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Abstract. We give an elementary proof that, if the order of a horizontal s-
form on a jet bundle does not increase under the operation of the horizontal
differential, then the coefficients of the form must be polynomial of degree
s in the highest-order coordinates.
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1 Introduction

Let m : E — M be a fibred manifold with dim M = m and dim E = m + n, and
let J*7 denote the k-th order jet manifold for 0 < k < oo with projections Th,0
JEr — E, 7« JPr — M. Taking a fibred chart U on E with coordinates (z°,u®),
where 1 <4 < m and 1 < a < n, the corresponding coordinates on w,;é(U) c Jkr
are(z’,ug), where I € N™ is a multi-index with length 0 < || < k.

A differential form ¢ on J¥7 is said to be horizontal if it vanishes when contracted
with any vector field vertical over M. If f is a function on J*r, the total derivative
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is a function on ”1;-&1 oU) C J**t1w. The horizontal differential dj,, given in coordi-
nates by
daf

dnf = —
nf=5

is an operation on functions which incorporates the total derivatives and gives rise to
a well-defined global horizontal 1-form on J**'7. The operation may be extended to
act on horizontal s-forms ¢ by using using dpd = —ddj,. Note that some authors use
the notation D, D; instead of dj,, d;, and use the terminology ‘formal derivative’ rather
than ‘total derivative’; indeed the coordinate formula for d; is simply a restatement
of the chain rule in jet coordinates. A coordinate-free definition of d; may be found
in, for example, [2].

dx',
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It is clear from the coordinate representation that total derivatives commute, so
that d? = 0 and that

0— Q?LJkW — Q}LJkJrlﬂ' — QiJkJrZW — ... QZLJIHmW

is a sequence. We are therefore led to ask about its exactness.

In the case £ = oo it is known that the sequence is locally exact, and proofs
of this are often given by embedding the sequence in a bicomplex known as the
variational bicomplex. The proofs are not, however, straightforward. For instance,
a proof given by Tulczyjew [3] involves intricate calculations, whereas one given (in
a slightly different context) by Vinogradov [4] uses the heavyweight machinary of
spectral sequences. More information about the various approaches to this problem
may be found in a recent comprehensive review article by Vitolo [5].

The answer is different when £ is finite: in general,

0— WJkr - QF JH e — Q2 g2 —

is not exact, even locally, and the same is true for

WE — QZ+1J17T — QZ+2J27T — ...
To see a simple example, take M = R2, E = R? x R? and let

¢ = (uju3 — udui) da' A da? € Q3 J
then dn¢ = 0, but if ¢ € Q} F then dp1 is linear in the first derivative coordinates
and so cannot equal ¢. The difficulty arises because d;, does not always increase the
order of a horizontal form, even modulo dj-exact forms. We are therefore led to define
a horizontal form ¢ as having stable order if o(dp$) < o(¢), where o(¢) denotes the
order of ¢ € Qf J*r and is defined by saying that o(¢) = | < k if ¢ is projectable to
J'r but not to J!~ 1.

It is straightforward to find a sufficient condition for a horizontal form to have

stable order. Suppose the s-form ¢ is given locally as a sum of terms
(1) o . dnuf! /\---/\dhu‘,‘: Adxlatt A A dats

aragigis

cQglgy1is

where 0 < ¢ < s, || = --- = |I,| = k—1 and o(&a’f“'lq ) < k —1; then
o(¢) = k and o(dr¢) < k, so that ¢ has stable order. We may write ¢ as
d)il‘..isdx“ A Adzts s

and we may express the sufficient condition in terms of these coefficient functions by
stating that ¢ has stable order when the ¢;,...,, are polynomial of degree s in the
coordinates u% with |J| = k, and can be expressed as sums of determinants of these
coordinates.

These latter conditions are also necessary: if o(¢) = k and o(dp¢) < k then it may
be shown that the coefficients ¢;,...;. are polynomials of degree s in the highest-order
coordinates, and ¢ is is given locally as a sum of terms of the form (1) above. The
matter is discussed in Anderson’s monograph [1], but the proof of necessity is, again,
not straightforward.

In this note we give an elementary proof of the first necessary condition, about
the polynomial structure of the coefficient functions:
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Theorem. If the horizontal s-form ¢ has order k (where 0 < s < m), and if the
order of dp¢ does not exceed k, then the coefficients of ¢ must be polynomial of degree
not exceeding s in the k-th order derivative coordinates.

The method we shall adopt is quite straightforward: we shall show that, when-
ever the coefficients are differentiated s 4 1 times, the result always equals zero. To
demonstrate this, we shall make repeated use of a lemma which is derived directly
from the order stability of ¢.

2 The fundamental lemma

If a function f has order k£ then necessarily the 1-form dj f has order k£ 4+ 1. Order
stability applies only to s-forms ¢ with s > 1; it arises from skew-symmetry, so
that the derivatives of the coefficients of an order-stable form ¢ with respect to the
coordinates of order k must satisfy a family of linear constraints.

Fundamental Lemma. Let ¢ € Qj with s < m, and let the coordinate representa-
tion of ¢ be
b = Giyigoidx™ Ndax2 A Ndats
where the coefficient functions ¢ i,...., are skew-symmetric in all their indices. Sup-
pose dp¢p € QZH satisfies
o(dn¢) < o(¢) =k.

Then, for distinct indices i1,12,...,1s,J and any multi-index J with |J| =k,

8¢7L17;2"'7157 Z a¢i1i2"'iq71jiq+l"'is

b b
auJ 1<q<s auJ—liq—i-lj

J(iq)>0

Proof. Write ‘ . .
dh¢ = (dj¢i1i2...is)dxj Adz™ A ... Ndx*s

so that, taking account of skew-symmetry, the coefficients of d¢ satisfy

S
0 {(dj¢i1i2--~is - Zdiq¢z‘1iz~»-iqu‘z‘qﬂ---is} <k
q=1

thus, writing out the total derivatives explicitly,

S
8¢i1i2”-i5 8¢i1i2"‘iq—ljir]+l"'is
o — — E -
OxJ Oxta
q=1

S
. e OPiyig- i, 4o OPiigwiy_1jiqiris <k
> | ut, T = D ub, a Sk
i Ouf = a oug

1<k

Choose any coordinate uf’, where |J| = k, and any index j, and differentiate the
coefficients of dp¢ with respect to the (k + 1)-th order coordinate ubJJrlj. The first
term in the sum over I gives a non-zero result only when I = J, and each of the other
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terms in that sum gives a non-zero result only when I +1; = J + 1, occuring when
J(ig) >0 and I = J —1;, + 1;. The terms outside that sum do not contribute. But
overall the result must be zero, and so we obtain
OPiyiy.i, OPiin-wviy 1 jigiaie
out Z ous =0
J 1<q<s J=1ig+1;
J(iq)>0

as required. 0
Corollary. If J(iq) =0 for 1 < g < s then

a(biliz...is

=0.
ous

3 An example

To see how the Fundamental Lemma can be used to prove that the coefficient functions
must be polynomial, it is helpful to take an example. If the conditions of the Corollary
are satisfied for a given function and for one of the coordinates with respect to which
we are differentiating, then the result follows immediately. In general this will not be
the case, and so the approach is to use the lemma to manipulate the derivatives until,
eventually, the corollary can be applied to all the terms. We consider here the case
m = 3, and take a 3rd-order 2-form

gf) = ¢12d.§61 A dx2 + ¢23d1‘2 A dl‘d + ¢31d£l?3 A d.Tl .

The third derivative of ¢15 with respect to u‘(ll%), ul(’222) and “5133) then satisfies
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where at each step we have applied the lemma to all the non-zero terms from the
preceding step. In this case there are eight steps to the process. For each term we
have a choice of three derivatives to which we might apply the lemma; the key, of
course, is to make a good choice and to avoid going round in circles. In the proof of
the theorem, we deescribe how to make this choice.

4 Proof of the theorem
We now return to the general case, and show that

1
O Piigi,
b ay as
Ou’y Qug! - - 8u15

for any indices 41,...,is and any coordinate functions u‘}ll, e ,u‘}j,u{’], where the
multi-indices Iy,...,Is,J all have length k. The strategy of the proof will be to
develop an algorithm for applying the Fundamental Lemma to the initial term and
then to all subsequent terms, and to develop a mechanism showing that, eventually,
all the terms must vanish.

Start by choosing an index j & {i1,...,is}. If at any given step there is a term

s+1
[ ¢i1i2"'is
b ay . as
3uj aufl auls

where I, I, ..., I,,J are multi-indices of length k and where the index j does not
appear in the function being differentiated, then use the Fundamental Lemma to
replace this by

Z as+1¢i1i2"'iq71jiq+l"'is
b ar ., as *
15050 g0, 4, OV o OUE
J(iq)>0
In the resulting non-zero terms, the value of .J (7) has increased by one, whereas the
other multi-indices are unchanged. On the other hand, if at any given step there is a

term 1
S
0 ¢i112~~z‘p,1j11p+1mis

b out - Ouls
6uj8u1~1 (“)uls

where the index j does appear in the function being differentiated, then again use the
Fundamental Lemma to replace this by

1
iy,

oul. ou --- Jut” s Ou®
Jh Tp—1;+14, I,

s+l o . .. )

N O Diig g vipiqinip1fips1-is
Z b ai ., ap - as
6uj 8u1~1 1o} 3u18

Uu ~
1<q<s, q#p I,—1i,+14,

Ip(iq)>0

where the separate first term is taken as zero if if fp () = 0. In the resulting non-zero
terms, the value of I,,(i,) has now increased by one, whereas the other multi-indices
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are unchanged. Note that in both cases the resulting terms have one of the two
structures described, and so the procedure may be continued indefinitely.
Now associate with each non-zero term

1 s+14. . o, .

85+ ¢i1i2<-~i5 or 8 ¢1112'”Z})71]/LP+1”'15
b o S s b [ S a
Ju 7 ou i ou i ou 7 ou i Ju i

the natural number

Initially N > 0, and at each stage of the algorithm the value of N in each new non-
zero term has increased by 1. Thus, after applying the algorithm k(s41)+1 times, we
have N > k(s + 1) for each non-zero term. But J(j) < |J| = k and I,,(i,) < |I,| = k,
giving N < k(s +1). It follows that, after applying the algorithm k(s 4 1) 4+ 1 times,
all the terms must be zero. ]
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