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Abstract. In the paper, properties of morphisms in the variational se-
quence are investigated. The Euler–Lagrange morphism E1 is
well-understood. It is also known that the kernel of the Helmholtz mor-
phism E2 consists of locally variational dynamical forms, and is character-
ized by Helmholtz conditions. We study the image of E2 and the kernel
of the next morphism E3, and solve the corresponding local and global
inverse problem when a three-form comes (via a variational map) from
a dynamical form, i.e., corresponds to a system of differential equations.
We find identities, that are a generalization of the Helmholtz conditions to
this situation, and show that the problem is closely related to the question
on existence of a closed three-form. The obtained results extend known
results on Lagrangians and locally variational dynamical forms to gen-
eral dynamical forms, and open a new possibility to study non-variational
equations by means of closed three-forms, as a parallel to extremal prob-
lems (variational equations) that are studied by means of closed two-forms
(Cartan forms, symplectic geometry).
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1 Introduction: Helmholtz conditions and the inverse
problem of the calculus of variations

Consider a system of second order ordinary differential equations

(1.1) Ei(t, xk, ẋk, ẍk) = 0, 1 ≤ i ≤ m,

for curves c : I → Rm, c(t) = (xk(t)), where the functions Ei, 1 ≤ i ≤ m, are defined
on an open subset of R × R3m. The problem to decide when there exists a function
L(t, xk, ẋk), such that for all i,

(1.2) Ei =
∂L

∂xi
− d

dt

∂L

∂ẋi
,
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is called the (covariant) inverse problem of the calculus of variations.
Above, d/dt is the total derivative operator defined by

(1.3)
df

dt
=

∂f

∂t
+

∂f

∂xi
ẋi +

∂f

∂ẋi
ẍi,

where summation over repeated indices is understood.
Equations (1.1) satisfying (1.2) are called variational, and a corresponding func-

tion L is called a Lagrangian. Solutions of variational equations are extremals of a
variational functional defined by the Lagrangian L.

It is well-known that equations (1.1) are variational if and only if the “left-hand-
sides” Ei satisfy the following identities, called Helmholtz conditions [4, 15]:

(1.4)

∂Ei

∂ẍk
− ∂Ek

∂ẍi
= 0,

∂Ei

∂ẋk
+

∂Ek

∂ẋi
− d

dt

(∂Ei

∂ẍk
+

∂Ek

∂ẍi

)
= 0,

∂Ei

∂xk
− ∂Ek

∂xi
− 1

2
d

dt

(∂Ei

∂ẋk
− ∂Ek

∂ẋi

)
= 0.

Then, a Lagrangian for equations (1.1) can be constructed by the following formula

(1.5) L = xi

∫ 1

0

Ei(t, uxk, uẋk, uẍk)du

due to Tonti [16] and Vainberg [17] (see [13]).
Within the modern calculus of variations, variational objects and their properties

can be effectively studied by methods of differential and algebraic geometry. In this
paper we shall use the framework of the theory of variational sequences on fibred man-
ifolds, introduced by Krupka [9, 8]. The variational sequence is a quotient sequence of
the De Rham sequence, such that one of the morphisms is the Euler–Lagrange mapping
E1 : λ → Eλ, assigning to a Lagrangian (one-form λ = Ldt) its Euler-Lagrange form
(two-form Eλ = Ei(L)dxi∧dt, where Ei(L) are the Euler–Lagrange expressions (1.2)).
The next morphism, E2 : E → HE , assigns to a two-form E = Eidxi∧dt a three-form
HE , called Helmholtz form. E represents a system of differential equations (1.1) that,
of course, need not be variational. Due to exactness of the sequence, dynamical forms
with identically zero Helmholtz forms are locally variational, i.e. represent variational
equations. Components of a Helmholtz form HE are “left-hand sides” of Helmholtz
conditions, and nonzero Helmholtz forms correspond to non-variational equations. In
other words, Helmholtz conditions describe the kernel of the morphism E2.

While the Euler–Lagrange mapping E1 is well-understood, yet almost nothing is
known about the next variational morphisms E2, and especially E3. In the present
paper we study the image of E2 and the kernel of the next mapping E3. This means to
study the question when a three-form comes (via a variational map) from a dynamical
form, i.e., corresponds to a system of differential equations. We show that the problem
is closely related to the question on existence of a closed counterpart of a three-form
(closed Lepage equivalent). We solve both the local and global version of the problem
(Theorem 3.2, Theorem 3.3), and for the second order case compute identities that,
in this sense, generalize the Helmholtz conditions (Theorem 3.4). We show that a
Helmholtz form can be completed to a closed form in a unique way, and find the
corresponding closed three-form explicitly (Theorem 3.5).
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Our results extend known results on Lagrangians and locally variational dynamical
forms to general dynamical forms, and open a new possibility to study non-variational
equations by means of closed three-forms, as a parallel to extremal problems (vari-
ational equations) that are studied by means of closed two-forms (Cartan forms,
symplectic and pre-symplectic geometry).

2 The variational sequence in fibred manifolds

Let π : Y → X be a smooth fibred manifold, dim X = 1, dim Y = m + 1, and
πr : JrY → X, r ≥ 1, its jet prolongations. Denote by πr,s : JrY → JsY , r > s ≥ 0,
canonical jet projections. A differential q-form (q > 1) η on JrY is called contact if
Jrγ∗η = 0 for every section γ of π, horizontal or 0-contact if iξη = 0 for every vertical
vector field ξ on JrY , and k-contact, 1 ≤ k ≤ q, if for every vertical vector field ξ,
iξη is (k − 1)-contact. If lifted to Jr+1Y , every q-form η on JrY can be canonically
decomposed into a sum of k-contact components, ηk, where k = 0, 1, . . . , q, We write
ηk = pkη, and p0 = h, then

(2.1) π∗r+1,rη = hη + p1η + · · ·+ pqη.

A contact q-form is called strongly contact if π∗r+1,rη = pqη.
In what follows, we denote Ωr

q the sheaf of q-forms on JrY , Ωr
0,c = {0}, Ωr

q,c the
sheaf of strongly contact q-forms on JrY , dΩr

q−1,c the image sheaf of Ωr
q−1,c by the

exterior derivative d, and we put

(2.2) Θr
q = Ωr

q,c + dΩr
q−1,c.

The De Rham sequence

(2.3) 0 → R→ Ωr
0 → Ωr

1 → Ωr
2 → Ωr

3 → · · ·
(where morphisms are the exterior derivatives d) has a subsequence

(2.4) 0 → Θr
1 → Θr

2 → Θr
3 → · · ·

which is an exact sequence of soft sheaves. The quotient sequence

(2.5) 0 → R→ Ωr
0 → Ωr

1/Θr
1 → Ωr

2/Θr
2 → Ωr

3/Θr
3 → Ωr

4/Θr
4 → · · ·

is also exact, and is called the variational sequence of order r. As proved in [9], the
variational sequence is an acyclic resolution of the constant sheaf R over Y . Hence,
due to the abstract De Rham theorem, the cohomology groups of the cochain com-
plex of global sections of the variational sequence are identified with the De Rham
cohomology groups HqY of the manifold Y .

By construction, morphisms in the variational sequence are quotients of the exte-
rior derivative operator d. In turns out that

(2.6) E1 : Ωr
1/Θr

1 → Ωr
2/Θr

2

is the well-known Euler–Lagrange mapping of the calculus of variations. The next
morphism

(2.7) E2 : Ωr
2/Θr

2 → Ωr
3/Θr

3
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is called Helmholtz mapping. It should be stressed that this mapping, discovered
within the variational sequence theory, has not been known earlier in the calculus of
variations.

Objects in the variational sequence are elements of the quotient sheaves Ωr
q/Θr

q, q ≥
1, i.e., they are equivalence classes of local rth-order differential q-forms. We denote
by [ρ] ∈ Ωr

q/Θr
q the class of ρ ∈ Ωr

q. By definition, the kernel of the Euler–Lagrange
mapping E1 consists of null Lagrangians, and the image are locally variational forms
(Euler–Lagrange forms of locally defined Lagrangians). Due to the exactness of the
variational sequence, if [α] ∈ Ωr

2/Θr
2 is such that

(2.8) E2([α]) = [dα] = 0

then there exists [ρ] ∈ Ωr
1/Θr

1 such that [α] = [dρ] = E1([ρ]), i.e. [α] is the image by
the Euler–Lagrange mapping of a class [ρ]. In other words, the class [α] is locally
variational—comes from a class [ρ] that has the meaning of a local Lagrangian. If
moreover H2Y = {0} then a global Lagrangian exists. Condition (2.8) for “local
variationality” then provides Helmholtz conditions (of order r).

Classes in the variational sequence can be represented by differential forms. We
shall explore the representation by so-called source forms, (q − 1)-contact q-forms
belonging to the ideal generated by contact forms ωi = dxi − ẋidt, 1 ≤ i ≤ m.
A canonical source forms representation is obtained by means of the interior Euler
operator, I, introduced to the variational bicomplex theory by Anderson [1, 2], and
adapted to the finite order situation of the variational sequence theory in [6, 10].
This operator reflects in an intrinsic way the procedure of getting a distinguished
representative of a class [ρ] ∈ Ωr

q/Θr
q by applying to ρ the operator pq−1 and the

factorization by Θr
q. I is an R-linear mapping Ωr

q → Ω2r+1
q such that

(1) Iρ belongs to the same class as π∗2r+1,rρ,

(2) I2 = I (up to a canonical projection),

(3) the kernel of I : Ωr
q → Ω2r+1

q is Θr
q.

Source forms for classes [ρ] ∈ Ωr
1/Θr

1 are horizontal forms λ = Ldt, called Lagrangians.
Source forms for classes [α] ∈ Ωr

2/Θr
2 are two-forms E = Eiω

i ∧ dt, called dynamical
forms (corresponding to differential equations). Note that in this representation, if
[ρ] is represented by λ then [dρ] = E1([ρ]) is represented by the dynamical form Eλ,
the Euler–Lagrange form of λ. If [α] ∈ Ωr

2/Θr
2 is represented by a dynamical form E

then [dα] = E2([α]) is represented by a source three-form HE , the Helmholtz-form of
E. According to [10], for a general class [ρ] ∈ Ωr

3/Θr
3, where

(2.9) p2ρ =
r∑

k,l=0

Hkl
ij ωi

k ∧ ωj
l ∧ dt,

we get the canonical source form

(2.10) Iρ =
1
2

r∑

k,l=0

k∑
p=0

(−1)k

(
k

p

)
dk−p

dtk−p
(H lk

ji −H lk
ij )ωj

p+l ∧ ωi ∧ dt.
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Above,

(2.11) ωi
k = dxi

k − xi
k+1dt, 1 ≤ i ≤ m, 0 ≤ k ≤ r − 1

are basic contact forms of order r, ωi
0 = ωi.

3 The image of the Helmholtz mapping: generalization of
Helmholtz conditions to 3-forms

The aim of this paper is to study the image of the Helmholtz mapping

(3.1) E2 : Ωr
2/Θr

2 → Ωr
3/Θr

3,

and the kernel of the next variational morphism

(3.2) E3 : Ωr
3/Θr

3 → Ωr
4/Θr

4.

First, we note that Im E2 = Ker E3. Indeed, if [β] ∈ Ker E3, i.e., [β] ∈ Ωr
3/Θr

3 is such
that E3([β]) = [dβ] = 0 then due to exactness of the variational sequence there exists
[α] ∈ Ωr

2/Θr
2 such that [β] = [dα] = E2([α]), i.e. [β] is the image by the Helmholtz

mapping of a class [α] (that has the meaning of a differential equation, and can be
represented by a local dynamical form). Conversely, if [β] ∈ Im E2, i.e. [β] = E2([α])
for a class [α] ∈ Ωr

2/Θr
2 then [β] = [dα], hence E3([β]) = E3([dα]) = [ddα] = 0 (the

zero class in Ωr
4/Θr

4), so that [β] ∈ Ker E3.
In the representation by source forms, classes [dα] ∈ Ωr

3/Θr
3 are represented by

3-forms which arise from local dynamical forms as their Helmholtz forms.
Let us introduce the following definitions:

Definition 3.1. We shall call source forms representing elements in Ωr
3/Θr

3 Helmholtz-
like forms.

Let U ⊂ JsY be an open set. We say that a Helmholtz-like form H is Helmholtz
over U if there exists a dynamical form E on U such that H|U = HE . If there is an
open covering {Wι} of JsY such that H is Helmholtz over Wι for every ι, we say that
H is locally Helmholtz. We call H globally Helmholtz if there exists a dynamical form
E on JsY such that H = HE .

Note that relation between locally and globally Helmholtz forms is similar to that
between locally and globally variational dynamical forms. A three-form H which
is globally Helmholtz is a Helmholtz form of a (globally defined) dynamical form E.
A form H which is locally Helmholtz comes from a family of local dynamical forms
whose Helmholtz forms glue together to a global differential form; in this case a global
dynamical form E such that H = HE need not exist.

Theorem 3.2. Let H be a Helmholtz-like form. H is locally Helmholtz if and only if
there exists a (possibly local) three-form β such that p2β = H, and dβ = 0.

Proof. Let H be locally Helmholtz. Then (locally) H = HE for a dynamical form
E. E is a source form for a class [α] ∈ Ωr

2/Θr
2 such that H is a source form for the

class [dα] ∈ Ωr
3/Θr

3. By assumption, there is a representative ᾱ of the class [α] such
that p1ᾱ = E. Putting β̄ = dᾱ we get a (possibly local) closed three-form such that
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p2β̄ = p2dᾱ ∼ HE . This means that HE = p2dᾱ+p2dη where η is 2-contact. Putting
α0 = ᾱ + η and β = dα0 we get a two-form equivalent with ᾱ such that p1α0 = E,
and a 3-form such that dβ = 0 and p2β = HE , as desired.

Conversely, let H be a source form such that H = p2β for a closed three-form β.
Put α = Aβ where A is the contact homotopy operator [7]. Indeed, by definition of
A, β = dAβ + Adβ = dAβ = dα. Moreover, A is adapted to the decomposition to
contact components (meaning that if η is k-contact then Aη is (k−1)-contact). Then

(3.3) Ẽ = p1α = p1Aβ = p1(Ap2β) = p1AH = AH

is a (local) 1-contact two-form, representing the class [α]. We shall show that Ẽ is
equivalent with a dynamical form E (that is, with a source form for the class [α]).

In fibred coordinates,

(3.4)

Ẽ =
r∑

j=0

Ẽj
i ωi

j ∧ dt = Ẽiω
i ∧ dt−

r∑

j=1

Ẽj
i dωi

j−1 ∼ Ẽiω
i ∧ dt +

r∑

j=1

dẼj
i ∧ ωi

j−1

∼
(
Ẽi − dẼ1

i

dt

)
ωi ∧ dt−

r∑

j=2

dẼj
i

dt
ωi

j−1 ∧ dt

=
(
Ẽi − dẼ1

i

dt

)
ωi ∧ dt +

dẼ2
i

dt
dωi +

r∑

j=3

dẼj
i

dt
dωi

j−2

∼
(
Ẽi − dẼ1

i

dt
+

d2Ẽ2
i

dt2

)
ωi ∧ dt−

r∑

j=3

d
(dẼj

i

dt

)
∧ ωi

j−2

∼
(
Ẽi − dẼ1

i

dt
+

d2Ẽ2
i

dt2

)
ωi ∧ dt +

d2Ẽ3
i

dt2
ω̇i ∧ dt +

r∑

j=4

d2Ẽj
i

dt2
ωi

j−2 ∧ dt

=
(
Ẽi − dẼ1

i

dt
+

d2Ẽ2
i

dt2

)
ωi ∧ dt− d2Ẽ3

i

dt2
dωi −

r∑

j=4

d2Ẽj
i

dt2
dωi

j−3

∼
(
Ẽi − dẼ1

i

dt
+

d2Ẽ2
i

dt2
− d3Ẽ3

i

dt3

)
ωi ∧ dt−

r∑

j=4

d3Ẽj
i

dt3
ωi

j−3 ∧ dt ∼ · · ·

∼
(
Ẽi +

r∑

k=1

(−1)k dkẼk
i

dtk

)
ωi ∧ dt.

¤

Theorem 3.3. If H is locally Helmholtz and the cohomology group H3Y is trivial
then H is equivalent with a globally Helmholtz form.

Proof. We have seen above that if H is locally Helmholtz then H is a source form
for a class [dα]. If, moreover, the group H3Y = {0} then the class [α] has a global
representative ᾱ. Putting E = Iᾱ where I is the interior Euler operator, we get a
global dynamical form. The global form HE = Idᾱ is then the Helmholtz form of E,
and, by construction, it is equivalent with H. ¤
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With help of Theorem 3.2 we can compute explicit conditions for a three-form be a
locally Helmholtz form (a generalization of Helmholtz conditions to three-forms), and
obtain a corresponding dynamical form E, and a closed three-form (closed counterpart
of HE), which, as we shall show, is unique. In what follows, we shall be interested in
second-order Helmholtz-like forms; a generalization to the 3rd order can be found in
[14].

Theorem 3.4. A second-order source three-form (Helmholtz-like form) H is locally
Helmholtz if and only if components of H, given by

(3.5) H = H0
ij ωi ∧ ωj ∧ dt + H1

ij ωi ∧ ω̇j ∧ dt + H2
ij ωi ∧ ω̈j ∧ dt, H0

ij = −H0
ji,

satisfy the following identities:

(3.6)

(∂H2
ij

∂ẍk

)
[jk]

= 0,
(∂H1

ij

∂ẍk
− ∂H2

ik

∂ẋj

)
[ijk]

= 0,
(∂H1

ij

∂ẍk
− ∂H2

ik

∂ẋj

)
(jk)

= 0,

(∂H1
ij

∂ẋk
− 1

2
d

dt

(∂H1
ij

∂ẍk
− ∂H2

ik

∂ẋj

))
(ij),[jk]

= 0,

(∂H0
ij

∂ẍk
− 1

2
∂H1

ij

∂ẋk
− ∂H2

ik

∂xj
+

1
4

d

dt

(∂H1
ij

∂ẍk
− ∂H2

ik

∂ẋj

))
[ijk]

= 0,

(∂H0
ij

∂ẋk
− ∂H1

ik

∂xj
− d

dt

(∂H0
ij

∂ẍk
− ∂H2

ik

∂xj

))
[ij],(jk)

= 0,

(∂H0
ij

∂xk
− 1

3
d

dt

(∂H0
ij

∂ẋk
− ∂H1

ik

∂xj

)
+

1
3

d2

dt2

(∂H0
ij

∂ẍk
− ∂H2

ik

∂xj

))
[ijk]

= 0,

where [ ] and ( ) denotes skew-symmetrization and symmetrization in the indicated
indices, respectively.

Proof. By Theorem 3.2 we have to search for a 3-contact three-form

(3.7) G =
2∑

p≤q≤r=0

Gpqr
ijk ωi

p ∧ ωj
q ∧ ωk

r

of order 2 such that d(H + G) = 0. We may assume that the components of G are
skew-symmetric in the upper indices whenever at least two of the indices take the same
value. Denote β = H + G. Condition dβ = 0 means that p2dβ = 0 and p3dβ = 0.
Computing the former we get that p2dβ = 0 if and only if (3.6) are satisfied, proving
that (3.6) are necessary for H be locally Helmholtz. However, (3.6) are also sufficient,
since, by a straightforward computation, p3dβ = 0 is a consequence of p2dβ = 0. ¤

Theorem 3.5. Let H be a second-order source three-form (Helmholtz-like form)
(3.5).

(1) Assume that there exists a second-order 3-contact form G such that β = H +G
is closed. Then H is locally Helmholtz, G is unique and takes the coordinate form

(3.8)
G =

1
3

(∂H0
ij

∂ẋk
− ∂H1

ik

∂xj
− d

dt

(∂H0
ij

∂ẍk
− ∂H2

ik

∂xj

))
ωi ∧ ωj ∧ ωk

+
(∂H0

ij

∂ẍk
− ∂H2

ik

∂xj

)
ωi ∧ ωj ∧ ω̇k +

1
2

(∂H1
ij

∂ẍk
− ∂H2

ik

∂ẋj

)
ωi ∧ ω̇j ∧ ω̇k.
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A corresponding dynamical form E for H is given by the formula

(3.9) E = IAH.

In coordinates, E = Eiω
i ∧ dt where

(3.10) Ei = Ẽi − dẼ1
i

dt
+

d2Ẽ2
i

dt2
,

(3.11)

Ẽi = 2xj

∫ 1

0

H0
ji(t, uxp, uẋp, uẍp)u du− ẋj

∫ 1

0

H1
ij(t, uxp, uẋp, uẍp)u du

− ẍj

∫ 1

0

H2
ij(t, uxp, uẋp, uẍp)u du,

Ẽ1
i = xj

∫ 1

0

H1
ji(t, uxp, uẋp, uẍp)u du,

Ẽ2
i = xj

∫ 1

0

H2
ji(t, uxp, uẋp, uẍp)u du.

(2) Conversely, if H is locally Helmholtz then there exists a unique (global) 3-
contact form G on J2Y such that β = H + G is closed. G is given by formula (3.8).

Proof. (1) Denote H as above, then G should take the form (3.8), where G000
ijk is

completely skew-symmetric in ijk, G001
ijk = −G001

jik , G011
ijk = −G011

ikj , etc. From p2dβ = 0
we get the following identities:

(3.12)

(∂H0
ij

∂xk
− dG000

ijk

dt

)
[ijk]

= 0,
(∂H0

ij

∂ẋk
− ∂H1

ik

∂xj
− dG001

ijk

dt
− 3G000

ijk

)
[ij]

= 0,

(∂H0
ij

∂ẍk
− ∂H2

ik

∂xj
−G001

ijk

)
[ij]

= 0,
(∂H1

ij

∂ẋk
− dG011

ijk

dt
− 2G001

ijk

)
[jk]

= 0,

∂H1
ij

∂ẍk
− ∂H2

ik

∂ẋj
− 2G011

ijk = 0,
(∂H2

ij

∂ẍk

)
[jk]

= 0, G011
[ijk] = 0,

G111
ijk = G002

ijk = G012
ijk = G112

ijk = G122
ijk = G222

ijk = 0.

From (3.12) we get formulas for the components of G and conditions (3.6), hence H
is locally Helmholtz. Since dβ = 0 we have locally β = dα, where α = Aβ, and a
corresponding local dynamical form E for H is a source form for α, i.e., E = Iα =
Ip1α = IAH.

(2) By Theorem 3.2, if H is locally Helmholtz then G exists locally. However, G
is unique, hence global (defined on J2Y ). ¤

Note that we have proved also the following result which can be viewed as a
geometric version of the “generalized Helmholtz conditions” (3.6) above, and is an
extension to three-forms of a well-known result in the calculus of variations on mani-
folds (see [3, 5, 11, 12]).

Corollary 3.6. Let β be a three-form on J2Y such that p2β = H is a source form
on J2Y . The following conditions are equivalent:
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(1) H is locally Helmholtz (comes from a possibly local dynamical form as its Helmholtz
form).

(2) p2dβ = 0.

(3) dβ = 0.
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