 87 g090k)] =0,

from which we obtain a first necessary condition for the manifold (7,-M, G) to have
constant sectional curvature k:

1

3.5 -
(3.5) C2 )

If in the relation (3.3) we take instead of X,Y,Z € 73 (T, M) the horizontal lifts of
XY, Z € T} (M), we obtain that the following vanishing condition must be satisfied:

(3.6) KxH yMz? kv, zHxH — q(x®, zMyH) =,

for every tensor fields X,Y, Z € 7' (M).
Since

K(XT, Y121 = (RX.V)Z2)" = 75 [o(0, XY™ — g(u,Y) X ]g(y. 2)
+m[( Z)g(y, X) — 9(X, Z)g(y Y)]yHJrfj [(R(y,Y)Z)"g(y, X)
(B X)2)"g(4.Y) + (RO Y )0) g0, 2)) + 5 ey 0 (X BUZ )Y )y
— otk 9V, R(Z,y)y)a(X, y) — 9(X, R(Z,y)y)g(Y, )]y

+ 2 RR(Y, 2)y, )X — R(R(X, Z)gs )V ) — £ [R(R(X, Y}y, 4)7)"
12y [9(X, R(R(Y, 2)y, 9)y) — 9(X, R(R(Y, y)y, y)Z)

~29(X, R(R(Zy)y. )Y )ly" + L(VZR(X,Y)y)",

the coefficient of the horizontal part of the difference (3.6) has the following local
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coordinate expression:

HHHH};; — k[(c1gjk + d1gojgor )0 — (c1gir + digoigor)d}] =

= Rzij + Clk‘(gikfs]h - gjkfézh> + %ﬂ@?gmg% - 5?90;‘901@)
+ﬁ§.ﬂdl)(gjk90i — 9ikgo)y" + 42 (Rp;900 — Rii9o; + Rii;90k)
+ﬁ%3m0yh — #%(Rjokogm — Riokogo;)y
+C*2(Réij?lo - RéikR;'LlO - 2Rf)inZlO)

401

62d1 l . _ l . p— l h
+4cl(cl+r2d1)(ROi0R]klO ROikRJOIO 2R0inkOl0)y‘

h

For the indices h, i, j, k fixed, the condition for HHHH,’jij — k[(c19jk + d190jgok )01 —
(c19ik + dlgol-gok)éél] to be zero leads to an equation of the type A + A;,y"y'2 +
Alllzl3l4yl1yl2yl3yl4 = 0, in the tangential coordinates y’; i = 1,n, where the coeffi-
cients A’s are obtained from the above expression by full symmetrization. Differenti-
ating the obtained expression four times, it follows that A; 1,15, = 0. Then differen-
tiating the remaining expression A + Aj,;,y"y'2 two times, it follows A;,;, = 0. We
conclude that the constant term A is zero, whence the base manifold must be a space
form, with the curvature of the form:

(3.8) RZij = Clk(gjk(slh - gik(S;‘L)-

Replacing this expression and the value (3.5) of ¢y into (3.7), we obtain the following
vanishing condition:

kJ(SCl — T2d1) |:Cl + Tzdl

472 (5?90%‘ - 5?903‘)9% — (9jk90i — gikng)yh] =0,

&1

which is satisfied if and only if ¢; has the form

r2d
(3.9) ¢ = Tl
The same values (3.5) of ¢ and (3.9) of ¢; lead to the identity TTHH,?ij = 0, which

is another necessary condition for (7;.M, G) to be a space form. More precisely, after
imposing the expression (3.8) for the curvature of the base manifold, and the value
(3.5) of ¢z into the expression of TTHH,?U, this becomes

2
TTHH; = 3614017:2%[93'1@5? — gird) + (87 g0i — 61 90j) g0k — (g£90i — Girgo;)y"],
which vanishes if and only if ¢; takes the value (3.9).

Due to the condition for the base manifold to be a space form, the components
HHHTIZj, HHTH,?M7 THHH,?U of the curvature tensor field of (7)., G) and the cor-
responding components of the difference from (3.3) become zero. Since HHTTI?Z-]- is
also vanishing when we substitute the expression of the curvature (3.8) and the values

(3.9) for ¢; and (3.5) for ¢z, we have immediately that
KxH® yHzT =klc(YH, Zz)x " —q(xH, 2Ty, vX,Y,Z € T} (M).
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The identity
KXT, yMz? = glc(YH, zHxT - G(XT, ZzH9)YH], vX,Y,Z € T} (M),
reduces, after imposing the conditions (3.8), (3.9), (3.5), to the relation
— kR 1y, 2)XT + g(X, Z)YT + g(X,Y)ZT
—9(y, X)g(y. V) 2" = g(y, X)g(y, )Y — g(y.Y)g(y, 2)XT] = 0,

which is true for every vector fields X,Y,Z € 7'(M), and for every tangent vector
y € TM, if and only if d; =0 or k =0 (i.e the manifold (7, G) is flat).

Finally, we have that the manifold (7}.M, G) may never be a space form, since the
relation

KT, yMHzt =klcYH, 20 xT —c(xT, z"YH), vX,Y,Z € T} (M),
which has the final form
=9V, 2)XT + g(X, Z2)Y T + g(X,Y)Z"]
4 {9(y, X)9(y, Y)Z" + g(y, X)g(y, 2)Y " + g(y,Y)g(y, 2) X"
+o(Y, Z2)g(y, X) + 9(X, Z)9(y,Y) + 9(X,Y)g(y, Z)
—39(y, X)g(y, Y)g(y, 2)ly"} =0,

may never be satisfied. Hence we may state

(3.10)

Theorem 3.2. The tangent sphere bundle T, M, with the Riemannian metric G
induced from the metric G of diagonal lift type on the tangent bundle TM , has never
constant sectional curvature.

Corollary 3.3. The tangent sphere bundle T,.M, endowed with the metric induced
by the Sasaki metric g° from the tangent bundle T M is never a space form.

In fact, the Sasaki metric can be obtained as a particular case of our natural
diagonal lifted metric, with the coefficients ¢y = ¢y =1, d; = 0.

4 Einstein tangent sphere bundles

We shall find the conditions under which the manifold (7,.M,G), with G given by
the relations (3.1), is Einstein. To this aim, we shall compute the Ricci tensor of the
manifold (T,.-M, G).

First, let us remark some facts concerning the obtaining of the Ricci tensor field
for the tangent bundle TM. We have the well known formula

Ric(Y,Z) =trace(X — K(X,Y)Z),

where XY, Z are vector fields on T'M. Then we get easily the components of the
Ricci tensor field on TM

RicHHji = Ric(d;,0,) = HHHH}, , + VHHV] .,

RicVVji = Ric(9;,00) = VVVVh  —~ VHVH, |
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where the components VVVthij, VHVH}!

rij VHH Vk};j, are obtained from the cur-

vature tensor field on T'M in a similar way as the components TTTT};;, THTH}, ;,
THH T,?Z.j are obtained from the curvature tensor field on 7T,.M. In the expression
of Ei/cHij = }?i/c(dj,ak.) = ]?i/cVij = RNiC(aj,CSk) there are involved the covari-
ant derivatives of the curvature tensor field R. If (M, g) is locally symmetric then
RicHV;, = RicVHj, = 0. In particular we have RicHVj, = RicVHj;, = 0 in the
case where (M, g) has constant sectional curvature.

Equivalently, we may use an orthonormal frame (E1, ..., Fa,) on TM and we may
use the formula

2n
Ric(Y,Z) =Y G(E;,K(E,Y)Z).

i=1
We may choose the orthonormal frame (E4,..., Fs,) such that the first n vectors
E1,...,E, are the vectors of a (orthonormal) frame in HTM and the last n vectors
E,+1,...Ey, are the vectors of a (orthonormal) frame in VT M. Moreover, we may
assume that the last vector Fs, is the unitary vector of the normal vector N = %0;
to T, M.

The components of the Ricci tensor field of T, M can be obtained in a similar
way by using the above traces. However the vector fields 9f,...,0% are not in-
dependent. On the open set from T, M, where y™ # 0 we can consider the basis
81y ey 0, OF ., 0L | for TT, M. The last vector 97 is expressed as

1 n—1
of =-—> "y'of.
Yy =1

Remark that the basis d1, ..., 8,07, ...,0L | can be completed with the normal vector
N =yV =y"0,,.

For the components HHHH};; and HTTH];; the traces can pe computed easily,
just like in the case of TM. The components for which we must compute more
carefully the traces are TTTT;Z]-, and THH T,?ij‘ We have:

THHT}0F =Y} THHT}, 0F + THHT}, 0T

J kij~n

n—1 n -1
=25 THHTIéijalT_THH kzgy% =1 y'of

O —THHT},, Lyl

— h
= THHT}, Y

Thus the trace involved in the definition of RicHH on T,.M is

1
THHT},; — y—nyhTHHTghj.

A short computation made by using the above expression of of THHT}, ; gives

dl (461 —+ T‘Zdl)

h
Acycor? 9ojgory

y'THHT};; =
thus we get
d1 (461 + T‘2d1)

Acycor? 90590k -

1 % n
[y THHTG; =
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It follows that

dq (401 + 7“2d1)

RicHHj, = HHHH},; + THHT, ; — yo—
162

903 9ok -
In a similar way we get that the trace involved in the definition of RicT'T on T, M is
1
TTTTY,; — —y"TTTT},;.
yn

Then
h n 1 n 1 n
Yy ITTTy,, = ﬁgjky - TjQOjQOk:y .

Hence

. . 1 1
RicTTj, = Ric(d] ,0F ) = HTTH}),; + TTTT},; — 593k T —190i 9ok

After the computations we obtain the detailed expressions of RicH Hjj, and RicTT}y:

. I - d1(201+7‘2d1) . d1(201+r2d1)[01n+7‘2d1(nfl)] )
RZCHH]’C - RZCJk - 2cz(c1+r2d1)g]k + 2r2cyca(c1+r2dy) 9oj Yok

_C2 ph l cody h .
2¢1 R R jho T 2c1(cl+r2d1)R okoLthoj0,

. r*d?—2¢cq (c147%d1)(n—2) /1 c2 hi
RicTTy, = e etde s (290 90k — k) + 1 Briko 50

2
_ cydy h
20% (e1+r2dy) R OjORhOkO :

The components RhOkl, R jh0s Rh0k07 Rpojo0, etc. are obtained as usual from the com-
ponents of the curvature tensor field R of V by transvecting with y’s. E.g. Rh()kl =
Rlygy's Ry = Ripy's Ry = Rlyy'y’, Riojo = Rripy'y®. Recall that
Rpijr = g R ijk are the components of the Riemann-Christoffel tensor field of V.
Taking the above relations into account, we obtain that the differences between the

components of the Ricci tensor and the corresponding components of the metric G
multiplied by a constant p have the following forms:

: . 1) _ pa. di(2c1+r2di)+2pciea(citridy)
RicHHj, — pij = Ricji, — Sea(crtr2dh) o

di1(2¢1 +r2d, )[e1 n+r2d, (n—1)] —2pr2cieady (c1 +r2d1) )
+ 2cy1car?(c1+r2dy) 9oj 9ok

Cco l h l h cady i h
+E(Rkh0ROjl + thOROkl) + 2c1(c1+r2d1)RhOJOR0k07
T @) _ hi c3da h

RicT Tk — pGjy = gz Briro B — s 5many Brojo Rogo

r4df+2c1(c1+r2d1)(n72)+p25152r2) 1
+ 27%c; (e1+r2dy) (,?2903‘901« —= Gjk)-

When the base manifold (M, g) has constant sectional curvature ¢, i.e. when

(4.1) R = clgjrdl — gindlh),
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the above differences take the forms

. 1 cea[2(n—1)(e1+r2dy) —ccar?]—dy (2c1+12d1) —2pcica(ci1+r3d
RZCHij_pGg'k) _ cep[2(n—1)(ca+rdy) P0222’2361J:(§1;;)T 1)—2pcica(crtr 1)gj

di[2¢2n+rt (d2—c?c2) (n—1)]47r2c1 [d2 (3n—2) —c?c2(n—2)]—2pr2c; cady (c14+72d1)

+ 2r2¢yca(c1+d172) 90590k

, 2) _ r'(di—c’c3)+2ci (c14r’d1) (2—n-+pear?
RicTTy, — pGE‘k) _ ri(di—c C2)2’l"20011((06114:"2c}1))( n+pear )(T%nggok _ gjk)

The difference RicTT};, — pGﬁ) vanishes if and only if the constant p has the value

_2c2(n—2)+7r?[2c1d1 (n—2)+1%(c*c3—d?)]
p= 2r2cica(c1+r2dy) .

After replacing this expression, the difference RicH Hj;, — pGSC) becomes

RicHH. — pGW) — 2(ccar’=c1) _9) _ 2 Cdiln—1 .
9 e Hjp — Pl 72 {er(n —2) —r?[ecs 1(n = D]}gx
+{dcidy + rPei[di(n +2) — A3 (n — 2)] + ridi (d? — *3)n}gojgok-

By doing a detailed analysis of all the situations in which the difference expressed by
(4.2) vanishes, we may prove the following theorem.

Theorem 4.1. The tangent sphere bundle T,.M of an n-dimensional Riemannian
(M, g) of constant sectional curvature ¢ is Einstein with respect to the metric G in-
duced from the natural diagonal lifted metric G defined on TM, i.e. it exists a Teal
constant p such that

Ric(X,Y) = pG(X,Y), VX,Y € T} (T M),
if and only if

r?din o din _c¢(n—1)%*(n—2)
> en—2) P= r2dyn? '

Proof. The difference expressed by (4.2) vanishes if and only if the both coefficients
are equal to zero. The vanishing condition for the coefficient of g1 leads to two cases
which must be studied:

r?[ccog — di(n — 1)) '

I) ¢ = ceor?, Il = —

In the case I, the coefficient of go;gor from (4.2) becomes
—(cey +dy)?[eca(n — 2) — dyn]r* =0,
so we have two possible values for cs:

dln

4. :—71 = —
(4.3) Co v orc o

Replacing the first one into the expression of c¢;, we obtain that ¢; + r2d; = 0, thus
the constant p, some components of K as well as the Levi Civita connection are not
defined. So this situation should be excluded.
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When ¢, takes the second value from (4.3), ¢; and p have the forms presented in
the case I from the theorem.

If ¢; has the expression from case I the coefficient of gg;gox given in (4.2) decom-
poses as

_r4(ccQ —d1){c?c3(n — 2)? + dq[d1n? + 2cca(n? — 4n + 2)]}

(4.4) 2y

=0.

The vanishing condition for the first factor and the value of ¢; from case II lead us
again to the situation where ¢; + r?d; = 0, so it should be excluded.

The second factor which appears in (4.4) is a second degree function of ¢. The
discriminant of the attached equation is

A =16c2d?(1 —n)(n? — 3n +1).

Since the dimension n of the base manifold is a natural number bigger then one, A is
positive only for n = 2, value which makes vanish the denominator of the expression
(4.4), so the case must be treated separately, starting with the expressions of the

differences RicH Hj;, — pGﬁ,) and RicTTy;, — pGﬁ), which become of the forms

. 1 cco[2 2dy)—cepr®]—dy (2c1+7°d1) —2pcica (e +r3d
RicHHj;, — pg§k) _ cea[2(eatridi)—cear 2]62((125_:51-&;2) 1)—2pcica(citr 1)gjk
dr 42414 (d2 — c2e2) ]+ 4r2ey d2 —2pr2 d 124
+ 1[4ci+r*(di—c cﬁglq;(ccllidlrg; cicedi(c1tr l)ngQOIm
4/ 92 2.2 2 2
) rH(dy — c*c3) + 2priciea(cr +12dy) (1
RicTTy), — pG'2) = L 2 a0ior — air | .
ik P gk 27’261(01 +7"2d1) ’I"QQOJQOk Yik

From these relations we get

_ _r(c’c3 —di)

p= 2cico(cy +1r2dy)’
and then
RicHHjj, — pGﬁ) = 2(ccar? —¢y)(dy — cC2) gk

+2d;[2¢1 (1 + r2dy) + r*(d} — ¢*c3)] 90590k

This last difference vanishes if and only if ¢; = r?cce and di = —cca, or di = cco and
c1 = —r2cco, but the both cases must be excluded, since they lead to ¢; + 72d; = 0.
Thus the theorem is proved. (I

Corollary 4.2. The tangent sphere bundle T,.M of an n-dimensional Riemannian
space form (M,g) may never be Einstein with respect to the metric induced by the
Sasaki metric g° from T M.

In fact, in this case, the coefficients should be ¢; = ¢o = 1, d; = 0, and they do
not satisfy the condition from theorem 4.1.
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