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Abstract. Geometric structure of global integral variational functionals
on higher order tangent bundles and Grassmann fibrations are investi-
gated. The theory of Lepage forms is extended to these structures. The
concept of a Lepage form allows us to introduce the Euler-Lagrange dis-
tribution for variational functionals, depending on velocities, in a similar
way as in the calculus of variations on fibred manifolds. Integral curves of
this distribution include all extremal curves of the underlying variational
functional. The generators of the Euler-Lagrange distribution, defined by
the Lepage forms of the first order, are found explicitly.
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1 Introduction

Our main objective in this paper is the geometric structure of the variational theory
on higher order velocity spaces and Grassmann fibrations. We consider global integral
variational functionals for curves and 1-dimensional submanifolds of a given manifold.
A specific feature of this theory is the absence of the concept of a Lagrangian, a basic
element of the classical calculus of variations and the variational theory on fibred
manifolds; in this paper the role of a Lagrangian is played by a differential 1-form on
a velocity manifold, called a Lepage form.

We introduce Lepage forms, and derive a geometric (coordinate-free) first varia-
tion formula on the higher order velocity spaces. Our definition extends properties of
the Cartan and Lepage forms, used in classical mechanics and the global variational
theory on fibred manifolds. Main tools we use are properties of forms on the manifolds
of velocities, and independence of the variational integral on parametrization. These
notions are naturally characterized via the theory of jets and higher order contact
elements. We also describe the Euler-Lagrange distribution, related with a Lepage
form, whose integral curves include all extremals of the variational integral. In par-
ticular, we derive chart expressions for a Lepage form as well as the generators of
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the Euler-Lagrange destribution on the first order Grassmann fibration in terms of
adapted coordinates. The reader can easily understand that the presented theory can
be extended to variational functionals for submanifolds of dimension greater than 1.

Throughout this paper, R is the field of real numbers. We denote by Y a fixed
smooth manifold of dimension m + 1. T"Y is the manifold of velocities of order r
over Y (r-jets J§¢ with source 0 € R and target ¢(0) € T"Y, ) and 7™° : T"Y —
T?°Y are the canonical jet projections. Imm7"Y denotes an open submanifold of
regular velocities in T"Y (r-jets of immersions), and L" is the differential group of
order r of R, consisting of regular r-jets Jja € ImmT"R such a(0) = 0, with the
group multiplication the composition of jets. G"Y is the Grassmann fibration of
order r over Y (the quotient manifold Imm7"Y/L" ); p™* : G"Y — G®°Y denotes
the canonical projection of Grassmann fibrations. For simplicity, we restrict our
coordinate considerations to lower order cases r = 1, 2.

For the general theory of jets and contact elements the reader is referred to the
papers [3, 5, 6]. The theorems, presented in this paper, namely the structure theory
of Lepage forms and a new description of extremals in terms of a distribution, are an
extension of the variational calculus on fibred manifolds as explained in [1, 2, 4, 7].

2 Velocities and Grassmann fibrations

Given a chart (V,%), ¥ = (y¥), on a manifold Y of dimension m + 1, the associ-
ated charts on the manifolds of regular velocities Imm7'Y and Imm72Y are denoted
by (V1,91), ¥ = (y¥,9%), and (V2,9?), ¥? = (y¥,9%,§%). Each index L de-
fines a partition of the index set, {L}, {1,2,--- , L —1,L+1,--- ,m,m + 1}, and
the subordinate charts on Inm7T'Y and Imm7?Y, denoted by (V1 ¢bL) bl =
(yLvyL7vaya)’ and (V27L7¢27L)7 ¢2’L = (yLvyLvyLvygvygvjja) ; recall that the sets
VLE and VL are defined by

(2.1) wh # 0.

The corresponding second subordinate charts are denoted by (V1L L) ybE =

(wr, W wo,wy), and (VEE x>L), 2L = (wh, vl ol wo, wf,wg). The second
subordinate charts can be introduced by the transformation equations.

Lemma 1. The transformation equations between the charts (V>% ¢>%) and
(V2L 2L are

(2.2) yh=wh, gt =0t gt =wt

Y =w’, 97 = wiw®, §7 = wg(Ww)?* + wiit.
Let L™ be the differential group of order r of the real line R; in the context of this
work, L" describes the change of parameter in variational functionals for curves in Y.
L™ acts canonically on T7Y to the right by composition of jets,

(2.3) TY x L' 3 (JI¢, Joa) — JiCo Jla = Ji(Coa) € TY.

Clearly, this group action restricts to the submanifold of regular velocities Imm7"Y .
Recall that the canonical coordinates ai,as,--- ,a, on L" are the functions on L”"
defined by ay(J5a) = D*a(0).
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Lemma 2. (a) The group multiplication (J3a, JGB) — J3 (o B) in the group L?
is expressed by the equations

(2.4) ay (Jiao J§B) = a1 (Jia) - ar (J§B),
az(Jga o JgB) = az(Jga) - (a1(J50))* + ar(Jga) - az(Jg B).

(b) The group action (2.3), restricted to the set ImmT?Y , is expressed in a sub-

ordinate chart (V3E x21) 3L = (wh 'l of w, wi,wg), by the equations

(2.5) wh(J§¢ o Jia) = wh (J5¢),
L(JOC o J0a> L(JSC)al(Jga)7
L(Jo o Jia) = " (J5¢)az(Jge) + @ (J§Q)ar (Jge)?,
w? (J5¢ o Jya) = w7 (J50),
wi'(JoCOJoa) = wT(J(?C)’
wg(JoCOJoa) g(JgC)-

Lemma 3. Suppose we have two charts on Y, (V,9),¢ = (y¥), and (V,v),¢ =
(%) such that VNV # &, and the transformation equations

(2.6) g = Mh ), 10 = Ut y0).

Then the transformation equations between the subordinate charts (VLL x BB B E =
(wr, 'l w? wy) and (VLM LMY bM = (@M @M w7 w]), are

- - . an ) 8fM
oM My L L M _ L
(2.7) = Y (w”,w%), @ = fY(w”,w?), ¥ = 0L ¥ + Eywal

o= o, afL ( f)'

6wL

Let G"Y be the Grassmann fibration of order r over Y. We denote by [J{(]
the L"-orbit of a regular velocity Jg¢, and by p™* : G"Y — G*®Y the canonical
projection. For every index L the pair (V2% 1), where V2L = (p>0)~1(V), x>F =
(wF, w7, w7, w3g), and for all J3¢ € VL

(2.8) " ([J5¢)) = w™(J5¢),
W ([J5¢]) = w (J3¢), @S ([J5¢)) = wf (J5C), w3 ([J5¢]) = w§ (J§C),

is a chart on G3Y'.
Let I be an open interval, containing 0 € R, and let v : I — Y be a curve. Denote
by tr:, the translation ¢t — ¢ — ¢y of R. v defines the r-jet prolongation

(2.9) I35t — (T™)(t) = Ji(yotr_) € T"Y.

Further on, we suppose that v is an immersion such that for a chart on Y, v(I) C V
and T"v(I) C V"L for some L.
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Lemma 4. The 2-jet prolongation T?v is expressed by

(2.10) wh o T?y = wly, wh o T?y = D(wh), Wl o T?y = D*(wl~),
g g o D(wo’}/)
w” o T?y = wy, wy OTQWZW,

w? o 2. — 1 2,w0' o w’ .
o1 = i (D) - B Dy )

The r-jet prolongation of an immersion v : I — Y defines a curve in G"Y,
(2.11) I>t— Gv(t) =[T"v(t)] € G,

called the Grassmann prolongation of ~ of order r.

We examine the behavior of the mapping T2+ under reparametrizations. Let J be
an open interval, containing the origin 0, and let p : J — I be a diffeomorphism. p is
defined by an equation

(2.12) t = p(s).
Setting for every s € J
(2.13) ps(t) = try sy o potr_g(t) = —pu(s) + p(s + 1),

we get another diffeomorphism ps : J; — I of open intervals, containing 0. Since
Dus(t) = Du(s +t) and D%, (t) = D?u(s +t), us satisfies

(2.14) 15(0) = 0, Dpy(0) = Dp(s), D*ua(0) = D2u(s).

In particular, the 2-jet JZu, is an element of the differential group L? for all s, whose
canonical coordinates are a;(s) = Du(s),az2(s) = D?u(s). pu induces a differentiable
mapping s — Ju, of the domain J of p into L?; u also induces a diffeomorphism

(2.15) Imm7?Y 3> JZ¢ — J§¢ o Jgus € ImmT?Y,

defined by the canonical action of L? on Imm73Y. The mappings s — Jus and
JEC — JZC o J2us are said to be associated with .

A diffeomorphism p : J — I assigns to the immersion v an immersion yo u : J —
Y, and its 2-jet prolongation T?(y o p).

Lemma 5. (a) The mapping s — T?(y o p)(s) satisfies
(2.16) T?(y o p)(s) = T?y(u(s)) o Jg ps-

(b) The mapping s — T?(y o u)(s) is expressed in the chart (V3L x21), xy*L =

(vawl » Wa awg>w(17’wg) by
(2.17)  w"(T*(y 0 p)(s)) = w" (T*y(uls))),
wi' (T (v 0 u)(s)) = wi (T*y(u(s)))ar (Jg ps),
wy (T2(y 0 p)(5)) = wi (T>y(u(s)))az(Ig ns) +wz (T>y(u(s))ar (I3 hs)?,
w?(T%(y 0 p)(s)) = w” (T?y(u(s))),
wi (T2(y o p)(s)) = wi (T*y(u(s))),
w3 (T2(y 0 p)(s)) = wg (T*y(1(s)))-
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There exists a bijection between the set of diffeomorphisms « : (—a,a) — R such
that «(0) = 0, and the set of diffeomorphisms p : (—a + ¢9,a + tg) — R such that
w(to) = 0. Given p, we denote by ¢, the centre of the domain of p, and set

(2.18) a=potr_y,.
Then we have a™! = tr;, o p™', and p~' = tr_y, o a~!. Using this correspondence,
we have pg = trptr—s = tr,)atry, tr_s hence, since the 2-jet of a translation is
equal to the identity element JZidg of the group L2,

(2.19) (v 0 1)(s) = T*(altr,, (5)) o 2.

Let a be an isomorphism of Y. For any curve v in Y, defined on an open interval
I CR,aoyisacurve in Y, defined on I, with values in Y. Let P € T"Y, P = J;(.
Setting T"a(J}¢) = J§(a€), we get an r-jet, depending on P only. The mapping
TY 5 P — T"a(P) € T"Y is a diffeomorphism, called the r-jet prolongation of
a. Clearly, 77°* o T"aw = T°avo 7™° for all s = 0,1,2,--- ,r. This construction can
immediately be modified for vector fields by means of flows; we denote by T7¢ the
r-jet prolongation of a vector field £ on Y.

Lemma 6. Let £ be a vector field on Y, and let
0
2.20 =K —
(220) =5z

be the chart expression for & in a chart (V,v),% = (y*). Then in a subordinate chart
(VEL 3 2LY, 2L = (Wl ik, il w’, wl, wg),

(221) T%=¢" af;L e agL e agL +e asz i ai; & 325’
where
(2.22) ¢& = (gf; agL ‘{) W’
1. ( a2§L aizi}gwi‘ giiwg) ()2
. (affélL e td ) )+ (G4 et ) i,
g = oy,
&= 8?2332 * 23552210 wi au?jg;o whof + gz

3 The calculus of variations on velocity manifolds

In this section we introduce basic geometric concepts of the calculus of variations for
the first order variational functionals on velocity spaces; higher order theory can be
developed along the same lines.
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Choose a velocity P € T3Y and a representative ¢ of P; then P = J3¢. ¢ defines
a mapping T%¢ of a neighbourhood of 0 € R into T?Y and the tangent mapping at 0,
ToT?¢ : ToR — T2, T?Y, sending a vector £ € TyR to a vector of T?Y at the point
T%¢(0) = J3¢ = 732(J3¢). Express £ is in the canonical basis of the 1-dimensional
vector space ToR as £ = & - (d/dt)o and define a vector field 0 along the projection
3.2 by

) o0 =Tt ()

The vector field § induces a mapping 1 — h7, defined on differential 1-forms on T2Y,
with values in the module of functions on T3Y by

(3-2) h(J5¢) = n(J5¢) (8(J5¢)) -

In particular, if f is a function on an open set W C T?Y, then the formula §(f) =
h(df) defines a function 4(f) on the set (r31)~1(W) C T3Y.

Lemma 7. Let n be a 1-form, let (V,v),v = (y%), be a chart on Y, and let v
be a curve with values in V.
(a) d has a chart expression

9
— K
(33) o= 5 i or

(b) If n is expressed as n = Apdy™ + Bydy’, then
(3.4) hn = Ary™ + Brii™

We call ¢ the formal derivative morphism; the function §(f) is called the formal
derivative of f. The mapping h is called the horizontalization.

Remark 1. From the definitions (3.1) and (3.2) we easily derive the formulas
(3.5) hdw® = w", hdw" =@, hdw’ = wrw], hdw] = W' w].

Let W be an open set in Y, and suppose we have a 1-form 7, defined on the set
(779 ~H (W) € ImmT7"Y. We say that 7 is contact, if T"(*n = 0 for all immersions ¢,
defined on an open interval in R, with values in W. The ideal of the exterior algebra
of differential forms on the set (77:°)~1(W), locally generated by contact 1-forms, is
called the contact ideal, and is denoted by QLW. By a contact k-form we mean any
k-form, belonging to the contact ideal.

Lemma 8. Let W be an open set in'Y , let n be a 1-form on (2°)=Y (W), and let
(V,4), 9 = (y¥), be an chart on'Y such that V.C W. Then the following conditions
are equivalent:

(a) n is a contact form.

(b) For every subordinate chart (V3 >E) o2E = (yb gl 4t 47,97, 4°),

(3'6) n= ALﬁL + Ao’ + Aaﬁaa
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where
..L .o el
1) it =dgt — Layt, 7 =y~ Lyt i = di” - Lody*.
) Y Y
(c) For every subordinate chart (V2L x2L) x>L = (wl wl wk w’, v, wg),
(38) 1= Brwt + Bow§ + Bywy,
where
L
(3.9) wF=dwl - %de, w§ = dw’ —widw®, Wi = dw{ — widw’.
1

(d) n belongs to the kernel of the horizontalization h, i.e., hn = 0.

Clearly, the forms (3.7), and the forms (3.8) are linearly independent.

Suppose we have a 1-form 7, defined on Imm7'Y. Let I be an open interval,
and let v : I — Y be an immersion. Any compact subinterval K of I defines the
variational integral, associated with 7,

(3.10) nx(7) = /K (T')"n.

The mapping ng is the integral variational functional, associated with the 7.
The function hn is the Lagrange function, associated with n. The following gives
us a description of variational functionals in terms of Lagrange functions.

Lemma 9. Let 1 be a 1-form on TYY, and let v : I — Y be an immersion,
defined on an open interval I C R. Then

(3.11) T *n = (hnoT™ 1) - dt.
Lemma 9 says that the Lagrange function L,,, associated with 7, is given by
(3.12) Ly(J5*1¢) = hn o T™(C o try) (1).

Let C%2Y denote the set of curves in Y of class C2, defined on a compact interval
K C R. We have for every isomorphism « of Y and every curve v € C%Y

(3.13) m(0) = [ (@)

But by definitions, T (ay) = T a0 Ty, so (3.13) reduces to

(3.14) nx(ay) = / (T'ao Try)*n = / TN T arn.
K K

Consequently, the variational functional C%Y > v — nx(ay) € R (3.13) satisfies

(3.15) Nk (ay) = (Tl o™ n)x (7),

and coincides with the variational functional, associated with the form T'a*n.
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This property of variational functionals can be transfered to vector fields. Let &
be a vector field on Y and af its flow. Then for all sufficiently small s, nx(asy) =
(T a$)*n) k(7). Differentiating, we have

dng (ab
S 0 K

where Opien is the Lie derivative of the form 7 by the vector field T¢, the 1-jet
prolongation of £. The mapping

(3.17) ChY 39 = @penx() = [ (1) ene R
K

is called the first variation of the variational functional nx by the vector field &.

Note that the Lie derivative dr1¢n under the integral sign in (3.17) can be decom-
posed as Opign = iprgdn + dipien. The form 7 is said to be a Lepage form, if the
2-form dn belongs to the contact ideal QLY.

Theorem 1. (The structure of Lepage forms) The following conditions are
equivalent:

(a) n is a Lepage form on ImmT'Y .

(b) 0 has in any subordinate chart (V1L L) an expression

opP
AyEn” + dFy,

3.18 = Pdy”
(3.18) n Ly+ay

where Fr, and Py, are function on V¥, and Pr, satisfies

8PL.L aPL.U

3.19 Y —y” =0.
(3.19) a3l G
(c)  has in a subordinate chart (V1L xbL) an expression
OP,
(3.20) n = Ppdw” + =£w” + dF,
owy

where P, and F are functions on VUL such that

0Py,
21 =

To demonstrate basic ideas of the proof, we show that (b) follows from (a). Con-
sider the chart expression

(3.22) n = Ardy" + Aon® + Brdy" + B,dy°,
where
(3.23) n® =dy° — y—dyL

yL
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(Lemma 8). Now

A A A
(3.24) dyp = @ Zdy" + Z—jd + %—Ldy ) Ady" + dA, A + Agdy®
0B, ., ; 0By L 0B, 0B, .
d d Ad dy* d Ady°
+<ayby+afy) y+3L +aTy Y
0By, . I 0B, aB .
3.25 dy"™ Nd d Adye.
(3.25) L y+<a 3Ty> Y
The conditions that dn be generated by the contact forms n? imply
3.26 — =0 — =0.
( ) 32)" 8yL ’ ay-r aya
Integrating these conditions we get
oF oF

2 B; = —, B, =
(3 7) L 8yL7 g ayo-

for a function F'. Then, however,

oF oF
(3.28) dF = —dy" + ——dy° + Brdy" + B,dy’
oyt oy°
so we get n = Apdy” + A,n° + dF, where
~ oF  OF y° - oF
(3.28) ETOE T oyl oy gt Ay

From this expression we have

A . aA
(3.30) dn= —TLnT ANdyt +dA, AT+ ==

dy

But dn is generated by the contact forms 7, from which we get (b).

Suppose we have a Lepage form 1 on the manifold of velocities Imm7T'Y. We
wish to describe a distribution A,, on Imm7"Y’, defined by differential 1-forms izdn,
where = runs through vector fields on Imm7'Y’; A, is the Euler-Lagrange distribution
associated with 7.

We give an explicit characterization of the Euler-Lagrange distribution of a Lepage
form 7 in terms of the second subordinate charts. We know that

(3.31) n = Lpdw” +8£ w? +dFyg
owg

in a subordinate chart (V1L ybE) yb L = (wk wl w?,w]), where F, and L are

functions on V1% such that £, = L1 (w”, w®, w{) (Theorem 1, (c)).

1,L)

Theorem 2. (The Euler-Lagrange distribution) In a second subordinate
chart, the Euler-Lagrange distribution A, is generated by the 1-forms

PLy . (0L 0Ly 2Ly ., Ly

owyow] owe  QwLow] = dwvdw] ! R T I
2 2 2 2

+( 020, Ly ) V+(_8£L 0L, 9Ly U)de.

Owe owy * owvowy owe  dwlow] — dw”owy “

(3.32) i




Higher order Grassmann fibrations and the calculus of variations 7

To prove the theorem, we contract the form dn with a vector field

o _, 0 )

+ = + =Y
v L 1 v
ow owy owy

(3.33) ==2 +E

and obtain the generators of the distribution by calculating the coefficients in the
chart expression for the form i=dn at the components =F, =27, and =Y.
Theorem 2 describes important special cases. In particular, if the matrix

0Ly,

is non-singular, then each integral curve of the Euler-Lagrange distribution is holo-
nomic, i.e., is the prolongation of a curve in the manifold Y. In this case the generators
of the Euler-Lagrange distribution reduce to

oL 9L, 0’Ly,

S owe T wlowd T dwdwg

2
9 ELwaf.

o v L
(3.35) w7, ( w1>dw +78wf8w1

4 Parameter invariance

Suppose we have a 1-form 1 on Imm7'Y. Consider the variational integral (3.10). We
are interested in the case when the number 7k (y) is independent of parametrization
of the set v(I). This is characterized by the following theorems.

Theorem 3. Let n be a 1-form on T'Y, let v : I — Y be an immersion, J
an open interval, and p : J — I a diffeomorphism. The following conditions are
equivalent:

(a) For any two compact intervals L C J and K C I such that u(L) = K,

(4.1) nx () =nw(you).

(b) n satisfies
(4.2) (') = (=) T (y o p)*n.

Condition (4.2) is called the invariance condition; we say that n and ~ satisfy
the invariance condition, if (4.2) holds for all diffeomorphisms p. We say that 7 is
parameter-invariant, if (4.2) holds for all v and p.

Consider the variational functional (3.10). The form (T'v)*n has at every point
to € I an expression

(4.3) (T )*n(to) = L o T?y(to) - dt(to).

We can now give a version of the invariance condition in terms of the Lagrange
function L.

Lemma 10. Let the immersion v and the diffeomorphism p be given. Then the
following two conditions are equivalent:
(1) n and v satisfy the invariance condition (4.2).
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(2) For all s € K,
(4.4) L (ng otr_,s)) - Dus(0) =L (Jg('y otr_,(s)) © Jgps) .

The following is a criterion of invariance of the form 7 under changes of parametriza-
tion; the criterion says that the Lagrange function £, associated with n, should be
L2 -equivariant.

Theorem 4. 7 satisfies the invariance condition if and only if
(4.5) L(J3v) - Da(0) = L (J3v o J§a)
for all J3a € L? .

Remark 2. According to Lemma 2, the group action of L? on Imm7T?Y is in a
chart (V,),v = (y¥), given by the equations % = y&, % = ag®, y& = agj® + by’
where a and b are the canonical coordinates on L?. Hence condition (3.32) can be
expressed as L(y%, ag’, aji + bg¥) = aL(yX, y¥, j5).

Remark 3.  Condition (4.5) can also be expressed in a subordinate chart
(V2L 20 2L = (wh il oF w, wi,wg). Since the group action of L? in this
chart is given by the equations w’ = w’, @’ = aw® " = b’ + o’ W =
w, w{ = w{,w§ = wg, where a and b are the canonical coordinates on L?, we have
L(w", awl, bivl + a?6l, w?, w§, w) = al(wk, vl oF, wo, wi, wg).

We are now in a position to give a complete description of Lepage forms on
Imm7T'Y that satisfy the invariance condition.

Theorem 5. Let n be a 1-form on ImmT'Y . The following two conditions are
equivalent:
(a) n is a Lepage form, and satisfies the invariance condition.

(b) In every subordinate chart (V3L xUE), b = (wh 'l w?,w) has an ex-
pression
OP,
(4.6) n = Prdw® + L dFry,

owy
where Py, and Fy, are functions on the set VY such that

P, OF,
(4.7) 5uL =0 5ot =0

Express the Lepage form 7 as in Theorem 1, by

g

oP
(4.8) n = Prdw” + 2w’ + dF,
owy

and compute the corresponding Lagrange function £ = hn. We have, using the
formulas hdwl = WL, hdi* = Wl hdw’ = wrw?, and hdw{ = wtwg (2.10),

OF OF OF OF
(4.9) L= (P + ) Wt + ——wl + wrw] + —w'wg.
BT wt owr owe T ows 2
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But L(wk, awl, bi® + a?wl, wo, w, w3) = al(wk, wl, v, w’, we, wg) for all a,b €
R, a # 0, since 7 satisfies the invariance condition (Theorem 3), and Py, = Pr(w”, w?, w{)
since 7 is Lepage; then (a) implies OF /0w’ = 0.

Remark 4. From Theorem 5 we conclude that Theorem 2 remains valid for the
Euler-Lagrange distribution of parameter-invariant variational problems.
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