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Abstract. Many science and engineering problems can be formulated as
optimization problems that are governed by m-flow type PDEs (multi-
time evolution systems) and by cost functionals expressed as curvilinear
integrals or multiple integrals. Though these functionals are mathemat-
ically equivalent on m-intervals, their meaning is totally different in real
life problems. Our paper discusses the m-flow type PDE-constrained op-
timization problems of Mayer, Lagrange and Bolza, focussing on their
equivalence. Section 1 formulates the Mayer problem with a terminal
cost functional. In Section 2, the idea of equivalence is motivated for the
Mayer, Lagrange and Bolza problems, based on curvilinear integral cost,
using the curvilinear primitive. In Section 3, similar results are proved
for the Mayer, Lagrange and Bolza problems, based on multiple integral
cost, using both the curvilinear primitive and the hyperbolic primitive.
Section 4 shows that curvilinear integral functionals and multiple integral
functionals are equivalent on m-intervals.
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1 Multitime optimal control problem of Mayer

We introduce the states
x = (xi) ∈ Rn, i = 1, ..., n,

the controls
u = (ua) ∈ Rq, a = 1, ..., q,

the hyperparallelipiped Ω0t0 ⊂ Rm
+ fixed by the diagonal opposite points 0, t0 ∈ Rm

+ ,
the evolution parameter (multitime)

s = (sα) ∈ Ω0t0 , α = 1, ...,m

and a controlled multitime completely integrable evolution (m-flow)

(1.1)
∂xi

∂sα
(s) = Xi

α(s, x(s), u(s)), x(0) = x0,
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where Xα(s, x(s), u(s)) = (Xi
α(s, x(s), u(s))) are C1 vector fields satisfying the com-

plete integrability conditions (m-flow type problem), i.e., DβXα = DαXβ (Dα is the
total derivative operator) or

(
∂Xα

∂ua
δγ
β −

∂Xβ

∂ua
δγ
α

)
∂ua

∂sγ
= [Xα, Xβ ] +

∂Xβ

∂sα
− ∂Xα

∂sβ
,

where [Xα, Xβ ] means the bracket of vector fields. The hypothesis on the vector fields
Xα selects the set of all admissible controls (satisfying the complete integrability
conditions)

U =
{

u : Rm
+ → U

∣∣ DβXα = DαXβ

}

and the admissible states.
The multitime problem of Mayer is to determine a control function u(·), in an

appropriate set of functions, to maximize the terminal cost functional

(1.2) P (u(·)) = g(t0, x(t0)),

where g : Ω0t0 × Rn → R is a smooth function. Mayer problems arise when there is
a particular emphasis on the final multitime t0 and/or final state x(t0), with m-flow
constraints.

The multidimensional evolution of m-flow type is characteristic for differential
geometry optimal problems, but also for engineering or economic optimal problems.

2 Multitime optimal control problems of Lagrange
and Bolza based on the curvilinear integral action

2.1 Multitime optimal control problem of Lagrange with
curvilinear integral action

In the multitime problem of Lagrange with curvilinear integral action, the cost func-
tional takes the form

(2.1) P (u(·)) =
∫

Γ0t0

Lα(s, x(s), u(s))dsα,

where the running cost Lα(s, x(s), u(s))dsα is a nonautonomous closed (completely
integrable) Lagrangian 1-form , i.e., it satisfies DβLα = DαLβ (Dα is the total deriva-
tive operator) or

(
∂Lα

∂ua
δγ
β −

∂Lβ

∂ua
δγ
α

)
∂ua

∂sγ
= Xi

α

∂Lβ

∂xi
−Xi

β

∂Lα

∂xi
+

∂Lβ

∂sα
− ∂Lα

∂sβ

and Γ0t0 is an arbitrary C1 curve joining the diagonal opposite points 0 = (0, ..., 0)
and t0 = (t10, ..., t

m
0 ) in Ω0t0 . A problem of Lagrange reflects the situation where the

cost accumulates with multitime as a ”mechanical work”.
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2.2 Multitime optimal control problem of Bolza with
sum action

A multitime problem of Bolza with sum action is a combination of problems of Mayer
and Lagrange as the cost takes the form

(2.2) P (u(·)) =
∫

Γ0t0

Lα(s, x(s), u(s))dsα + g(t0, x(t0)),

with g : Ω0t0 ×Rn → R a smooth function and Lα(s, x(s), u(s))dsα a closed Lagrange
1-form. The Bolza problems arise when there is a cumulative cost which increases
during the control action but special emphasis is placed on the situation at the final
multitime t0.

2.3 Equivalence of the previous problems via
curvilinear primitive

Mayer, Lagrange and Bolza multitime problems are all equivalent in that each of them
can be converted to any other one via the curvilinear primitive. First, the Lagrange
and Mayer problems are special cases of Bolza problems. Second, a Bolza problem
can be transformed into a Mayer problem by introducing an extra component y for
the state vector, which satisfies the PDEs (curvilinear primitive)

∂y

∂tα
(t) = Lα(t, x(t), u(t)), y(0) = 0.

Using this extra variable, the cost takes the Mayer form

P (u(·)) = g(t0, x(t0)) + y(t0).

Third, a Mayer problem can be converted into a Lagrange problem by rewriting the
cost via the curvilinear primitive

P (u(·)) = g(t0, x(t0)) = g(0, x(0)) +
∫

Γ0t0

Dαg(s, x(s))dsα

= g(0, x(0)) +
∫

Γ0t0

(
∂g

∂sα
(s, x(s)) +

∂g

∂xi
(s, x(s))Xi

α(s, x(s), u(s))
)

dsα.

Since the point x(0) is fixed, the problem is to maximize the curvilinear integral cost

P (u(·)) =
∫

Γ0t0

Lα(s, x(s), u(s))dsα,

where

Lα(s, x(s), u(s)) =
∂g

∂sα
(s, x(s)) +

∂g

∂xi
(s, x(s))Xi

α(s, x(s), u(s)),

which is a problem of Lagrange based on the curvilinear integral action.
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3 Multitime optimal control problems Lagrange and
Bolza based on the multiple integral action

3.1 Multitime optimal control problem of Lagrange with
multiple integral action

Sometimes the running cost functional in a multitime Lagrange problem appears as a
multiple integral

(3.1) Q(u(·)) =
∫

Ω0t0

L(s, x(s), u(s))ds,

where ds = ds1 · · · dsm is the volume element in Rm
+ and the Lagrangian L : Ω0,t0 ×

Rn ×Rq → R is a smooth function. A problem of Lagrange is adapted to a situation
where the cost accumulates with multitime as a ”volume”.

3.2 Multitime optimal control problem of Bolza with
sum action

A multitime problem of Bolza with sum action is a combination of problems of Mayer
and Lagrange as the cost functional takes the form of a sum

(3.2) Q(u(·)) =
∫

Ω0t0

L(s, x(s), u(s))ds + g(t0, x(t0)),

with L(s, x(s), u(s)) and g : Ω0t0 × Rn → R smooth functions. Bolza problems arise
when there is a cumulative cost which increases during the control action but special
emphasis is placed on the situation at the final multitime t0.

3.3 Equivalence of the previous problems via
curvilinear primitive

Mayer, Lagrange and Bolza multitime problems are all equivalent in that each of them
can be converted to any other one via the curvilinear primitive. First, the Lagrange
and Mayer problems are special cases of Bolza problems. Second, a Bolza problem
can be transformed into a Mayer problem by adding a new variable y for the state
vector, which satisfies the PDEs (curvilinear primitive)

∂y

∂tα
(t) = Yα(t), y(0) = 0, t ∈ Ω0t0 ,

where the functions Yα are defined as follows: introduce Ωβ
0t as the face β = 1, ...,m

of the hyperparallelipiped Ω0t ⊂ Ω0t0 , use dsβ = i ∂

∂sβ
ds as the interior product or

contraction of the volume form ds with ∂
∂sβ and define

Yβ(t) =
1
m

∫

Ωβ
0t

L(s, x(s), u(s))|sβ=tβ dsβ ,
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where x(·) = (xi(·)) solves the initial m-flow. Of course,

y(t0) = y(0) +
∫

Γ0t0

Yα(t)dtα = y(0) +
∫

Ω0t0

L(t, x(t), u(t))dt.

Consequently, using the extravariable y, the cost takes the Mayer form

Q(u(·)) = y(t0) + g(t0, x(t0)).

Third, a Mayer problem can be converted into a Lagrange problem, based on a curvi-
linear integral action, by rewriting the cost as

P (u(·)) = g(t0, x(t0)) = g(0, x(0)) +
∫

Γ0t0

Dαg(s, x(s))dsα

= g(0, x(0)) +
∫

Γ0t0

(
∂g

∂sα
(s, x(s)) +

∂g

∂xi
(s, x(s))Xi

α(s, x(s), u(s))
)

dsα.

To pass from the curvilinear integral action to the multiple integral action, we use
the Cm−1 Lagrangian 1-form

Lα =
∂g

∂sα
(s, x(s)) +

∂g

∂xi
(s, x(s))Xi

α(s, x(s), u(s))

and we define the Lagrangian

L(s, x(s), u(s)) =
∂m−1Lα

∂s1... ˆ∂sα...∂sm
,

where the symbol ”ˆ” posed over ∂sα designates that ∂sα is omitted. Since the point
x(0) is fixed, the problem is to maximize the cost

Q(u(·)) =
∫

Ω0t0

L(s, x(s), u(s))ds,

which is a Lagrange problem based on a multiple integral action.

3.4 Equivalence of the previous problems via
hyperbolic primitive

Mayer, Lagrange and Bolza multitime problems are all equivalent in that each of them
can be converted to any other one via the hyperbolic primitive. First, the Lagrange
and Mayer problems are special cases of Bolza problems. Second, a Bolza problem
can be transformed into a Mayer problem by adding a new variable y for the state
vector, which satisfies the PDEs (hyperbolic primitive)

∂my

∂t1...∂tm
(t) = L(t, x(t), u(t)), y(0) = 0, t ∈ Ω0,t0 ,

where x(·) = (xi(·)) solves the initial m-flow. Of course,

y(t0) = BT +
∫

Ω0t0

L(t, x(t, u(t))dt,
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where BT means boundary terms. Consequently, using the extravariable y, the cost
takes the Mayer form

Q(u(·)) = y(t0) + g(t0, x(t0)).

Third, a Mayer problem can be converted into a Lagrange problem by rewriting the
cost as a hyperbolic primitive

P (u(·)) = g(t0, x(t0)) = g(0, x(0)) + BT+

+
∫

Ω0t0

D1...mg(s, x(s))|m-flowds.

where BT means boundary terms. Since the point x(0) is fixed, the problem is to
maximize the cost

Q(u(·)) =
∫

Ω0t0

L(s, x(s), u(s))ds,

where
L(s, x(s), u(s)) = D1...mg(s, x(s))|m-flow,

which is a Lagrange problem based on a multiple integral action.

4 Equivalence between multiple and curvilinear
integral functionals

A multitime evolution system can be used as a constraint in a problem of extremizing
a multitime cost functional. On the other hand, the multitime cost functionals can
be introduced at least in two ways:

- either using a path independent curvilinear integral (”mechanical work”),

P (u(·)) =
∫

Γ0t0

Lβ(t, x(t), u(t))dtβ + g(t0, x(t0)),

where Γ0t0 is an arbitrary C1 curve joining the points 0 and t0, the running cost
ω = Lβ(x(t), u(t))dtβ is an autonomous closed (completely integrable) Lagrangian
1-form, and g is the terminal cost;

- or using a multiple integral (”volume”),

Q(u(·)) =
∫

Ω0t0

L(t, x(t), u(t))dt + g(t0, x(t0)),

where the running cost L(t, x(t), u(t)) is an autonomous continuous Lagrangian, and
g(t0, x(t0)) is the terminal cost.

Let us show that the functional P is equivalent to the functional Q. This means
that in a multitime optimal control problem we can choose the appropriate functional
based on geometrical-physical meaning or other criteria.

Theorem 7 [15]. The multiple integral

I(t0) =
∫

Ω0t0

L(t, x(t), u(t))dt,
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with L as continuous function, is equivalent to the curvilinear integral

J(t0) =
∫

Γ0t0

Lβ(t, x(t), u(t))dtβ ,

where ω = Lβ(x(t), u(t))dtβ is a closed (completely integrable) Lagrangian 1-form and
the functions Lβ have total derivatives of the form

Dα, Dαβ (α < β), ..., D1...α̂...m,

where the symbol ”ˆ” posed over α designates that α is omitted.

5 Conclusion

It is well-known that the single-time optimal control problems of Mayer, Lagrange
and Bolza are equivalent [1]-[3].

The results in the previous sections show that the multitime optimal control prob-
lems of Mayer, Lagrange and Bolza, formulated in the sense of the papers [4]-[18],
are equivalent via the curvilinear primitive or via the hyperbolic primitive. Their
treatment in mathematics, in the continuous context, has had a slow evolution, the
obstruction being the complete integrability conditions. In fact, the multitime maxi-
mum principle was established only recently [5], [13], [16]-[18], requiring a geometrical
language.
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[13] C. Udrişte, L. Matei, Lagrange-Hamilton theories (in Romanian), Monographs
and Textbooks 8, Geometry Balkan Press, Bucharest, 2008.
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[16] C. Udrişte, Simplified multitime maximum principle, Balkan J. Geom. Appl. 14,
1 (2009), 102-119.
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