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Abstract. The aim of the paper is to prove that T#M, the tangent
space of order k > 1 of a manifold M, is diffeomorphic with T} M, the
tangent space of k'—velocities, and also with (Tkl) "M , the cotangent space
of k'-covelocities, via suitable Lagrangians. One prove also that a
hyperregular Lagrangian of first order on M can give rise to such
diffeomorphisms.
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1 Introduction

Let M be a smooth manifold (all the objects considered in the paper are supposed
to be of class C*°). For every k € N one can associate with M the differentiable
manifolds T*M, T+ M, TklM and (Tkl)* M, in a functorial manner.

First, T*M is the tangent space of order k, T°M = M, T'M = TM (see
[4, 7). Then T*M can be considered as a locally trivial bundle T*M =5 Ti M
for every j = 0,k — 1. The dual counterpart of T*M, as considered in [8, 12], is
TF*M = T*F='M x5 T*M, the cotangent space of order k, where xj; denotes the
fibered products of bundles over the base M. For a Lagrangian of order k on M,
L :TFM — R, the dual counterpart definition proposed in [12] is the affine Hamil-
tonian h : TEMT — T**M: h is a section of the affine one-dimensional affine bundle
TR Mt B TR AL, where THFIM — T*=1M is the affine dual of the affine bundle
TEM ™5t TR Hyperregular Lagrangians and affine Hamiltonians are naturally
related by Legendre transformations.

The manifold T} M comes from the Whitney sum T}M = TM &---&TM
(k times); since T}M can be identified with the manifold J}(R*, M) of the
kl-velocities of M, it is called the tangent space of k'-velocities of M (see [5, 9]).
The dual (T})" M =T*M &---&T*M (k times) is the space of k'-covelocities of M
(see also [5, 9]).

A class of Lagrangians of order k, called co-reducible Lagrangians of order k,
gives rise to a diffeomorphism of 7#*M and (Tkl)* M (Theorem 1). A co-reducible
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Lagrangian induces a Hamiltonian H on (T kl)* M. If H is hyperregular one say that
L is co-hyperreducible.

An example is given by the lift of a hyperregular Lagrangian of first order L to a
Lagrangian L of order k, constructed in Proposition 4, that is co-hyperreducible. The
Lagrangian L gives rise also to a diffeomorphism of T*M and T} M (Proposition 2).

We use local coordinates as in [7], but in spite of their local forms, the main objects
are global ones.

2 The main results and constructions

A semispray of order k is a section S : TFM — T**'M of the affine bundle
m  TFHM — TFM. Since TF'M C TT*M (in fact THT1M is an affine
subbundle of the tangent bundle of TT*M), then S can be regarded as well as a
vector field on T*M. The local form of S is

(x7y(1))?y(k))_> ('r’y(l)7"7y(k)7S($7y(1)7'?y(k)));

viewed as a vector field,
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Let us denote by TE=LIM = T*='M x5 TM: more general, if 0 < r < k, then
THE=T"M =TT M X TkliTM7 where T°M = M =T} M.

Proposition 1. If S : TF"'M — T*M is a semispray of order k — 1, then there
is a diffeomorphism ® : TFM — TF~VIM; more general, if 0 < r < k — 1 and
S . e=IN — TM, o = r+ 1,k are semisprays (of order aw — 1), then there
is a diffeomorphism ®") . TKM — T™F="M. In the particular case r = 1, if
S@) . oI N TM, o = 2,k are semisprays, then there is a diffeomorphism
®W . TFM — THF1 = TIM.

Proof. If S : TK=1M — T*M is a semispray having the local form
i i c—1)iy S (. i —1)i Q0 i c—1)i
(l‘7y(1)7"'7y(k 1))_)($’y(1)7"'7y(k 1)7S(k) (m7y(1)""7y(k 1) ))’
then the diffeomorphism ® : TFM — T*~11M is given by
(xi’y(l)i,“.’y(k)i> N (xi7y(1)i7.“,y(k—l)i’y(k)i _ S(k)i)_
For 0 <7 < k, then ®) : T*M — T™*=" M is given by
(x27 y(1)747 R 7y(k)l) (bl) (x,L? y(l)l? A 7y(r)i7 y(r+1)z - S(r+1)2(xl’ y(l)’L? A 7y(’r‘)i)7 crt
YW Gy (i (i (k=1)i)).

In the particular case r = 1, the diffeomorphism &™) : T*M — T M is given by (7,
i N S i i if 0 i i i
y Wiy B (o, gy @i )y gk O
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We say that a diffeomorphism ® : T*M — TLM is a semi-spray type diffeomor-
phism if it has the form ® = ®1) as above.

There is a semispray of order k& > 1 canonically associated with a k-order
Lagrangian L (see, for example, [7, 2]), given by a section S : TFM — T+ M
that in local coordinates has the form (z?,y(M7, ... y(*)7) 5, (zf,yMi ...y,
Si(xt,yMi, ... y*)I)), where

1 oL oL
i ij (k) _
(k+1)S" = 2g <dT (ay(’“)j) 3y(k1)j)

(k) _ (l)ii (2)i
dy” =y Oz +2 By (i

is the Tulczyjew local operator (it is not a global vector field, but called a vector
pseudofield in [12]).

and

(Byi___ 2
+-+(k+ 1y G

Proposition 2. Let L : TM — R be a hyperregular Lagrangian (of first order). Then
there is a semi-spray type diffeomorphism ® : TFM — TIM canonically associated
with L.

Proof. Let us consider a regular Lagrangian of first order L : TM — R and its
canonical semispray S : TM — T?M.
Using local coordinates, (z,y" = yM?) — (2%, y(V? 287 (27, y(D7)), where

o ; 1 .. 9%L oL 1 .. oL oL
i (1) _ T Vp_ Y= Y= _ L (1) Y&
Sl y)) = 797 (y 5oy axi) 1 (dT <6y<1>ﬂ'> M’) '

, S , D N
Denoting by 22 = 42t — §¥(27 y(1D7) we have 22 = %2(2)1.
xZ
It follows that the association (z,y(M? y2?) — (7,57 2(2)%) defines a global
diffeomorphism T?M — TM xp TM = T4M of T>M with the tangent space of
21-velocities on M.
The above construction can be given for any higher order £ > 1. Finally one can

consider the k-Lagrangian L®*) : T* M — R having the local form

So, one construct inductively a semi-spray type diffeomorphism TFM — TIM =
TM xpp -+ X TM (k times) of T*M with the tangent space of k!-velocities on M,
k > 1. Notice that this diffeomorphism has the local form

(xi7y(1)i7 . ,y(k)i) . (xi’y(l)ivz(Q)i7 . ,z(’“)i),

where 2(0)? = (@)t _ g(@)i(gd o) gle=1)i) q =2k, O

Notice that in particular the Lagrangian L can be a Finslerian if it is 2-homogeneous,
or it is possible that L comes from a Riemannian metric if it is quadratic in velocities.

Ifeq, ..., ek are real numbers, £; # 0, ¢ = 1, k, one can consider also a k-Lagrangian
L™ - T*)M — R having the local form

L) (g Mt @1 B0y — o) L2y M) 4 eaL(a?, 2P0 + - 4 e L(2?, 2F7);
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using the coordinates (¢, y(M?, 227 | 2(K)¥) on TFM, it is easy to see that L(F) a
Lagrangian in the multisymplectic sense (see [4, 7]). More general, one can prove the
following result.

Proposition 3. Let {Lo}, 77, Lo : TM — R be hyperregular Lagrangians of order
k € N*. Then there is a semi-spray type diffeomorphism ® : T*M — T,iM canonically
associated with {La},_1

Proof. The diffeomorphism ® can be given using Proposition 1; one can construct
inductively the Lagrangians {L(®}__17 by formula

L(a) ((ti, y(l)i’ y(2)i’ o ’y(a)i) _ Ll(xi’ y(l)i) + L2($i, Z(2)z) NI La(xi, Z(a)i)’

where z(¥)? are constructed successively as in Proposition 2, using (2). O

According to [12] an affine Hamiltonian of order k on M is a differentiable map

h: T M — T’“MJr such that ITo h =1~ where II : TkMt — Tk*M. Thus h

has the local form

h(lL’ y(l)l s 7y(k71)ivpi) = (‘xia y(l)iv cee ,y(kil)i,pi, 7H0(xia y(l)iv cee ,y(kfl)i,]?i))'

The local functions Hy change according to the rules

i’ i’ i ' i —1)i Lok i\ 0’
Hyay 7y S0 pu) = Hoal,y @y 0 p) 2T (00 oo
It is easy to see that one has aH‘f oL %;IO + IF(k Y (yE=1i")  Thus there is a map

H : T**M — TFM, given in local coordinates by

, 0Hy

H(IZ7 y(1)27 M) y(kil)l’p ) (:17 y(l)Z M 7y(k 1 K apl

—— (2’ y ™y ),
called the co-Legendre map of the affine Hamiltonian h. We say also that h is reg-
ular if ‘H is a local diffeomorphism and h is hiperregular if H is a global diffeomor-

. . O*H)  _ 9xV 91 9%H, ij _ 02Hy - .
phism. Since Dby — O DaT Dpidpy it follows that h* = piop; 1S @ symmetric
2-contravariant d-tensor, which is non-degenerate iff h is regular. There exists a real

function H : T¥*M — R defined by the formula

1y OH,
H(a'y Wy i) =pig = S — H,.
Pi

We call H the pseudo-energy of h.

Let L : T*"M — R be a hyperregular k-Lagrangian. The Legendre map
L : TFM — T* M is a diffeomorphism and there is an affine Hamiltonian h
defined using L, as follows. Let

(xiﬂy(l)iv s 7y(k_1)i»pi) - (xi7y(1)iv cee 7y(k_1)ia Hi(xiuy(l)iv ce 7y(k_1)i7pi))

be the local form of the inverse of £. Then the local function Hy on T%* M, defined
by the formula

Ho(a',y My D0 py) = pyHI — L2,y oy D HY)
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gives a global affine Hamiltonian of order k on M. Let us consider the real function
on T**M: H((,k) = op, — Hy.
Pj
We denote £ = L) and we define L,_1) : TFM — TH=D*M x5 T*M using
the formula

Wi (k=) (i (b—zy OHG
2 7 —1)2 _ 7 7 —z)t .
E(kfl)(xvy ERENC) ,pi)—(fﬂ,y s Y 7W’pl)'

We denote p; = ppy; and Ho = Hék). We suppose that L_;) is a diffemor-
1

phism, then 5(7@171) has the local form (2¢, y™Mi, ..., y*®=2% po 1y D) g
(af, yWi, oy R (gt Dy B2 g 1y pai), Pakyi)- We consider

k— i i —2)i i (k) i —2)i 178
H(g 1)(33 5y(1) ?."'7y.(k _2) 7p('k71)i7p(k)i) .: p(k*l)jH _H(g )(33 7y(1) 7"'ay(k 2) 7H )
Pkyi), where H® = Hi(at,yMWi . y*=2i po 1y payi). Consider the real function

~ (k—1)
on T*=1*M 5, T* M given by HS" ™ = g;fg —p(k-1)j (=1,
"

Following the above idea, we give a procedure that descends the degree of the
higher order Hamiltonians.

Inductively, let us suppose that the diffeomorphisms L, .., L(x—q) have been
constructed for 1 < ¢ < k — 1. We have that

Lipgy : TFIM xpr (T*M)? — TED* N iy (T*M)T = TEDM 5 (T*M)TH,
where (T*M)? =T*M@---®T*M, (q times) is a diffemorphism, given by the formula

E(qu) ('ria y(l)ia ceey y(k_q)iap(qu#»l)h ce ap(k)z) = ('/I"ia y(l)i7 s 7y(k_q_1)i7
OH i (1)i —q)i
W(lq)i(x 7y(1) P ay(k 7 yP(k—q+1)is - - - ap(k)i)ap(k—q+1)i7 s ap(k)l)
Let E(_klfq) having the local form

-1
ok

—a—1)i ) (i i
h=a—1) ,p(k—q)ia"'vp(k)i) —* (iL' 7y(1) 7"'ay(

(xlﬂ y(l)lV A 7y( kiqil)l?

Hi(2?, yMi y(k_q_l)i,p(k,q)i, s DR)E) s Pll—g41)is - - D(k)i)-
We consider
Héqufl)(xi’ y(l)i, o 7y(k—q—1)i7p(k7q)i, o ’p(k)i)
K== D qyis - P()i)
—gék_qﬂ)(xiv yWi L ylkma= e Hi,p(quﬂ)i, e D))

= p(k—q)jHj(Iia y(l)ia cee 7y(

If k—q—1 > 1, we consider the real function on T*+=9=D* M x5, (T* M)+ given by
~ (k—q—1)
Hék_q_l) = %p(k_q_l)jf H(()k_q_l) and we define L, 1) : TF=9=IM % s
(T*M)* — Th=a=D*pf sy (T M) = T2 N[« (T*M)9+2 using the
formula ‘C(k—q—l)(xl7 9(1)17 ceey y(k—q—1)7,7 Pk—q)isr- > p(k)l) = (xz’ 9(1)17 ceey y(k_q_2)17

Fr(k—q—1)
oH

m(xi7 yi L, ylhmambs

s Pk=q)ir- > P(R)i)s P(k—q)is--+» P(k)i)- We suppose



Lagrangians and higher order tangent spaces 147

that L,_,—1) is a diffeomorphism. If k — ¢ —1 = 1, we skip f]él) and we define
directly

Lay: TM xpr (T*M)*™1 — T*M x5 (T*M)*1 = (T* M)*
by the formula

i OHp"

(1)i7p(2)i7 s ap(k:)i) = (ZE l 8y(1)Z (xiv Yy

(€]

Lay(z'y L P@)is - P(k)i)s P(2)is - -+ P(k)i)-

We suppose also that L) is a diffeomorphism and its inverse has the local form
Lay(Pyir---» pwyi) = (H'(Pyis- -+ Pk)i)s P@yis - - - P(iyi)-  We define the multi-
Hamiltonian H® : (T*M)* — R using the formula

HO(payis - pekyi) = pyiH Pyis - - - Poyi) — H(gl)(Hi7p(2)i7 e D))
If we suppose that all the applications Ly, ..., £ are diffeomorphisms, we say that
the Lagrangian L of order k is co-reducible. Let us denote W = L1y 0---0 L. The
above construction can be synthesized in the following main result.
Theorem 1. If the Lagrangian L of order k > 1 is co-reducible, then there is a
diffeomorphism T* M LA (Tkl)* M = TM* xp -+ Xy TM* (k times) such that
L=H9ow.

We prove below that the lift (2.1) gives rise to a completely regular Lagrangian of
order k.

Proposition 4. Let L : TM — R be a hyperregular Lagrangian and L*®) : TFM — R
be the Lagrangian given by (2.1). Then L*) is a co-reducible Lagrangian of order k.

Proof. The inverse of the Legendre map is given by

i.e.,
oLk)
Oy

(27, y M7y BT g (g T ’y(kfl)jmj) = pi.
One has
Hék)(mi’ yWi . yR=Di )
= pi(Hi(27,p;) + SF) — L) (g8 Wi (=D [ri | giy

— pi(Hi(Ij,pj) + Si) o L(Ii,y(l)i)(xi,Hi) . L(Ii,z(kfl)i) o L(Q:i,Hi),
and thus
oH™ . . 9HI AL, , . OHI .
— ="+ 5 ; — — (2", H* =H"+ 5"
Opi MR Op; Oy (@', ) Op; *
One also has
N , , oH™ _
HD (@ y iy i ) = 8;1%—H¥)

= L(a',y™M") + Lz*, 2P7) + -+ L, 25700 + L, Hi (27, paiy)-

Then g(()l)(l’i,p(l)i, s Peyi) = Lt H (27, pay;)) + -+ + L', H(27, pry;)). O
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Notice that all the above constructions and properties can be adapted to the case

when the differentiable Lagrangian L : T*M — R is replaced by a differentiable
Lagrangian L : T*M — R, where T*M = T*M\{0} is T*M without the image of
the ,,null” section y(®? =0, a =0, k.
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