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Abstract. We construct a family of almost hyper-complex structures on
the tangent bundle of a Kählerian manifold by using two anti-commuting
almost complex structures obtained from the natural lifts of the Rieman-
nian metric (see [11], [12], [13], [18]) and the integrable almost com-
plex structure on the base manifold. Next we obtain an almost hyper-
Hermitian metric obtained from the same natural lifts, related to the con-
sidered almost complex structures. We study the integrability conditions
for the almost complex structures, obtaining that the base manifold must
have constant holomorphic sectional curvature, and the conditions under
which the considered almost hyper-Hermitian metric leads to a hyper-
Kählerian structure on the tangent bundle.
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1 Introduction

Consider an m(= 2n)-dimensional Riemannian manifold (M, g) and denote by τ :
TM −→ M its tangent bundle. Several Riemannian and semi-Riemannian metrics
can be used in order to obtain geometric properties of the tangent bundle TM of
(M, g). They are induced from the Riemannian metric g on M by using some lifts
of g. Among these metrics, we may quote the Sasaki metric and the complete lift of
the metric g. On the other hand, the natural lifts of g to TM , induce some other
Riemannian and pseudo-Riemannian geometric structures with many nice geometric
properties (see [8], [7]). By similar methods one can get from g some natural almost
complex structures on TM . If (M, g) has a structure of Kählerian manifold we can
find some other Riemannian metrics and almost complex structures on its tangent
bundle and from them we can get some almost hyper-Hermitian structures (see also
[19], [20]). Similar results are obtained in the case of the cotangent bundle (see e.g.
[3]).
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In the present paper we study a class of natural almost hyper-Hermitian structures
(G, J1, J2), on the tangent bundle TM of a Kählerian manifold (M, g, J), induced from
the Riemannian metric g and the integrable almost complex structure J . The metric
G and the anti-commuting almost complex structures J1, J2 are obtained as natural
lifts of diagonal type from g and J .

The manifolds, tensor fields and other geometric objects we consider in this paper
are assumed to be differentiable of class C∞ (i.e. smooth). We use the computations
in local coordinates in a fixed local chart but many results may be expressed in
an invariant form by using the vertical and horizontal lifts. Some quite complicate
computations have been made by using the Ricci package under Mathematica for
doing tensor computations. The well known summation convention is used throughout
this paper, the range of the indices h, i, j, k, l being always {1, . . . , m = 2n}.

1. Hyper-complex structures on TM .

Let (M, g) be a smooth m = (2n)-dimensional Riemannian manifold and denote
its tangent bundle by τ : TM −→ M . Recall that there is a structure of a smooth 2m-
dimensional manifold on TM , induced from the structure of smooth m-dimensional
manifold of M . From every local chart (U,ϕ) = (U, x1, . . . , xm) on M , it is induced
a local chart (τ−1(U),Φ) = (τ−1(U), x1, . . . , xm, y1, . . . , ym), on TM , as follows. For
a tangent vector y ∈ τ−1(U) ⊂ TM , the first m local coordinates x1, . . . , xm are the
local coordinates x1, . . . , xm of its base point x = τ(y) in the local chart (U,ϕ) (in fact
we made an abuse of notation, identifying xi with τ∗xi = xi ◦ τ, i = 1, . . . , m). The
last m local coordinates y1, . . . , ym of y ∈ τ−1(U) are the vector space coordinates of y
with respect to the natural basis (( ∂

∂x1 )τ(y), . . . , ( ∂
∂xm )τ(y)), defined by the local chart

(U,ϕ). Due to this special structure of differentiable manifold for TM , it is possible
to introduce the concept of M -tensor field on it. An M -tensor field of type (p, q)
on TM is defined by sets of np+q components (functions depending on xi and yi),
with p upper indices and q lower indices, assigned to induced local charts (τ−1(U),Φ)
on TM , such that the local coordinate change rule is that of the local coordinate
components of a tensor field of type (p, q) on the base manifold M , when a change
of local charts on M (and hence on TM) is performed (see [10] for further details);
e.g., the components yi, i = 1, . . . ,m, corresponding to the last m local coordinates
of a tangent vector y, assigned to the induced local chart (τ−1(U), Φ) define an M -
tensor field of type (1, 0) on TM . A usual tensor field of type (p, q) on M may be
thought of as an M -tensor field of type (p, q) on TM . If the considered tensor field
on M is covariant only, the corresponding M -tensor field on TM may be identified
with the induced (pullback by τ) tensor field on TM . Some useful M -tensor fields on
TM may be obtained as follows. Let u : [0,∞) −→ R be a smooth function and let
‖y‖2 = gτ(y)(y, y) be the square of the norm of the tangent vector y ∈ τ−1(U). If δi

j

are the Kronecker symbols (in fact, they are the local coordinate components of the
identity tensor field I on M), then the components u(‖y‖2)δi

j define an M -tensor field
of type (1, 1) on TM . Similarly, if gij(x) are the local coordinate components of the
metric tensor field g on M in the local chart (U,ϕ), then the components u(‖y‖2)gij

define a symmetric M -tensor field of type (0, 2) on TM . The components g0i = ykgki,
as well as u(‖y‖2)g0i define M -tensor fields of type (0, 1) on TM . Of course, all the
components considered above are in the induced local chart (τ−1(U),Φ).
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We shall use the horizontal distribution HTM , defined by the Levi Civita connec-
tion ∇̇ of g, in order to define some first order natural lifts to TM of the Riemannian
metric g on M . Denote by V TM = Ker τ∗ ⊂ TTM the vertical distribution on TM .
Then we have the direct sum decomposition

(1.1) TTM = V TM ⊕HTM.

If (τ−1(U),Φ) = (τ−1(U), x1, . . . , xm, y1, . . . ym) is a local chart on TM , induced from
the local chart (U,ϕ) = (U, x1, . . . , xm), the local vector fields ∂

∂y1 , . . . , ∂
∂ym define a

local frame for V TM over τ−1(U) and the local vector fields δ
δx1 , . . . , δ

δxm define a
local frame for HTM over τ−1(U), where

δ

δxi
=

∂

∂xi
− Γh

0i

∂

∂yh
, Γh

0i = ykΓh
ki

and Γh
ki(x) are the Christoffel symbols of g.

The set of vector fields ( ∂
∂y1 , . . . , ∂

∂ym , δ
δx1 , . . . , δ

δxm ) defines a local frame on TM ,
adapted to the direct sum decomposition (1.1). Remark that

∂

∂yi
= (

∂

∂xi
)V ,

δ

δxi
= (

∂

∂xi
)H ,

where XV and XH denote the vertical and horizontal lifts of the vector field X on
M .

Now assume that (M, g, J) is a Kählerian manifold. The Riemannian metric g
and the integrable almost complex structure J are related by

g(JX, JY ) = g(X, Y ), ∇̇J = 0,

where ∇̇ is the Levi Civita connection of g. Recall that we have too the following
relations

N = 0, dφ = 0,

where N is the Nijehuis tensor field of J and φ is the associated 2-form, defined by

φ(X, Y ) = g(X,JY ).

Denote by gij , J
i
j the components of g, J in the local chart (U,ϕ) = (U, x1, . . . , xm).

Introduce the components Jij = gihJh
j , obtained from the components of J by low-

ering the contravariance index on the first place (in fact, Jij are the components of
the fundamental 2-form φ defined by the Kählerian structure (g, J). Consider the
following M -tensor fields on τ−1(U), defined by the components

gi0 = gihyh, Ji0 = Jihyh = −J0i.

Lemma 1. If m > 1 and u1, u2, u3, u4, u5, u6 are smooth functions on TM such
that

u1gij + u2gi0gj0 + u3Ji0Jj0 + u4gi0Jj0 + u5Ji0gj0 + u6Jij = 0, y ∈ τ−1(U)
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on the domain of any induced local chart on TM , then u1 = u2 = u3 = u4 = u5 =
u6 = 0.

The proof is obtained easily by transvecting the given relation with gij , J ij =
J i

hghj , Jj
0 = Jj

hyh and yj (Recall that the functions gij(x) are the components of the
inverse of the matrix (gij(x)), associated to g in the local chart (U,ϕ) on M ; moreover,
the components gij(x) define a tensor field of type (2, 0) on M).

Remark. From a relation of the type

u1δ
i
j + u2y

igj0 + u3J
i
0Jj0 + u4y

iJj0 + u5J
i
0gj0 + u6J

i
j = 0, y ∈ τ−1(U)

it is obtained, in a similar way, u1 = u2 = u3 = u4 = u5 = u6 = 0.
Since we work in a fixed local chart (U,ϕ) on M and in the corresponding induced

local chart (τ−1(U), Φ) on TM , we shall use the following simpler notations

∂

∂yi
= ∂i,

δ

δxi
= δi.

Denote by

(1.2) t =
1
2
‖y‖2 =

1
2
gτ(y)(y, y) =

1
2
gik(x)yiyk, y ∈ τ−1(U)

the energy density defined by g in the tangent vector y. We have t ∈ [0,∞) for
all y ∈ TM . Let C = yi ∂

∂yi = yV be the Liouville vector field on TM and con-

sider the corresponding horizontal vector field C̃ = yi δ
δxi = yH on TM , obtained

in a similar way. Consider the real valued smooth functions a1, a2, a3, a4, a5, a6, b1,
b2, b3, b4, b5, b6, c1, c2, c3, c4, c5, c6, d1, d2, d3, d4, d5, d6 defined on [0,∞) ⊂ R and de-
fine two diagonal natural almost complex structures J1, J2 on TM , by using these
coefficients, the Riemannian metric g and the integrable almost complex structure J

(1.3)





J1X
H
y = a1(t)XV

y + a2(t)gτ(y)(y,X)Cy + a3(t)gτ(y)(Jy, X)(Jy)V
y +

+a4(t)(JX)V
y + a5(t)gτ(y)(X, y)(Jy)V

y + a6(t)gτ(y)(Jy, X)Cy,

J1X
V
y = −(b1(t)XH

y + b2(t)gτ(y)(y,X)C̃y + b3(t)gτ(y)(Jy, X)(Jy)H
y +

+b4(t)(JX)H
y + b5(t)gτ(y)(X, y)(Jy)H

y + b6(t)gτ(y)(Jy,X)C̃y),

(1.4)





J2X
H
y = c1(t)XV

y + c2(t)gτ(y)(y, X)Cy + c3(t)gτ(y)(Jy, X)(Jy)V
y +

+c4(t)(JX)V
y + c5(t)gτ(y)(X, y)(Jy)V

y + c6(t)gτ(y)(Jy, X)Cy,

J2X
V
y = −(d1(t)XH

y + d2(t)gτ(y)(y, X)C̃y + d3(t)gτ(y)(Jy, X)(Jy)H
y +

+d4(t)(JX)H
y + d5(t)gτ(y)(X, y)(Jy)H

y + d6(t)gτ(y)(Jy, X)C̃y).

The expressions of J1, J2 in adapted local frames are

J1δi = J1H
h
i ∂h, J1∂i = J1V

h
i δh,

J2δi = J2H
h
i ∂h, J2∂i = J2V

h
i δh,



108 Vasile Oproiu

where the M -tensor fields J1H
h
i , J1V

h
i , J2H

h
i , J2V

h
i are given by

J1H
h
i = a1δ

h
i + a2gi0y

h + a3Ji0J
h
0 + a4J

h
i + a5gi0J

h
0 + a6Ji0y

h,

J1V
h
i = −(b1δ

h
i + b2gi0y

h + b3Ji0J
h
0 + b4J

h
i + b5gi0J

h
0 + b6Ji0y

h),

J2H
h
i = c1δ

h
i + c2gi0y

h + c3Ji0J
h
0 + c4J

h
i + c5gi0J

h
0 + c6Ji0y

h,

J2V
h
i = −(d1δ

h
i + d2gi0y

h + d3Ji0J
h
0 + d4J

h
i + d5gi0J

h
0 + d6Ji0y

h).

The matrices associated to J1, J2 have a diagonal form

J1 =
(

0 J1H
h
i

J1V
h
i 0

)
, J2 =

(
0 J2H

h
i

J2V
h
i 0

)
.

Remark that, one can consider the case of the general natural tensor fields J1, J2 on
TM , when J1δi, J1∂i, J2δi, J2∂i are expressed as combinations of ∂h, δh. In this case
we should have 48 coefficients and the computations would become really complicate.
However, the results obtained in the general case do not differ too much from that
obtained in the diagonal case.

We use the following notation:

α = (a1 + 2a2t)(a1 + 2a3t) + (a4 + 2a5t)(a4 − 2a6t).

Proposition 2. The operator J1 defines an almost complex structure on TM if and
only if the coefficients b1, b2, b3, b4, b5, b6 are expressed as

(1.5)





b1 = a1
a2
1+a2

4
, b4 = −a4

a2
1+a2

4
,

b2 = 1
α [b1(−a1a2 − 2a2a3t + 2a5a6t) + b4(a1a5 − a1a6 − a3a4)],

b3 = 1
α [b1(−a1a3 − 2a2a3t + 2a5a6t) + b4(a1a5 − a1a6 − a2a4)],

b5 = 1
α [b1(−a1a5 + a2a4 + a3a4) + b4(a4a6 − 2a2a3t + 2a5a6t)],

b6 = 1
α [b1(−a1a6 − a2a4 − a3a4) + b4(a4a5 + 2a2a3t− 2a5a6t)].

Proof. The relations are obtained by some quite straightforward but long computa-
tions, from the property J2

1 = −I of J1 and Lemma 1.

Remark. Using the first two relations (1.5) we may find the expressions of
b2, b3, b5, b6 as functions of a1, a2, a3, a4, a5, a6 only. Remark that the parameters
a1, a4 cannot vanish simultaneously and that α 6= 0. A similar result is obtained from
the condition for J2 to be an almost complex structure on TM . In this case we can
express the coefficients d1, d2, d3, d4, d5, d6 as functions of c1, c2, c3, c4, c5, c6. We shall
use the following notation:

β = (c1 + 2c2t)(c1 + 2c3t) + (c4 + 2c5t)(c4 − 2c6t).

Then we get

(1.6)





d1 = c1
c2
1+c2

4
, d4 = −c4

c2
1+c2

4
,

d2 = 1
β [d1(−c1c2 − 2c2c3t + 2c5c6t) + d4(c1c5 − c1c6 − c3c4)],

d3 = 1
β [d1(−c1c3 − 2c2c3t + 2c5c6t) + d4(c1c5 − c1c6 − c2c4)],

d5 = 1
β [d1(−c1c5 + c2c4 + c3c4) + d4(c4c6 − 2c2c3t + 2c5c6t)],

d6 = 1
β [d1(−c1c6 − c2c4 − c3c4) + d4(c4c5 + 2c2c3t− 2c5c6t)].
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Now we shall study the conditions under which the almost complex structures J1, J2

satisfy the relation J1J2 + J2J1 = 0, leading to the almost hyper-complex structure
on TM .

Theorem 3. The almost complex structures J1, J2 define an almost hyper-complex
structure on TM if

(1.7) c1 = a4, c4 = −a1,

c3 = (a2
1a5 + a2

4a5 − a2
1a6 − a2

4a6 − a2
1c2 − a2

4c2 + 2a2a3a4t− 2a1a2a6t−
−2a1a3a6t− 4a4a5a6t + 2a4a

2
6t− 2a1a3c2t + 2a4a6c2t− 2a2a4c6t− 2a3a4c6t+

+4a1a5c6t− 2a1c2c6t + 2a4c
2
6t− 4a2a3a6t

2 + 4a5a
2
6t

2 − 4a3c2c6t
2 + 4a5c

2
6t

2)/

((a1 + 2a2t)(a1 + 2c6t) + (a4 + 2c2t)(a4 − 2a6t)),

c5 = −1
a1+2c6t (a1a2 + a1a3 + a4a5 − a4a6 − a4c2 − a4c3 − a1c6+

+2a2a3t− 2a5a6t− 2c2c3t).

Proof. From the relation J1V
k
h J2H

h
i + J2V

k
h J1H

h
i = 0 we get

(−b1c1 + b4c4 − a1d1 + a4d4)δk
i − (b4c1 + b1c4 + a4d1 + a1d4)Jk

i −
−(b5c1 + b4c2 + b3c4 + b1c5 + a5d1 + a4d3 + a2d4 + a1d5+

+2b5c2t + 2b3c5t + 2a5d3t + 2a2d5t)gi0J
k
0 +

(−b3c1 − b1c3 + b5c4 − b4c6 − a3d1 − a1d3 + a6d4 + a4d5−
−2b3c3t− 2b5c6t− 2a3d3t− 2a6d5t)Ji0J

k
0 +

−b2c1 − b1c2 − b6c4 + b4c5 − a2d1 − a1d2 + a5d4 − a4d6−
−2b2c2t− 2b6c5t− 2a2d2t− 2a5d6t)gi0y

k−
(b6c1 − b4c3 − b2c4 + b1c6 + a6d1 − a4d2 − a3d4 + a1d6+

+2b6c3t + 2b2c6t + 2a6d2t + 2a3d6t)Ji0y
k.

Replacing bα, dα; α = 1, . . . , 6 and using Lemma 1 we get the following relations
(from the vanishing of the first two coefficients)

(a1c1 + a4c4)(a2
1 + a2

4 + c2
1 + c2

4) = 0,

(a4c1 − a1c4)(a2
1 + a2

4 − c2
1 − c2

4) = 0.

Since a2
1 + a2

4 6= 0, c2
1 + c2

4 6= 0, we obtain the relations

c1 = ±a4, c4 = ∓a1.

From now on we shall consider only the case c1 = a4, c4 = −a1. The expressions
of c3, c5 are obtained from the vanishing of the next 4 coefficients. Then the other
relations obtained from J1J2 + J2J1 = 0 are identically fulfilled.

Remark that the final expression of c5 is obtained after replacing the obtained
expression of c3.
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Hence an almost hyper-complex structure on TM , of the considered type depends
on 8 essential parameters a1, a2, a3, a4, a5, a6, c2, c6 (real valued smooth functions de-
pending on the density energy t ∈ [0,∞). Remark that the functions aα; α = 1, . . . , 6,
must fulfill some supplementary conditions which assure the existence of the expres-
sions obtained above.

Now we shall study the integrability problem for the obtained almost hyper-
complex structure. The integrability conditions for such a structure are expressed with
the help of various Nijenhuis tensor fields obtained from the tensor fields J1, J2, J3 =
J1J2. For a tensor field K of type (1, 1) on a given manifold, we can consider its
Nijenhuis tensor field NK defined by

NK(X,Y ) = [KX, KY ]−K[X, KY ]−K[KX,Y ] + K2[X, Y ],

where X, Y are vector fields on the given manifold. For two tensor fields K,L of type
(1, 1) on the given manifold, we can consider the corresponding Nijenhuis tensor field
NK,L defined by

NK,L(X, Y ) = [KX, LY ] + [LX, KY ]−K([X,LY ] + [LX, Y ])−
−L([KX, Y ] + [X, KY ]) + (KL + LK)[X,Y ].

The almost hyper-complex structure defined by J1, J2 is integrable iff N1 =
0, N2 = 0, where N1, N2 are the Nijenhuis tensor fields of J1, J2. Equivalently,
the structure is integrable iff N1 + N2 + N3 = 0, or iff N12 = 0, where N3 is the
Nijenhuis tensor field of J3 = J1J2 and N12 = NJ1,J2 is the Nijenhuis tensor field of
J1, J2.

In the case of the almost hyper-complex structure defined on TM by the tensor
fields J1, J2 the most convenient way to study its integrability is the using of the
Nijenhuis tensor fields N1, N2.

Proposition 4. If the almost hyper-complex structure defined by (J1, J2) on TM
is integrable then the Kählerian manifold (M, g, J) has constant holomorphic sectional
curvature.

Proof. Recall the following formulas, useful in computing the expressions of N1, N2

[∂i, ∂j ] = 0, [∂i, δj ] = −Γk
ij∂k, [δi, δj ] = −Rk

0ij∂k,

δiy
h = −Γh

i0, δigjk = Γh
ijghk + Γh

ikgjh, δigj0 = g0hΓh
ij ,

δiJ
k
l = −Γk

ihJh
l + Γh

ilJ
k
h , δiJ

k
0 = −Γk

ihJh
0 , δiJj0 = Γh

ijJh0.

We have used the notations

Rk
0ij = yhRk

hij ,Γ
k
i0 = yhΓk

ih, gj0 = gjhyh, Jk
0 = Jk

hyh, Jj0 = Jjhyh.

Then we get

N1(δi, δj) = (J1H
k
i ∂kJ1H

h
j − J1H

k
j ∂kJ1H

h
i + Rh

0ij)∂h.

Remark that all the terms containing the Christoffel symbols cancel. Doing the nec-
essary replacements, we get a relation of the following type

α1(Jh
i gj0 − Jh

j gi0) + α2(g0iδ
h
j − g0jδ

h
i ) + 2α3Jijy

h + α4(Ji0J
h
j − Jj0J

h
i ) + 2α5JijJ

h
0 +
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+α6(δh
i Jj0 − δh

j Ji0) + Rh
0ij + α7(gi0Jj0 − gj0Ji0)yh + α8(gi0Jj0 − gj0Ji0)Jh

0 = 0,

where the coefficients α1, α2, α3, α4, α5, α6, α7, α8, are functions of t, expressed with
the help of the coefficients a1, a2, a3, a4, a5, a6 and their derivatives.

Differentiating this relation with respect to yk, then taking y = 0, one gets

α1(0)(Jh
i gjk − Jh

j gik) + α2(0)(gkiδ
h
j − gkjδ

h
i ) + 2α3(0)Jijδ

h
k + α4(0)(JikJh

j − JjkJh
i )+

+2α5(0)JijJ
h
k + α6(0)(δh

i Jjk − δh
j Jik) + Rh

kij = 0.

Then, using the well known (skew) symmetries of the components of R, as well as the
(first) Bianchi identity and the invariance properties of R with respect to J , one finds

(1.8) Rh
kij = c(gjkδh

i − gikδh
j + Jh

i gklJ
l
j − Jh

j gklJ
l
i + 2Jh

k gilJ
l
j),

i.e. the Kählerian manifold (M, g, J) has constant holomorphic sectional curvature
4c.

Replacing the obtained expression of Rh
kij in the relation N1(δi, δj) = 0, and using

Lemma 1, one obtains some further relations

(1.9) a3 =
c− a4a5

a1
, a6 = −a2a4

a1
.

Then, replacing these expressions of a3, a6 in the remaining terms one gets

(1.10) a2 =
a1(a1a

′
1 + a4a

′
4 − c)

a2
1 + a2

4 − 2a1a′1t− 2a4a′4t
, a5 =

−a2a4 + a1a
′
4 + 2a2a

′
4t

a1
.

Next, computing the expressions N1(∂i, ∂j), N1(δi, ∂j), we get that they are identically
zero.

Similar results are obtained from the integrability conditions for J2, but we should
prefer to present some other expressions (we shall assume that c4 6= 0)

(1.11)





c2 = − c1c6
c4

, c5 = c−c1c3
c4

,

c3 = c1c6+c′1c4−2c′1c6t
c4

, c6 = c4(c−c1c′1−c4c′4)
c2
1+c2

4−2c1c′1t−2c4c′4t
.

Finally, by using the relations obtained in Theorem 3, one gets the expressions of
c2, c3, c5, c6 as functions a1, a4 an their derivatives

(1.12)





c2 = a4(a1a′1+a4a′4−c)

a2
1+a2

4−2a1a′1t−2a4a′4t
, c3 = a4(c−a1a′1)+a′4(a

2
1−2ct)

a2
1+a2

4−2a1a′1t−2a4a′4t
,

c5 = a1(a4a′4−c)−a′1(a
2
4−2ct)

a2
1+a2

4−2a1a′1t−2a4a′4t
, c6 = a1(a1a′1+a4a′4−c)

a2
1+a2

4−2a1a′1t−2a4a′4t

Remark that the values of c3, c5 obtained in (1.12) do coincide with the values of
c3, c5 obtained in Theorem 3 after replacing c2, c6 obtained in (1.12) and a2, a3, a5, a6

obtained in (1.9) and (1.10).
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2 Hyper-Kähler structures on TM

Consider a natural Riemannian metric G on TM of diagonal type induced from g and
J and given by

(2.1)





Gy(XH , Y H) = p1(t)gτ(y)(X, Y ) + p2(t)gτ(y)(y,X)gτ(y)(y, Y )+
+p3(t)gτ(y)(JX, y)gτ(y)(JY, y) + p4(t)(gτ(y)(JX, y)gτ(y)(Y, y)+
+gτ(y)(JY, y)gτ(y)(X, y)),

Gy(XV , Y V ) = q1(t)gτ(y)(X, Y ) + q2(t)gτ(y)(y, X)gτ(y)(y, Y )+
+q3(t)gτ(y)(JX, y)gτ(y)(JY, y) + q4(t)(gτ(y)(JX, y)gτ(y)(Y, y)+
+gτ(y)(JY, y)gτ(y)(X, y)),

Gy(XH , Y V ) = Gy(Y V , XH) = Gy(XV , Y H) = Gy(Y H , XV ) = 0,

where p1, p2, p3, p4, q1, q2, q3, q4 are smooth real valued functions defined on [0,∞).
Remark that we have to find the conditions under which G is real Riemannian metric.

The expression of G in local adapted frames is defined by the following M -tensor
fields

Gij = G(δi, δj) = p1gij + p2g0ig0j + p3Ji0Jj0 + p4(gi0Jj0 + gj0Ji0),

Hij = G(∂i, ∂j) = q1gij + q2g0ig0j + q3Ji0Jj0 + q4(gi0Jj0 + gj0Ji0)

and the associated 2m× 2m-matrix with respect to the adapted local frame

(
δ

δx1
, . . . ,

δ

δxm
,

∂

∂y1
, . . . ,

∂

∂ym

)

has two m×m-blocks on the first diagonal

G =
(

Gij 0
0 Hij

)
.

We shall be interested in the conditions under which the metric G is almost Hermi-
tian with respect to the almost complex structures J1, J2, considered in the previous
section, i.e.

G(J1X, J1Y ) = G(X, Y ), G(J2X, J2Y ) = G(X, Y ),

for all vector fields X,Y on TM .
From the relation

G(J1δi, J1δj) = G(δi, δj),

we get

(2.2) HklJ1H
k
i J1H

l
j = Gij ,



Hyper-Kähler structures on the tangent bundle 113

from which we obtain the following expressions for p1, p2, p3, p4

(2.3)





p1 = (a2
1 + a2

4)q1,
p2 = (2a1a2 + 2a4a5 + 2a2

2t + 2a2
5t)q1+

(a1 + 2a2t)2q2 + (a4 + 2a5t)2q3 + 2(a1 + 2a2t)(a4 + 2a5t)q4,
p3 = (2a1a3 − 2a4a6 + 2a2

3t + 2a2
6t)q1+

(a4 − 2a6t)2q2 + (a1 + 2a3t)2q3 − 2(a1 + 2a3t)(a4 − 2a6t)q4,
p4 = (−a2a4 + a3a4 + a1a5 + a1a6 + 2a3a5t + 2a2a6t)q1+
+(−a1a4 − 2a2a4t + 2a1a6t + 2a1a6t)q2 + (a1 + 2a3t)(a4 + 2a5t)q3+
+(a2

1 − a2
4 + 2a1a2t + 2a1a3t− 2a4a5t + 2a4a6t + 4a2a3t

2 + 4a5a6t
2)q4.

Remark that from the conditions G(J1∂i, J1∂j) = G(∂i, ∂j), G(J1δi, J1∂j) =
G(δi, ∂j), we do not obtain new essential relations fulfilled by p′s and q′s.

Now we deal with the condition

G(J2δi, J2δj) = G(δi, δj),

from which we get

(2.4) HklJ2H
k
i J2H

l
j = Gij .

We find the coefficients p1, p2, p3, p4 expressed in function of the coefficients q1, q2, q3, q4

by formulas similar to (2.3), where the parameters a1, a2, a4, a5, a6 are replaced by
c1, c2, c3, c4, c5, c6 respectively. Next, we may write the system fulfilled by q1, q2, q3, q4,
obtained by equalizing the obtained values for p1, p2, p3, p4. Remark that, due to the
formula (1.7), the first equation, corresponding to p1, is trivial. So, we get a homo-
geneous system consisting of 3 equations

q1(−2a1a2 − 2a4a5 + 2a4c2 − 2a1c5 − 2a2
2t− 2a2

5t + 2c2
2t + 2c2

5t)+

+q2(−a2
1 + a2

4 − 4a1a2t + 4a4c2t− 4a2
2t

2 + 4c2
2t

2)+

+q3(a2
1 − a2

4 − 4a4a5t− 4a1c5t− 4a2
5t

2 + 4c2
5t

2)+

+q4(−4a1a4 − 4a2a4t− 4a1a5t− 4a1c2t + 4a4c5t− 8a2a5t
2 + 8c2c5t

2) = 0,

q1(−a2a4 + a3a4 + a1a5 + a1a6 − a1c2 + a1c3 − a4c5 − a4c6 + 2a3a5t + 2a2a6t− 2c3c5t−
−2c2c6t) + q2(−2a1a4 − 2a2a4t + 2a1a6t− 2a1c2t− 2a4c6t + 4a2a6t

2 − 4c2c6t
2)+

+q3(2a1a4 + 2a3a4t + 2a1a5t + 2a1c3t− 2a4c5t + 4a3a5t
2 − 4c3c5t

2) + q4(2a2
1 − 2a2

4+

+2a1a2t + 2a1a3t− 2a4a5t + 2a4a6t− 2a4c2t− 2a4c3t− 2a1c5t + 2a1c6t + 4a2a3t
2+

+4a5a6t
2 − 4c2c3t

2 − 4c5c6t
2) = 0,

q1(2a1a3 − 2a4a6 − 2a4c3 − 2a1c6 + 2a2
3t + 2a2

6t− 2c2
3t− 2c2

6t)+

+q2(−a2
1 + a2

4 − 4a4a6t− 4a1c6t + 4a2
6t

2 − 4c2
6t

2)+

+q3(a2
1 − a2

4 + 4a1a3t− 4a4c3t + 4a2
3t

2 − 4c2
3t

2)+

+q4(−4a1a4 − 4a3a4t + 4a1a6t− 4a1c3t− 4a4c6t + 8a3a6t
2 − 8c3c6t

2) = 0.

The matrix of this system has the rank 2 and we may obtain its general solution
depending on two parameters

(2.5) q1 = λ, q3 = µ,
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q4 = ((a3a4 − a1a5 + a1c2 − a4c6 + 2a3c2t− 2a5c6t)λ+

+(2a3a4t− 2a1a5t + 2a1c2t− 2a4c6t + 4a3c2t
2 − 4a5c6t

2)µ)/

(a2
1 + a2

4 + 2a1a2t− 2a4a6t + 2a4c2t + 2a1c6t− 4a6c2t
2 + 4a2c6t

2),

q1 + 2tq2 =

= ((a4
1 + 2a2

1a
2
4 + a4

4 + 4a3
1a2t + 4a13a3t + 4a1a2a

2
4t + 4a1a3a

2
4t + 4a2

1a4a5t+

+4a3
4a5t− 4a2

1a4a6t− 4a3
4a6t + 4a2

1a
2
2t

2 + 16a2
1a2a3t

2 + 4a2
1a

2
3t

2 + 8a2a3a
2
4t

2+

+4a2
3a

2
4t

2 + 8a1a2a4a5t
2 + 4a2

1a
2
5t

2 + 4a2
4a

2
5t

2 − 8a1a2a4a6t
2 − 8a1a3a4a6t

2−
−8a2

1a5a6t
2 − 16a2

4a5a6t
2 + 4a2

4a
2
6t

2 + 8a1a3a4c2t
2 − 8a2

1a5c2t
2 + 4a2

1c
2
2t

2−
−8a3a

2
4c6t

2 + 8a1a4a5c6t
2 − 8a1a4c2c6t

2 + 4a2
4c

2
6t

2 + 16a1a
2
2a3t

3 + 16a1a2a
2
3t

3+

+16a2a3a4a5t
3 − 16a2a3a4a6t

3 − 16a1a2a5a6t
3 − 16a1a3a5a6t

3 − 16a4a
2
5a6t

3+

+16a4a5a
2
6t

3 + 16a2
3a4c2t

3 − 16a1a3a5c2t
3 + 16a1a3c

2
2t

3 − 16a3a4a5c6t
3+

+16a1a
2
5c6t

3 − 16a3a4c2c6t
3 − 16a1a5c2c6t

3 + 16a4a5c
2
6t

3 + 16a2
2a

2
3t

4−
−32a2a3a5a6t

4 + 16a2
5a

2
6t

4 + 16a2
3c

2
2t

4 − 32a3a5c2c6t
4 + 16a2

5c
2
6t

4)(λ + 2tµ))/

(a2
1 + a2

4 + 2a1a2t− 2a4a6t + 2a4c2t + 2a1c6t− 4a6c2t
2 + 4a2c6t

2)2.

The explicit expression of q2 is obtained from the expression of q1 + 2tq2 and is more
complicate. Next, the expressions of p1, p2, p3, p4 are obtained from (2.3).

p1 = (a2
1 + a2

4)λ,

p1 + 2tp2 = (a2
1 + a2

4 + 2a1a2t + 2a1a3t + 2a4a5t− 2a4a6t + 4a2a3t
2 − 4a5a6t

2)2

(a2
1 + a2

4 + 4a1a2t + 4a4c2t + 4a2
2t

2 + 4c2
2t

2)(λ + 2tµ)/(a2
1 + a2

4 + 2a1a2t− 2a4a6t+

+2a4c2t + 2a1c6t− 4a6c2t
2 + 4a2c6t

2)2,

p1 + 2tp3 = (a2
1 + a2

4 + 2a1a2t + 2a1a3t + 2a4a5t− 2a4a6t + 4a2a3t
2 − 4a5a6t

2)2

(a2
1 + a2

4 − 4a4a6t + 4a1c6t + 4a2
6t

2 + 4c2
6t

2)(λ + 2tµ)/(a2
1 + a2

4 + 2a1a2t− 2a4a6t+

+2a4c2t + 2a1c6t− 4a6c2t
2 + 4a2c6t

2)2,

p4 = (−a2a4 + a1a6 + a1c2 + a4c6 + 2a2a6t + 2c2c6t)(a2
1 + a2

4 + 2a1a2t + 2a1a3t+

+2a4a5t− 2a4a6t + 4a2a3t
2 − 4a5a6t

2)2(λ + 2tµ))/(a2
1 + a2

4 + 2a1a2t− 2a4a6t+

+2a4c2t + 2a1c6t− 4a6c2t
2 + 4a2c6t

2)2.

If we assume that the almost hyper-complex structure defined by J1, J2 is integrable,
the expressions of the coefficients in G are simpler.

For the almost hyper-Hermitian manifold (TM, G, J1, J2) the fundamental 2-forms
φ1, φ2 are defined by

φ1(X, Y ) = G(X, J1Y ), φ2(X, Y ) = G(X, J2Y ),

where X, Y are vector fields on TM .
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Since we have a third almost complex structure J3 = J1J2 which is almost Her-
mitian with respect to G, we can consider a third 2-form φ3 defined by φ3(X,Y ) =
G(X,J3Y ), next we have the fundamental 4 form Ω, defined by

Ω = φ1 ∧ φ1 + φ2 ∧ φ2 + φ3 ∧ φ3.

The almost hyper-Hermitian manifold (TM,G, J1, J2) is hyper-Kählerian if the al-
most complex structures J1, J2 are parallel with respect to the Levi Civita connection
∇ defined by G, i.e. ∇J1 = 0,∇J2 = 0. Equivalently, (TM, G, J1, J2) is hyper-
Kählerian if and only if the almost hyper-complex structure (J1, J2) is integrable and
the 4-form Ω is closed, i.e. N1 = 0, N2 = 0, dΩ = 0. The condition for Ω to be
closed is equivalent to the conditions for φ1, φ2 (and hence for φ3 too) to be closed i.e.
dφ1 = 0, dφ2 = 0. In our case, it is more convenient to study the conditions under
which the 2-forms φ1, φ2 are closed.

The expressions of φ1, φ2 in adapted local frames are

φ1 = φ1,jkDyj ∧ dxk, φ2 = φ2,jkDyj ∧ dxk,

where
Dyj = dyj + Γj

i0dxi,

φ1,jk = G(∂j , J1δk) = HjhJ1H
h
k = −J1V

h
j Ghk,

φ2,jk = G(∂j , J2δk) = HjhJ2H
h
k = −J2V

h
j Ghk.

Replacing the expressions of Hjh and J1H
h
k , J2H

h
k , we find the following expressions

φ1,jk = a1q1gjk + a4q1Jjk + (a2q1 + a1q2 + a4q4 + 2a2q2t + 2a5q4t)gj0gk0+

+(a6q1 − a4q2 + a1q4 + 2a6q2t + 2a3q4t)gj0Jk0+

+(a5q1 + a4q3 + a1q4 + 2a5q3t + 2a2q4t)Jj0gk0+

+(−a3q1 − a1q3 + a4q4 − 2a3q3t− 2a6q4t)Jj0Jk0,

φ2,jk = a4q1gjk − a1q1Jjk + (c2q1 + c4q2 − a14q4 + 2c2q2t + 2c5q4t)gj0gk0+

+(c6q1 + a1q2 + a4q4 + 2c6q2t + 2c3q4t)gj0Jk0+

+(c5q1 − a1q3 + a4q4 + 2c5q3t + 2c2q4t)Jj0gk0+

+(−c3q1 − a4q3 − a1q4 − 2c3q3t− 2c6q4t)Jj0Jk0.

The final expressions of φ1, φ2 are obtained by replacing the values of q1, q2, q3, q4

obtained from (2.5), then the values of c3, c5, obtained in Theorem 3. We get for
φ1,jk an expression of the type

φ1,jk = α1gjk + α2Jjk + α3Jjk + α4J0jg0k + α5g0jJ0k + α6J0jJ0k,

where α1, α2, α3, α4, α5, α6 are functions of t, expressed with the help of the coeffi-
cients a1, a2, a3, a4, a5, a6, c2, c6. A similar expression is obtained for φ2,jk.

Now we shall compute the expression of dφ1 by using the following formulas

dαr = α′rg0iDyi, r = 1, 2, 3, 4, 5, 6, dgjk = (Γh
ijghk + Γh

ikgjh)dxi,
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dg0j = dgj0 = gjiDyi + g0hΓh
jidxi, dJjk = (Γh

ijJhk + Γh
ikJjh)dxi,

dJj0 = −dJ0j = Jh0Γh
jidxi + JjiDyi, dDyh = Γh

ijDyi ∧ dxj +
1
2
Rh

0ijdxi ∧ dxj .

We get the cancellation of all terms containing dxi ∧Dyj ∧ dxk in the expression
of dφ1. Next the terms containing dxi ∧ dxj ∧ dxk are

1
6
(φ1,hkRh

0ij + φ1,hiR
h
0jk + φ1,hjR

h
0ki)dxi ∧ dxj ∧ dxk.

From the vanishing of this term and under the assumption that the base manifold
(M, g, J) has constant holomorphic sectional curvature 4c, we get that the factors λ, µ
are related by

(2.6) λ = −
(

a2
1 + a2

4

c
+ 2t

)
µ.

Finally, assuming that this relation as, well as the integrability conditions for the
almost hyper-complex structure defined by J1, J2 are fulfilled, we get that α5 = α6 = 0
and the expression of dφ1 becomes

dφ1 = (α′1g0igjk + α′2g0iJjk + α3g0jgki + α4g0jJik)Dyi ∧Dyj ∧ dxk,

where the coefficients α1, α2, α3, α4 are given by

(2.7)

α1 = a1λ, α2 = a4λ,

α3 =
λ(−a2

1a
′
1 + a′1a

2
4 − 2a1a4a

′
4 + 2a1c− 2a′1ct)

a2
1 + a2

4 − 2ct
,

α4 =
λ(−2a1a

′
1a4 + a2

1a
′
4 − a′4a

2
4 + 2a4c− 2a′4ct)

a2
1 + a2

4 − 2ct
.

Doing the necessary alternation in the relation dφ1 = 0, we get the equations

α′1 = α3, α′2 = α4.

Then, after some simple computations, we obtain that the coefficients λ, µ are given
by

λ =
k

a2
1 + a2

4 − 2ct
, µ =

−ck

(a2
1 + a2

4)2 − 4c2t2
,

where k is a constant.
Under the same assumptions that the relation (2.6) is true and that the integrabil-

ity conditions for the almost hyper-complex structure defined by J1, J2 are fulfilled,
we get the following expression expression for the 2-form φ2

φ2 = (α2gjk − α1Jjk + α4g0jg0k − α3g0jJ0k)Dyj ∧ dxk.

If dφ1 = 0 we have that dφ2 = 0 too, so that the structure (G, J1, J2) on TM becomes
Kählerian. We write down the explicit expressions of the coefficients involved in the
expressions of (G, J1, J2). First of all, from the integrability condition N1 = 0, we get

(2.8) a2 =
a1(a1a

′
1 + a4a

′
4 − c)

a2
1 + a2

4 − 2a1a′1t− 2a4a′4t
, a3 =

a′1a
2
4 − a1a4a

′
4 + a1c− 2a′1ct

a2
1 + a2

4 − 2a1a′1t− 2a4a′4t
,
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a5 =
−a1a

′
1a4 + a2

1a
′
4 + a4c− 2a′4ct

a2
1 + a2

4 − 2a1a′1t− 2a4a′4t
, a6 =

−a4(a1a
′
1 + a4a

′
4 − c)

a2
1 + a2

4 − 2a1a′1t− 2a4a′4t
.

The values of c2, c3, c5, c6 are given by (1.12). Next we have

(2.9) p1 =
k(a2

1 + a2
4)

a2
1 + a2

4 − 2ct
, p2 = p3 =

ck

a2
1 + a2

4 − 2ct
, p4 = 0,

q1 = λ =
k

a2
1 + a2

4 − 2ct
, q3 = µ =

−ck

(a2
1 + a2

4)2 − 4c2t2
, q4 =

k(a′1a4 − a1a
′
4)

(a2
1 + a2

4)2 − 4c2t2
.

The expression of q2 is quite complicate and can be obtained from (2.5). Hence we
may state

Theorem 5. Consider the almost hyper-Hermitian structure (G, J1, J2) defined
as above on the tangent bundle TM of the Kählerian manifold M . This structure
is hyper-Kählerian if and only if the almost complex structures J1, J2 are integrable
(hence the Proposition 4 and the relations (1.9), (1.10), (1.11), (1.12) are fulfilled)
and and the relations (2.6), (2.7), (2.8), (2.9) are fulfilled by the hyper-Hermitian
metric G.

The case where a4 = 0

We shall study a special case when a4 = 0. In this case we shall obtain some much
more simple formulas and results and many of them are related to those obtained in
[19], [20]. However, our parametrization is quite different.

Since the integrability conditions for the almost complex structure J1 we get that
the condition a4 = 0 implies the conditions a5 = 0, a6 = 0. We are interested in
the integrable case, so that we shall assume from the beginning a4 = a5 = a6 = 0.
According to the result obtained in Proposition 2, the tensor field J1 defines almost
complex structure on TM if and only if

(2.10)
{

b1 = 1
a1

, b2 = − a2
a1(a1+2a2t) , b3 = − a3

a1(a1+2a3t) ,

b4 = 0, b5 = 0, b6 = 0.

he integrability condition for J1 gives

(2.11) a2 =
a1a

′
1 − c

a1 − 2a′1t
, a3 =

c

a1
.

Next, from (1.5), (1.6), the Theorem 3 and the integrability conditions for J2, we get

(2.12)





c1 = 0, c2 = 0, c3 = 0, c4 = −a1, c5 = −c
a1

, c6 = a1a′1−c
a1−2a′1t ,

d1 = 0, d2 = 0, d3 = 0, d4 = 1
a1

, d5 = c−a1a′1
a1(a2

1−2ct)
, d6 = c

a1(a2
1+2ct).

Finally, in the case where (TM, G, J1, J2) is hyper-Kähler, we have

(2.13)





p1 = ka2
1

a2
1−2ct

, p2 = ck
a2
1−2ct

, p3 = ck
a2
1−2ct

, p4 = 0,

q1 = k
a2
1−2ct

, q1 + 2q2t = k(a1−2a′1t)2(a2
1+2ct)

(a2
1−2ct)3

, q3 = −ck
a4
1−4c2t2

, q4 = 0.
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Hence we may state

Theorem 6. In the case where a4 = 0, the almost hyper-Hermitian structure
(G, J1, J2) defined on the tangent bundle TM becomes hyper-Kählerian if the condi-
tions (2.10)-(2.13) are fulfilled.

References

[1] L. Bejan, V. Oproiu, Tangent bundles of quasi-constant holomorphic sectional
curvatures, Balkan J. Geom. Appl. 11, 1 (2006), 11-22.

[2] I. Burdujan, Clifford-Kahler manifolds, Balkan J. Geom. Appl., 13, 2 (2008),
12-23.
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Iaşi Branch of the Romanian Academy, România.
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