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Abstract. Geometric structure of global integral variational functionals
on higher order tangent bundles and Grassmann fibrations are investi-
gated. The theory of Lepage forms is extended to these structures. The
concept of a Lepage form allows us to introduce the Euler-Lagrange dis-
tribution for variational functionals, depending on velocities, in a similar
way as in the calculus of variations on fibred manifolds. Integral curves of
this distribution include all extremal curves of the underlying variational
functional. The generators of the Euler-Lagrange distribution, defined by
the Lepage forms of the first order, are found explicitly.
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1 Introduction

Our main objective in this paper is the geometric structure of the variational theory
on higher order velocity spaces and Grassmann fibrations. We consider global integral
variational functionals for curves and 1-dimensional submanifolds of a given manifold.
A specific feature of this theory is the absence of the concept of a Lagrangian, a basic
element of the classical calculus of variations and the variational theory on fibred
manifolds; in this paper the role of a Lagrangian is played by a differential 1-form on
a velocity manifold, called a Lepage form.

We introduce Lepage forms, and derive a geometric (coordinate-free) first varia-
tion formula on the higher order velocity spaces. Our definition extends properties of
the Cartan and Lepage forms, used in classical mechanics and the global variational
theory on fibred manifolds. Main tools we use are properties of forms on the manifolds
of velocities, and independence of the variational integral on parametrization. These
notions are naturally characterized via the theory of jets and higher order contact
elements. We also describe the Euler-Lagrange distribution, related with a Lepage
form, whose integral curves include all extremals of the variational integral. In par-
ticular, we derive chart expressions for a Lepage form as well as the generators of
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the Euler-Lagrange destribution on the first order Grassmann fibration in terms of
adapted coordinates. The reader can easily understand that the presented theory can
be extended to variational functionals for submanifolds of dimension greater than 1.

Throughout this paper, R is the field of real numbers. We denote by Y a fixed
smooth manifold of dimension m + 1. T rY is the manifold of velocities of order r
over Y (r-jets Jr

0 ζ with source 0 ∈ R and target ζ(0) ∈ T rY , ) and τ r,s : T rY →
T sY are the canonical jet projections. ImmT rY denotes an open submanifold of
regular velocities in T rY (r-jets of immersions), and Lr is the differential group of
order r of R , consisting of regular r-jets Jr

0α ∈ ImmT rR such α(0) = 0, with the
group multiplication the composition of jets. GrY is the Grassmann fibration of
order r over Y (the quotient manifold ImmT rY/Lr ); ρr,s : GrY → GsY denotes
the canonical projection of Grassmann fibrations. For simplicity, we restrict our
coordinate considerations to lower order cases r = 1, 2.

For the general theory of jets and contact elements the reader is referred to the
papers [3, 5, 6]. The theorems, presented in this paper, namely the structure theory
of Lepage forms and a new description of extremals in terms of a distribution, are an
extension of the variational calculus on fibred manifolds as explained in [1, 2, 4, 7].

2 Velocities and Grassmann fibrations

Given a chart (V, ψ), ψ = (yK), on a manifold Y of dimension m + 1, the associ-
ated charts on the manifolds of regular velocities ImmT 1Y and ImmT 2Y are denoted
by (V 1, ψ1), ψ1 = (yK , ẏK), and (V 2, ψ2), ψ2 = (yK , ẏK , ÿK). Each index L de-
fines a partition of the index set, {L}, {1, 2, · · · , L − 1, L + 1, · · · , m,m + 1}, and
the subordinate charts on ImmT 1Y and ImmT 2Y , denoted by (V 1,L, ψ1,L), ψ1,L =
(yL, ẏL, yσ, ẏσ), and (V 2,L, ψ2,L), ψ2,L = (yL, ẏL, ÿL, yσ, ẏσ, ÿσ) ; recall that the sets
V 1,L and V 2,L are defined by

ẇL 6= 0.(2.1)

The corresponding second subordinate charts are denoted by (V 1,L, χ1,L), χ1,L =
(wL, ẇL, wσ, wσ

1 ), and (V 2,L, χ2,L), χ2,L = (wL, ẇL, ẅL, wσ, wσ
1 , wσ

2 ). The second
subordinate charts can be introduced by the transformation equations.

Lemma 1. The transformation equations between the charts (V 2,L, ψ2,L) and
(V 2,L, χ2,L) are

yL = wL, ẏL = ẇL, ÿL = ẅL(2.2)
yσ = wσ, ẏσ = wσ

1 ẇL, ÿσ = wσ
2 (ẇL)2 + wσ

1 ẅL.

Let Lr be the differential group of order r of the real line R; in the context of this
work, Lr describes the change of parameter in variational functionals for curves in Y .
Lr acts canonically on T rY to the right by composition of jets,

T rY × Lr 3 (Jr
0 ζ, Jr

0α) → Jr
0 ζ ◦ Jr

0α = Jr
0 (ζ ◦ α) ∈ T rY.(2.3)

Clearly, this group action restricts to the submanifold of regular velocities ImmT rY .
Recall that the canonical coordinates a1, a2, · · · , ar on Lr are the functions on Lr

defined by ak(Jr
0α) = Dkα(0).
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Lemma 2. (a) The group multiplication (J2
0α, J2

0β) → J2
0 (α ◦β) in the group L2

is expressed by the equations

a1(Jr
0α ◦ Jr

0β) = a1(Jr
0α) · a1(Jr

0β),(2.4)
a2(Jr

0α ◦ Jr
0β) = a2(Jr

0α) · (a1(Jr
0β))2 + a1(Jr

0α) · a2(Jr
0β).

(b) The group action (2.3), restricted to the set ImmT 2Y , is expressed in a sub-
ordinate chart (V 2,L, χ2,L), χ2,L = (wL, ẇL, ẅL, wσ, wσ

1 , wσ
2 ), by the equations

wL(J2
0 ζ ◦ J2

0α) = wL(J2
0 ζ),(2.5)

ẇL(J2
0 ζ ◦ J2

0α) = ẇL(J2
0 ζ)a1(J2

0α),
ẅL(J2

0 ζ ◦ J2
0α) = ẇL(J2

0 ζ)a2(J2
0α) + ẅL(J2

0 ζ)a1(J2
0α)2,

wσ(J2
0 ζ ◦ J2

0α) = wσ(J2
0 ζ),

wσ
1 (J2

0 ζ ◦ J2
0α) = wσ

1 (J2
0 ζ),

wσ
2 (J2

0 ζ ◦ J2
0α) = wσ

2 (J2
0 ζ).

Lemma 3. Suppose we have two charts on Y, (V, ψ), ψ = (yK), and (V, ψ̄), ψ̄ =
(ȳK) such that V ∩ V̄ 6= f¡ , and the transformation equations

ȳM = fM (yL, yσ), ȳν = fν(yL, yσ).(2.6)

Then the transformation equations between the subordinate charts (V 1,L, χ1,L), χ1,L =
(wL, ẇL, wσ, wσ

1 ) and (V̄ 1,M , χ̄1,M ), χ̄1,M = (w̄M , ˙̄wM , w̄σ, w̄σ
1 ), are

w̄M = fM (wL, wσ), w̄ν = fν(wL, wσ), ˙̄wM =
∂fM

∂wL
ẇL +

∂fM

∂wσ
ẇLwσ

1 ,(2.7)

w̄ν
1 =

1
∂fL

∂wL
+

∂fL

∂wτ
wτ

1

(
∂fν

∂wL
+

∂fν

∂wσ
wσ

1

)
.

Let GrY be the Grassmann fibration of order r over Y . We denote by [Jr
0 ζ]

the Lr-orbit of a regular velocity Jr
0 ζ, and by ρr,s : GrY → GsY the canonical

projection. For every index L the pair (Ṽ 2,L, χ̃2,L), where Ṽ 2,L = (ρ2,0)−1(V ), χ̃2,L =
(w̃L, w̃σ, w̃σ

1 , w̃σ
2 ), and for all J2

0 ζ ∈ V 2,L

w̃L([J2
0 ζ]) = wL(J2

0 ζ),(2.8)
w̃σ([J2

0 ζ]) = wσ(J2
0 ζ), w̃σ

1 ([J2
0 ζ]) = wσ

1 (J2
0 ζ), w̃σ

2 ([J2
0 ζ]) = wσ

2 (J2
0 ζ),

is a chart on G3Y .
Let I be an open interval, containing 0 ∈ R, and let γ : I → Y be a curve. Denote

by trt0 the translation t → t− t0 of R. γ defines the r-jet prolongation

I 3 t → (T rγ)(t) = Jr
0 (γ ◦ tr−t) ∈ T rY.(2.9)

Further on, we suppose that γ is an immersion such that for a chart on Y , γ(I) ⊂ V
and T rγ(I) ⊂ V r,L for some L.
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Lemma 4. The 2-jet prolongation T 2γ is expressed by

wL ◦ T 2γ = wLγ, ẇL ◦ T 2γ = D(wLγ), ẅL ◦ T 2γ = D2(wLγ),(2.10)

wσ ◦ T 2γ = wσγ, wσ
1 ◦ T 2γ =

D(wσγ)
D(wLγ)

,

wσ
2 ◦ T 2γ =

1

(D(wLγ))2

(
D2(wσγ)− D2(wLγ)

D(wLγ)
D(wσγ)

)
.

The r-jet prolongation of an immersion γ : I → Y defines a curve in GrY ,

I 3 t → Grγ(t) = [T rγ(t)] ∈ GrY,(2.11)

called the Grassmann prolongation of γ of order r.
We examine the behavior of the mapping T 2γ under reparametrizations. Let J be

an open interval, containing the origin 0, and let µ : J → I be a diffeomorphism. µ is
defined by an equation

t = µ(s).(2.12)

Setting for every s ∈ J

µs(t) = trµ(s) ◦ µ ◦ tr−s(t) = −µ(s) + µ(s + t),(2.13)

we get another diffeomorphism µs : Js → Is of open intervals, containing 0. Since
Dµs(t) = Dµ(s + t) and D2µs(t) = D2µ(s + t), µs satisfies

µs(0) = 0, Dµs(0) = Dµ(s), D2µs(0) = D2µ(s).(2.14)

In particular, the 2-jet J2
0µs is an element of the differential group L2 for all s, whose

canonical coordinates are a1(s) = Dµ(s), a2(s) = D2µ(s). µ induces a differentiable
mapping s → J2

0µs of the domain J of µ into L2; µ also induces a diffeomorphism

ImmT 2Y 3 J2
0 ζ → J2

0 ζ ◦ J2
0µs ∈ ImmT 2Y,(2.15)

defined by the canonical action of L2 on ImmT 2
0 Y . The mappings s → J2

0µs and
J2

0 ζ → J2
0 ζ ◦ J2

0µs are said to be associated with µ.
A diffeomorphism µ : J → I assigns to the immersion γ an immersion γ ◦ µ : J →

Y , and its 2-jet prolongation T 2(γ ◦ µ).

Lemma 5. (a) The mapping s → T 2(γ ◦ µ)(s) satisfies

T 2(γ ◦ µ)(s) = T 2γ(µ(s)) ◦ J2
0µs.(2.16)

(b) The mapping s → T 2(γ ◦ µ)(s) is expressed in the chart (V 2,L, χ2,L), χ2,L =
(wL, wL

1 , wL
2 , wσ, wσ

1 , wσ
2 ) by

wL(T 2(γ ◦ µ)(s)) = wL(T 2γ(µ(s))),(2.17)
wL

1 (T 2(γ ◦ µ)(s)) = wL
1 (T 2γ(µ(s)))a1(J2

0µs),
wL

2 (T 2(γ ◦ µ)(s)) = wL
1 (T 2γ(µ(s)))a2(J2

0µs) + wL
2 (T 2γ(µ(s)))a1(J2

0µs)2,
wσ(T 2(γ ◦ µ)(s)) = wσ(T 2γ(µ(s))),
wσ

1 (T 2(γ ◦ µ)(s)) = wσ
1 (T 2γ(µ(s))),

wσ
2 (T 2(γ ◦ µ)(s)) = wσ

2 (T 2γ(µ(s))).
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There exists a bijection between the set of diffeomorphisms α : (−a, a) → R such
that α(0) = 0, and the set of diffeomorphisms µ : (−a + t0, a + t0) → R such that
µ(t0) = 0. Given µ, we denote by tµ the centre of the domain of µ, and set

α = µ ◦ tr−tµ .(2.18)

Then we have α−1 = trtµ
◦ µ−1, and µ−1 = tr−tµ

◦ α−1. Using this correspondence,
we have µs = trµ(s)µtr−s = trµ(s)αtrtµtr−s hence, since the 2-jet of a translation is
equal to the identity element J2

0 idR of the group L2,

T 2(γ ◦ µ)(s) = T 2γ(α(trtµ
(s))) ◦ J2

0αs.(2.19)

Let α be an isomorphism of Y . For any curve γ in Y , defined on an open interval
I ⊂ R, α ◦ γ is a curve in Y , defined on I, with values in Y . Let P ∈ T rY , P = Jr

0 ζ.
Setting T rα(Jr

0 ζ) = Jr
0 (αζ), we get an r-jet, depending on P only. The mapping

T rY 3 P → T rα(P ) ∈ T rY is a diffeomorphism, called the r-jet prolongation of
α. Clearly, τ r,s ◦ T rα = T sα ◦ τ r,s for all s = 0, 1, 2, · · · , r. This construction can
immediately be modified for vector fields by means of flows; we denote by T rξ the
r-jet prolongation of a vector field ξ on Y .

Lemma 6. Let ξ be a vector field on Y , and let

ξ = ξK ∂

∂yK
(2.20)

be the chart expression for ξ in a chart (V, ψ), ψ = (yK). Then in a subordinate chart
(V 2,L, χ2,L), χ2,L = (wL, ẇL, ẅL, wσ, wσ

1 , wσ
2 ),

T 2ξ = ξL ∂

∂wL
+ ξ̇L ∂

∂ẇL
+ ξ̈L ∂

∂ẅL
+ ξν ∂

∂wν
+ ξν

1

∂

∂wν
1

+ ξν
2

∂

∂wν
2

,(2.21)

where

ξ̇L =
(

∂ξL

∂wL
+

∂ξL

∂wσ
wσ

1

)
ẇL,(2.22)

ξ̈L =
(

∂2ξL

∂(wL)2
+

∂2ξL

∂wL∂wσ
wσ

1 +
∂ξL

∂wν
wν

2

)
(ẇL)2

+
(

∂2ξL

∂wν∂wL
+

∂2ξL

∂wν∂wσ
wσ

1

)
wν

1 (ẇL)2 +
(

∂ξL

∂wL
+

∂ξL

∂wσ
wσ

1

)
ẅL,

ξν
1 =

∂ξν

∂wL
+

∂ξν

∂wσ
wσ

1 ,

ξν
2 =

∂2ξν

∂(wL)2
+ 2

∂2ξν

∂wL∂wσ
wσ

1 +
∂2ξν

∂wλ∂wσ
wλ

1 wσ
1 +

∂ξν

∂wσ
wσ

2 .

3 The calculus of variations on velocity manifolds

In this section we introduce basic geometric concepts of the calculus of variations for
the first order variational functionals on velocity spaces; higher order theory can be
developed along the same lines.
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Choose a velocity P ∈ T 3Y and a representative ζ of P ; then P = J3
0 ζ. ζ defines

a mapping T 2ζ of a neighbourhood of 0 ∈ R into T 2Y and the tangent mapping at 0,
T0T

2ζ : T0R → TJ2
0 ζT

2Y , sending a vector ξ ∈ T0R to a vector of T 2Y at the point
T 2ζ(0) = J2

0 ζ = τ3,2(J3
0 ζ). Express ξ is in the canonical basis of the 1-dimensional

vector space T0R as ξ = ξ0 · (d/dt)0 and define a vector field δ along the projection
τ3,2 by

δ(J3
0 ζ) = T0T

2ζ ·
(

d

dt

)

0

.(3.1)

The vector field δ induces a mapping η → hη, defined on differential 1-forms on T 2Y ,
with values in the module of functions on T 3Y by

hη(J3
0 ζ) = η(J2

0 ζ)
(
δ(J3

0 ζ)
)
.(3.2)

In particular, if f is a function on an open set W ⊂ T 2Y , then the formula δ(f) =
h(df) defines a function δ(f) on the set (τ3,1)−1(W ) ⊂ T 3Y .

Lemma 7. Let η be a 1-form, let (V, ψ), ψ = (yK), be a chart on Y , and let γ
be a curve with values in V .

(a) δ has a chart expression

δ = ẏK ∂

∂yK
+ ÿK ∂

∂ẏK
.(3.3)

(b) If η is expressed as η = AkdyK + BKdẏK , then

hη = AK ẏK + BK ÿK .(3.4)

We call δ the formal derivative morphism; the function δ(f) is called the formal
derivative of f . The mapping h is called the horizontalization.

Remark 1. From the definitions (3.1) and (3.2) we easily derive the formulas

hdwL = ẇL, hdẇL = ẅL, hdwσ = ẇLwσ
1 , hdwσ

1 = ẇLwσ
2 .(3.5)

Let W be an open set in Y , and suppose we have a 1-form η, defined on the set
(τ r,0)−1(W ) ⊂ ImmT rY . We say that η is contact, if T rζ∗η = 0 for all immersions ζ,
defined on an open interval in R, with values in W . The ideal of the exterior algebra
of differential forms on the set (τ r,0)−1(W ), locally generated by contact 1-forms, is
called the contact ideal, and is denoted by Ω1

cW . By a contact k-form we mean any
k-form, belonging to the contact ideal.

Lemma 8. Let W be an open set in Y , let η be a 1-form on (τ2,0)−1(W ), and let
(V, ψ), ψ = (yK), be an chart on Y such that V ⊂ W . Then the following conditions
are equivalent:

(a) η is a contact form.
(b) For every subordinate chart (V 2,L, ψ2,L), ψ2,L = (yL, ẏL, ÿL, yσ, ẏσ, ÿσ),

η = ȦLη̇L + Aσησ + Ȧσ η̇σ,(3.6)
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where

η̇L = dẏL − ÿL

ẏL
dyL, ησ = dyσ − ẏσ

ẏL
dyL, η̇σ = dẏσ − ÿσ

ẏL
dyL.(3.7)

(c) For every subordinate chart (V 2,L, χ2,L), χ2,L = (wL, wL
1 , wL

2 , wσ, wσ
1 , wσ

2 ),

η = B1
LωL

1 + B0
σωσ

0 + B1
σωσ

1 ,(3.8)

where

ωL
1 = dwL

1 −
wL

2

wL
1

dwL, ωσ
0 = dwσ − wσ

1 dwL, ωσ
1 = dwσ

1 − wσ
2 dwL.(3.9)

(d) η belongs to the kernel of the horizontalization h, i.e., hη = 0.
Clearly, the forms (3.7), and the forms (3.8) are linearly independent.
Suppose we have a 1-form η, defined on ImmT 1Y . Let I be an open interval,

and let γ : I → Y be an immersion. Any compact subinterval K of I defines the
variational integral, associated with η,

ηK(γ) =
∫

K

(T 1γ)∗η.(3.10)

The mapping ηK is the integral variational functional, associated with the η.
The function hη is the Lagrange function, associated with η. The following gives

us a description of variational functionals in terms of Lagrange functions.

Lemma 9. Let η be a 1-form on T 1Y , and let γ : I → Y be an immersion,
defined on an open interval I ⊂ R. Then

T rγ∗η = (hη ◦ T r+1γ) · dt.(3.11)

Lemma 9 says that the Lagrange function Lη, associated with η, is given by

Lη(Jr+1
0 ζ) = hη ◦ T r+1(ζ ◦ trt)(t).(3.12)

Let C2
KY denote the set of curves in Y of class C2, defined on a compact interval

K ⊂ R. We have for every isomorphism α of Y and every curve γ ∈ C2
KY

ηK(αγ) =
∫

K

(T 1(αγ))∗η.(3.13)

But by definitions, T 1(αγ) = T 1α ◦ T 1γ, so (3.13) reduces to

ηK(αγ) =
∫

K

(T 1α ◦ T 1γ)∗η =
∫

K

T 1γ∗T 1α∗η.(3.14)

Consequently, the variational functional C2
KY 3 γ → ηK(αγ) ∈ R (3.13) satisfies

ηK(αγ) = (T 1α∗η)K(γ),(3.15)

and coincides with the variational functional, associated with the form T 1α∗η.
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This property of variational functionals can be transfered to vector fields. Let ξ
be a vector field on Y and αξ

s its flow. Then for all sufficiently small s, ηK(αξ
sγ) =

((T 1αξ
s)∗η)K(γ). Differentiating, we have

(
dηK(αξ

sγ)
ds

)

0

=
∫

K

T 1γ∗∂T 1ξη,(3.16)

where ∂T 1ξη is the Lie derivative of the form η by the vector field T 1ξ, the 1-jet
prolongation of ξ. The mapping

C2
KY 3 γ → (∂T 1ξη)K(γ) =

∫

K

(T 1γ)∗∂T 1ξη ∈ R(3.17)

is called the first variation of the variational functional ηK by the vector field ξ.
Note that the Lie derivative ∂T 1ξη under the integral sign in (3.17) can be decom-

posed as ∂T 1ξη = iT 1ξdη + diT 1ξη. The form η is said to be a Lepage form, if the
2-form dη belongs to the contact ideal Ω1

cY .

Theorem 1. (The structure of Lepage forms) The following conditions are
equivalent:

(a) η is a Lepage form on ImmT 1Y .
(b) η has in any subordinate chart (V 1,L, ψ1,L) an expression

η = PLdyL +
∂PL

∂ẏσ
ẏLησ + dFL,(3.18)

where FL and PL are function on V 1,L, and PL satisfies

∂PL

∂ẏL
ẏL +

∂PL

∂ẏσ
ẏσ = 0.(3.19)

(c) η has in a subordinate chart (V 1,L, χ1,L) an expression

η = PLdwL +
∂PL

∂wσ
1

ωσ + dF,(3.20)

where PL and F are functions on V 1,L such that

∂PL

∂wL
1

= 0.(3.21)

To demonstrate basic ideas of the proof, we show that (b) follows from (a). Con-
sider the chart expression

η = ALdyL + Aσησ + BLdẏL + Bσdẏσ,(3.22)

where

ησ = dyσ − ẏσ

ẏL
dyL(3.23)
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(Lemma 8). Now

dη =
(

∂AL

∂yτ
dyτ +

∂AL

∂ẏL
dẏL +

∂AL

∂ẏτ
dẏτ

)
∧ dyL + dAσ ∧ ησ + Aσdησ(3.24)

+
(

∂BL

∂yL
dyL +

∂BL

∂yτ
dyτ

)
∧ dẏL +

(
∂Bσ

∂yL
dyL +

∂Bσ

∂yτ
dyτ

)
∧ dẏσ

+
∂BL

∂ẏτ
dẏτ ∧ dẏL +

(
∂Bσ

∂ẏL
dẏL +

∂Bσ

∂ẏτ
dẏτ

)
∧ dẏσ.(3.25)

The conditions that dη be generated by the contact forms ησ imply

∂BL

∂ẏσ
− ∂Bσ

∂ẏL
= 0,

∂BL

∂ẏτ
− ∂Bτ

∂ẏσ
= 0.(3.26)

Integrating these conditions we get

BL =
∂F

∂ẏL
, Bσ =

∂F

∂ẏσ
(3.27)

for a function F . Then, however,

dF =
∂F

∂yL
dyL +

∂F

∂yσ
dyσ + BLdẏL + Bσdẏσ,(3.28)

so we get η = ÃLdyL + Ãσησ + dF , where

ÃL = AL − ∂F

∂yL
− ∂F

∂yσ

ẏσ

ẏL
, Ãσ = Aσ − ∂F

∂yσ
.(3.29)

From this expression we have

dη =
∂ÃL

∂yτ
ητ ∧ dyL + dÃσ ∧ ησ +

∂ÃL

∂ẏL
dẏL ∧ dyL +

(
Ãσ − ∂ÃL

∂ẏσ

)
dησ.(3.30)

But dη is generated by the contact forms ησ, from which we get (b).
Suppose we have a Lepage form η on the manifold of velocities ImmT 1Y . We

wish to describe a distribution ∆η on ImmT 1Y , defined by differential 1-forms iΞdη,
where Ξ runs through vector fields on ImmT 1Y ; ∆η is the Euler-Lagrange distribution
associated with η.

We give an explicit characterization of the Euler-Lagrange distribution of a Lepage
form η in terms of the second subordinate charts. We know that

η = LLdwL +
∂LL

∂wσ
1

ωσ + dFL(3.31)

in a subordinate chart (V 1,L, χ1,L), χ1,L = (wL, wL
1 , wσ, wσ

1 ), where FL and LL are
functions on V 1,L such that LL = LL(wL, wσ, wσ

1 ) (Theorem 1, (c)).

Theorem 2. (The Euler-Lagrange distribution) In a second subordinate
chart, the Euler-Lagrange distribution ∆η is generated by the 1-forms

∂2LL

∂wν
1∂wσ

1

ωσ,

(
−∂LL

∂wσ
+

∂2LL

∂wL∂wσ
1

+
∂2LL

∂wν∂wσ
1

wν
1

)
ωσ,

∂2LL

∂wν
1∂wσ

1

dwν
1 +(3.32)

+
(

∂2LL

∂wσ∂wν
1

+
∂2LL

∂wν∂wσ
1

)
ων +

(
−∂LL

∂wσ
+

∂2LL

∂wL∂wσ
1

+
∂2LL

∂wν∂wσ
1

wν
1

)
dwL.
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To prove the theorem, we contract the form dη with a vector field

Ξ = ΞL ∂

∂wL
+ Ξν ∂

∂wν
+ ΞL

1

∂

∂wL
1

+ Ξν
1

∂

∂wν
1

,(3.33)

and obtain the generators of the distribution by calculating the coefficients in the
chart expression for the form iΞdη at the components ΞL, Ξσ, and Ξν

1 .
Theorem 2 describes important special cases. In particular, if the matrix

∂2LL

∂wν
1∂wσ

1

(3.34)

is non-singular, then each integral curve of the Euler-Lagrange distribution is holo-
nomic, i.e., is the prolongation of a curve in the manifold Y . In this case the generators
of the Euler-Lagrange distribution reduce to

ωσ,

(
−∂LL

∂wσ
+

∂2LL

∂wL∂wσ
1

+
∂2LL

∂wν∂wσ
1

wν
1

)
dwL +

∂2LL

∂wν
1∂wσ

1

dwν
1 .(3.35)

4 Parameter invariance

Suppose we have a 1-form η on ImmT 1Y . Consider the variational integral (3.10). We
are interested in the case when the number ηK(γ) is independent of parametrization
of the set γ(I). This is characterized by the following theorems.

Theorem 3. Let η be a 1-form on T 1Y , let γ : I → Y be an immersion, J
an open interval, and µ : J → I a diffeomorphism. The following conditions are
equivalent:

(a) For any two compact intervals L ⊂ J and K ⊂ I such that µ(L) = K,

ηK(γ) = ηL(γ ◦ µ).(4.1)

(b) η satisfies

(T 1γ)∗η = (µ−1)∗T 1(γ ◦ µ)∗η.(4.2)

Condition (4.2) is called the invariance condition; we say that η and γ satisfy
the invariance condition, if (4.2) holds for all diffeomorphisms µ. We say that η is
parameter-invariant, if (4.2) holds for all γ and µ.

Consider the variational functional (3.10). The form (T 1γ)∗η has at every point
t0 ∈ I an expression

(T 1γ)∗η(t0) = L ◦ T 2γ(t0) · dt(t0).(4.3)

We can now give a version of the invariance condition in terms of the Lagrange
function L.

Lemma 10. Let the immersion γ and the diffeomorphism µ be given. Then the
following two conditions are equivalent:

(1) η and γ satisfy the invariance condition (4.2).
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(2) For all s ∈ K,

L (
J2

0 (γ ◦ tr−µ(s))
) ·Dµs(0) = L (

J2
0 (γ ◦ tr−µ(s)) ◦ J2

0µs

)
.(4.4)

The following is a criterion of invariance of the form η under changes of parametriza-
tion; the criterion says that the Lagrange function L, associated with η, should be
L2-equivariant.

Theorem 4. η satisfies the invariance condition if and only if

L (
J2

0γ
) ·Dα(0) = L (

J2
0γ ◦ J2

0α
)

(4.5)

for all J2
0α ∈ L2 .

Remark 2. According to Lemma 2, the group action of L2 on ImmT 2Y is in a
chart (V, ψ), ψ = (yK), given by the equations ȳK = yK , ˙̄yK = aẏK , ¨̄yK = aÿK + bẏK ,
where a and b are the canonical coordinates on L2. Hence condition (3.32) can be
expressed as L(yK , aẏK , aÿK + bẏK) = aL(yK , ẏK , ÿK).

Remark 3. Condition (4.5) can also be expressed in a subordinate chart
(V 2,L, χ2,L), χ2,L = (wL, ẇL, ẅL, wσ, wσ

1 , wσ
2 ). Since the group action of L2 in this

chart is given by the equations w̄L = wL, ˙̄wL = aẇL, ¨̄wL = bẇL + a2ẅL, w̄σ =
wσ, w̄σ

1 = wσ
1 , w̄σ

2 = wσ
2 , where a and b are the canonical coordinates on L2, we have

L(wL, aẇL, bẇL + a2ẅL, wσ, wσ
1 , wσ

2 ) = aL(wL, ẇL, ẅL, wσ, wσ
1 , wσ

2 ).
We are now in a position to give a complete description of Lepage forms on

ImmT 1Y that satisfy the invariance condition.

Theorem 5. Let η be a 1-form on ImmT 1Y . The following two conditions are
equivalent:

(a) η is a Lepage form, and satisfies the invariance condition.
(b) In every subordinate chart (V 1,L, χ1,L), χ1,L = (wL, ẇL, wσ, wσ

1 ) has an ex-
pression

η = PLdwL +
∂PL

∂wσ
1

ωσ + dFL,(4.6)

where PL and FL are functions on the set V 1,L such that

∂PL

∂ẇL
= 0,

∂FL

∂ẇL
= 0.(4.7)

Express the Lepage form η as in Theorem 1, by

η = PLdwL +
∂PL

∂wσ
1

ωσ + dF,(4.8)

and compute the corresponding Lagrange function L = hη. We have, using the
formulas hdwL = ẇL, hdẇL = ẅL, hdwσ = ẇLwσ

1 , and hdwσ
1 = ẇLwσ

2 (2.10),

L =
(

PL +
∂F

∂wL

)
ẇL +

∂F

∂ẇL
ẅL +

∂F

∂wσ
ẇLwσ

1 +
∂F

∂wσ
1

ẇLwσ
2 .(4.9)



Higher order Grassmann fibrations and the calculus of variations 79

But L(wL, aẇL, bẇL + a2ẅL, wσ, wσ
1 , wσ

2 ) = aL(wL, ẇL, ẅL, wσ, wσ
1 , wσ

2 ) for all a, b ∈
R, a 6= 0, since η satisfies the invariance condition (Theorem 3), and PL = PL(wL, wσ, wσ

1 )
since η is Lepage; then (a) implies ∂F/∂ẇL = 0.

Remark 4. From Theorem 5 we conclude that Theorem 2 remains valid for the
Euler-Lagrange distribution of parameter-invariant variational problems.
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