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1 Introduction

The well-known classical Aleksandrov-Fenchel inequality can be stated as follows.

The Aleksandrov-Fenchel inequality Let K1, . . . , Kn be compact convex sets
in Rn and 0 ≤ r ≤ n. Then

V (K1, . . . ,Kn)r ≥
r∏

j=1

V (Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . ,Kn). (1.1)

The quantities V (K1, . . . ,Kn) and V (Kj , . . . ,Kj︸ ︷︷ ︸
r

,Kr+1, . . . ,Kn) are mixed vol-

umes. Proofs of inequality (1.1), established by A. D. Aleksandrov in 1937, can be
found in [14]. The equality conditions are unknown even today. An analog of the
Aleksandrov-Fenchel inequality for mixed discriminants (see [14]) was used by G. P.
Egorychev in 1981 to solve the van der Waerden conjecture concerning the perma-
nent of a doubly stochastic matrix. See [16, Chaper 6] for a wealth of information
and references.

In 1975, Lutwak established the dual Aleksandrov-Fenchel inequality as follows
(see [10]).

∗Balkan Journal of Geometry and Its Applications, Vol.15, No.1, 2010, pp. 163-172.
c© Balkan Society of Geometers, Geometry Balkan Press 2010.



164 Chang-jian Zhao and Mihály Bencze

The dual Aleksandrov-Fenchel inequality. If K1, . . . , Kn are star bodies
and 0 ≤ r ≤ n. Then

Ṽ (K1, . . . ,Kn)r ≤
r∏

j=1

Ṽ (Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . ,Kn), (1.2)

with equality if and only if K1, . . . , Kn are dilates of each other.

The quantities Ṽ (K1, . . . , Kn) and Ṽ (Kj , . . . ,Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn) are dual mixed

volumes.
In 1993, Lutwak established the Aleksandrov-Fenchel inequality for mixed projec-

tion bodies as follows (see [11]).

The Aleksandrov-Fenchel inequality for mixed projection bodies.
If K1, . . . , Kn−1 are convex bodies, then for 0 ≤ r ≤ n− 1

V (Π(K1, . . . ,Kn−1))r ≥
r∏

j=1

V (Π(Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn−1)), (1.3)

with equality if and only if K1, . . . , Kn−1 are homothetic.
The quantities V (Π(K1, . . . , Kn−1)) and V (Π(Kj , . . . , Kj︸ ︷︷ ︸

r

,Kr+1, . . . , Kn−1)) de-

note volumes of mixed projection bodies.
In 2004, Leng and Zhao et al established the polar form of Aleksandrov-Fenchel

inequality (1.3) as follows (see [9]).

The Aleksandrov-Fenchel inequality for polars mixed projection
bodies. If K1, . . . , Kn−1 ∈ Kn, then for 0 ≤ r ≤ n− 1

V (Π∗(K1, . . . , Kn−1))r ≤
r∏

j=1

V (Π∗(Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn−1)). (1.4)

The equality condition in (1.4) are, in general, unknown.
The quantities V (Π∗(K1, . . . , Kn−1)) and V (Π∗(Kj , . . . , Kj︸ ︷︷ ︸

r

,Kr+1, . . . , Kn−1)) de-

note volumes of polars mixed projection bodies.
On the other hand, in 2004, Leng [8] established Minkowski inequality and Brunn-

Minkowski inequality for the volume differences, respectively as follows

Theorem 1.1. Suppose that K and D are compact domains, L is a convex
body, and D ⊂ K,D′ ⊂ L,D′ is a homothetic copy of D. Then

(V1(K, L)− V1(D, D′))n ≥ Dv(K,D)n−1Dv(L,D′), (1.5)

with equality if and only if K and L are homothetic and (V (K), V (D)) = µ(V (L), V (D′)),
where µ is a constant. Moreover, Dv(K,D) denotes the volume difference function of
compact domains K and D (see [8]).
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Theorem 1.2. If K, L, and D be convex bodies in Rn, D ⊂ K, D′ is a
homothetic copy of D. Then

Dwi(K + L,D + D′)1/(n−i) ≥ Dwi(K, D)1/(n−i) + Dwi(L,D′)1/(n−i), (1.6)

with equality for 0 ≤ i < n − 1 if and only if K and L are homothetic
and (Wi(K),Wi(D)) = µ(Wi(L),Wi(D′)), where µ is a constant. Moreover,
Dwi(K,D) denotes the i-Quermassintegral difference function of convex bodies K
and D (see section 2).

According to the classical theory in convex bodies geometry, on getting (1.5) and
(1.6), a natural conjecture is whether The Aleksandrov-Fenchel inequality for the
volume differences exists? More precisely, an open problem was posed as follows (see
[20], also see [18]).

Open Problem 1. Let Ki(i = 1, 2, . . . , n), 0 ≤ r ≤ n, and Di(i = 1, 2, . . . , n)
be convex bodies in Rn, Di ⊂ Ki and Di(i = 1, 2, . . . , n) be homothetic copies of each
other, respectively. Does the following inequality hold ?

Dv((K1, . . . , Kn), (D1, . . . , Dn))r

≥
r∏

j=1

Dv((Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn), (Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn)).

Where, V (K1, . . . , Kn)−V (D1, . . . , Dn) is written as Dv((K1, . . . , Kn), (D1, . . . , Dn)),
denoting the volume difference function of mixed bodies (K1, . . . , Kn) and (D1, . . . , Dn).

Recently, Zhao and Cheung [20] extended (1.5) and (1.6) from general volume
difference to p-Quermassintegral difference and established the Minkowski inequality
and Brunn-Minkowski inequality for p-Quermassintegral difference function. In par-
ticular, in [20], they also extended (1.5) and (1.6) from general convex bodies to mixed
projection bodies and get the Minkowski inequality and Brunn-Minkowski inequality
for Quermassintegral difference function of mixed projection bodies as follows.

Theorem 1.3. ([20]) Let K,L, and D be convex bodies in Rn, D ⊂ K, D′ be a
homothetic copy of D, then for 0 ≤ j < n− 2,

Dwi(Πj(K + L), Πj(D + D′))1/(n−i)(n−j−1)

≥ Dwi(ΠjK, ΠjD)1/(n−i)(n−j−1) + Dwi(ΠjL,ΠjD
′)1/(n−i)(n−j−1), (1.7)

with equality for 0 ≤ i < n − 1 if and only if K and L are homothetic and
(Wi(K),Wi(D)) = µ(Wi(L),Wi(D′)), where µ is a constant.

Theorem 1.4. ([20]) Let K, L, and D be convex bodies in Rn, D ⊂ K, D′ be a
homothetic copy of D, and 0 ≤ j < n− 1, then

Dwi(Πj(K, L), Πj(D, D′))n−1 ≥ Dwi(ΠK, ΠD)n−j−1Dwi(ΠL, ΠD′)j , (1.8)

with equality for 0 ≤ i < n− 1 if and only if K and L are homothetic.
Similarly, with inequalities (1.7) and (1.8), another natural conjecture is whether

the Aleksandrov-Fenchel inequality for volume differences of mixed projection bodies
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exists? More precisely, another open problem was posed as follows (see [20], see also
[18]).

Open Problem 2. Let Ki(i = 1, . . . , n − 1), 0 ≤ r ≤ n − 1, and Di(i =
1, . . . , n−1) be convex bodies in Rn, Di ⊂ Ki and Di(i = 1, 2, . . . , n−1) are homothetic
copies of each other, respectively. Does the following inequality hold ?

Dv(Π(K1, . . . , Kn−1), Π(D1, . . . , Dn−1))r

≥
r∏

j=1

Dv(Π(Kj , . . . ,Kj︸ ︷︷ ︸
r

, Kr+1, . . . ,Kn−1),Π(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn−1)),

where, V (Π(K1, . . . ,Kn−1))− V (Π(D1, . . . , Dn−1)) is written as
Dv(Π(K1, . . . , Kn−1), Π(D1, . . . , Dn−1)), denoting the volume difference function of
mixed prosection bodies Π(K1, . . . ,Kn−1) and Π(D1, . . . , Dn−1).

In this paper, we shall get positive solutions of these two open problems. As
applications we prove some interrelated results.

Please see the next section for above interrelated notations, definitions and back-
ground materials.

2 Definitions and preliminaries

The setting for this paper is n-dimensional Euclidean space Rn(n > 2). Let Kn denote
the set of convex bodies (compact, convex subsets with non-empty interiors) in Rn.
We reserve the letter u for unit vectors, and the letter B for the unit ball centered at
the origin. The surface of B is Sn−1. For u ∈ Sn−1, let Eu denote the hyperplane,
through the origin, that is orthogonal to u. We will use Ku to denote the image of
K under an orthogonal projection onto the hyperplane Eu.

Let h(K, ·) : Sn−1 → R, denote the support function of K ∈ Kn; i.e. h(K, u) =
Max{u · x : x ∈ K}, u ∈ Sn−1, where u · x denotes the usual inner product of
u and x in Rn. Let δ denote the Hausdorff metric on Kn, i.e., for K, L ∈ Kn,
δ(K, L) = |hK − hL|∞, where | · |∞ denotes the sup-norm on the space of continuous
functions, C(Sn−1).

2.1. Mixed volumes. If Ki ∈ Kn(i = 1, 2, . . . , r) and λi(i = 1, 2, . . . , r)are non-
negative real numbers, then of fundamental importance is the fact that the volume of
λ1K1+· · ·+λrKr is a homogeneous polynomial in λi given by V (λ1K1+· · ·+λrKr) =∑

i1,...,in
λi1 · · ·λinVi1...in , where the sum is taken over all n-tuples (i1, . . . , in) of pos-

itive integers not exceeding r. The coefficient Vi1...in depends only on the bodies
Ki1 , . . . , Kin , and is uniquely determined by above identity. It is called the mixed
volume of Ki1 , . . . , Kin , and is written as V (Ki1 , . . . , Kin). If K1 = . . . = Kn−i = K
and Kn−i+1 = . . . = Kn = L, then the mixed volume V (K1, . . . ,Kn) is usually
written as Vi(K,L). If L = B, then Vi(K,B) is the ith projection measure (Quer-
massintegral) of K and is written as Wi(K).
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2.2. Dual mixed volumes. Now we introduce a vector addition on Rn, which
we call radial addition, as follows. If x1, . . . , xr ∈ Rn, then x1+̃ . . . +̃xr is defined to
be the usual vector sum of x1, . . . , xr, provided x1, . . . , xr all lie in a 1-dimensional
subspace of Rn, and as the zero vector otherwise.

If K1, . . . , Kr ∈ ϕn and λ1, . . . , λr ∈ R, then the radial Minkowski linear combi-
nation, λ1K1+̃ · · · +̃λrKr, is defined by λ1K1+̃ · · · +̃λrKr = {λ1x1+̃ · · · +̃λrxr : xi ∈
Ki}. For K1, . . . , Kr ∈ ϕn and λ1, . . . , λr ≥ 0, the volume of the radial Minkowski lin-
ear combination λ1K1+̃ . . . +̃λrKr is a homogeneous nth-degree polynomial in the λi,
V (λ1K1+̃ . . . +̃λrKr) =

∑
Ṽi1,...,in

λi1 · · ·λin
, where the sum is taken over all n-tuples

(i1, . . . , in) whose entries are positive integers not exceeding r. If we require the coef-
ficients of the polynomial in above identity to be symmetric in their arguments, then
they are uniquely determined. The coefficient Ṽi1,...,in is nonnegative and depends
only on the bodies Ki1 , . . . , Kin

. It is written as Ṽ (Ki1 , . . . , Kin
) and is called the dual

mixed volume of Ki1 , . . . ,Kin
. If K1 = · · · = Kn−i = K, Kn−i+1 = · · · = Kn = L,

the dual mixed volume is written as Ṽi(K, L). The dual mixed volume Ṽi(K, B) is
written as W̃i(K).

2.3. Mixed projection bodies and its polars. If K is a convex body that contains
the origin in its interior, we define the polar body K∗ of K, by K∗ := {x ∈ Rn|x · y ≤
1, y ∈ K}. If K is a convex body that contains the origin in its interior, then we also
associate with K its radial function ρ(K, ·) defined on Sn−1 by ρ(K, u) = Max{λ ≥
0 : λu ∈ K}, u ∈ Rn. We easily get that ρ(K, u)−1 = h(K∗, u).

If Ki(i = 1, 2, . . . , n − 1) ∈ Kn, then the mixed projection body of Ki(i =
1, 2, . . . , n− 1) is denoted by Π(K1, . . . ,Kn−1), and whose support function is given,
for u ∈ Sn−1, by h(Π(K1, . . . , Kn−1), u) = v(Ku

1 , . . . , Ku
n−1).

We use Π∗(K1, . . . ,Kn−1) to denote the polar body of Π(K1, . . . , Kn−1), and call
it polar of mixed projection body of Ki(i = 1, 2, . . . , n−1). If K1 = · · · = Kn−1−i = K
and Kn−i = · · · = Kn−1 = L, then Π(K1, . . . , Kn−1) will be written as Πi(K, L). If
L = B, then Πi(K,B) is called the ith projection body of K and is denoted by ΠiK.
We write Π0K as ΠK. We will simply write Π∗i K and Π∗K rather than (ΠiK)∗ and
(ΠK)∗, respectively.

2.4. Quermassintegral difference function. In 2004, i-Quermassintegral difference
function of convex bodies was defined by Leng [8] as

Dwi(K, D) = Wi(K)−Wi(D), (K,D ∈ Kn, D ⊂ K and 0 ≤ i ≤ n− 1).

In [8], Leng established a Minkowski inequality for volume difference and a Brunn-
Minkowski inequality for i-Quermassintegral difference function.

3 Lemmas

Lemma 3.1. ([11]) If K1, . . . ,Kn−1 are convex bodies, then for 0 ≤ i ≤ n − 1,
0 ≤ r ≤ n− 1,

Wi(Π(K1, . . . , Kn−1))r ≥
r∏

j=1

Wi(Π(Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn−1)), (3.1)

with equality if and only if K1, . . . , Kn−1 are homothetic.
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Lemma 3.2. ([7])) If a1, b1, . . . , l1 ≥ 0, a2, b2, . . . , l2 > 0 and α + β + · · ·+ λ = 1,
then

aα
1 bβ

1 · · · lλ1 + aα
2 bβ

2 · · · lλ2 ≤ (a1 + a2)α(b1 + b2)β · · · (l1 + l2)λ,

with equality if and only if a1/a2 = b1/b2 = · · · = l1/l2.

Obviously, a special case of the Lemma 3.2 is the following result.
For ai ≥ 0, bi > 0(i = 1, 2, . . . , n), we have

(
n∏

i=1

(ai + bi)

)1/n

≥
(

n∏

i=1

ai

)1/n

+

(
n∏

i=1

bi

)1/n

, (3.2)

with equality if and only if a1/b1 = a2/b2 = · · · = an/bn.
Further, Taking ci = ai + bi in (3.2), we obtain that for ci > 0, bi > 0 and ci > bi,

then

(
n∏

i=1

(ci − bi)

)1/n

≤
(

n∏

i=1

ci

)1/n

−
(

n∏

i=1

bi

)1/n

, (3.3)

with equality if and only if c1/b1 = c2/b2 = · · · = cn/bn.

Lemma 3.3. ([22]) If K1, . . . ,Kn−1 are convex bodies, 0 ≤ i ≤ n−1, 0 < j < n−1
and 0 ≤ r ≤ n− 1, then

W̃i(Π∗(K1, . . . , Kn−1))r ≤
r∏

j=1

W̃i(Π∗(Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn−1)). (3.4)

4 Positive solutions of two open problems

In this section, the following Aleksandrov-Fenchel inequality for volume differences
of mixed projection bodies (the open problem 2) stated in the introduction will be
established.

Let Ki(i = 1, . . . , n−1) and Di(i = 1, . . . , n−1) be convex bodies in Rn, Di ⊂ Ki

and Di(i = 1, . . . , n − 1) be homothetic copies of each other, respectively. Then for
0 ≤ r ≤ n− 1,

Dv(Π(K1, . . . , Kn−1), Π(D1, . . . , Dn−1))r

≥
r∏

j=1

Dv(Π(Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn),Π(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn)).

This is just the special case i = 0 of the following

Theorem 1. Let Km(m = 1, . . . , n − 1) and Dm(m = 1, . . . , n − 1) be convex
bodies in Rn, Dm ⊂ Km and Dm(m = 1, . . . , n − 1) be homothetic copies of each
other, respectively. Then for 0 ≤ r ≤ n− 1, 0 ≤ i < n,

Dwi(Π(K1, . . . ,Kn−1),Π(D1, . . . , Dn−1))r
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≥
r∏

j=1

Dwi(Π(Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn−1), Π(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn−1)), (4.1)

with equality if and only if Km(m = 1, 2, . . . , n− 1) are homothetic to each other.
Proof. From Lemma 3.1, for K1, . . . , Kn−1 being convex bodies and 0 ≤ r ≤ n,

we have

Wi(Π(K1, . . . , Kn−1))r ≥
r∏

j=1

Wi(Π(Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn−1)), (4.2)

with equality if and only if Km(m = 1, 2, . . . , n− 1) are homothetic to each other.
On the other hand, in view of Dm(m = 1, . . . , n−1) are homothetic copies of each

other, we obtain that

Wi(Π(D1, . . . , Dn−1))r =
r∏

j=1

Wi(Π(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn−1)).

Hence
Wi(Π(K1, . . . , Kn−1))−Wi(Π(D1, . . . , Dn−1))

≥




r∏
j=1

Wi(Π(Kj , . . . , Kj︸ ︷︷ ︸
r

, Kr+1, . . . , Kn−1))




1/r

−




r∏
j=1

Wi(Π(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn−1))




1/r

.

By using the inequality (3.3) in right side of above inequality, we obtain

Dwi(Π(K1, . . . , Kn−1), Π(D1, . . . , Dn−1))

≥



r∏

j=1

(Wi(Π(Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn−1))−Wi(Π(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn−1)))




1/r

=
r∏

j=1

Dwi(Π(Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . ,Kn−1),Π(Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn−1))1/r.

(4.3)
In view of the equality conditions of inequality (4.2) and inequality (4.3), it follows

that the equality holds if and only if Km(m = 1, 2, . . . , n− 1) are homothetic of each
other. This completes the proof of Theorem 1. ¤

Remark 4.1. (i) Let Dm(m = 1, 2, . . . , n − 1) be single points in (4.1), then
(4.1) changes to

Wi(Π(K1, . . . , Kn−1))r ≥
r∏

j=1

Wi(Π(Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn−1)), (4.4)

with equality if and only if Km(m = 1, 2, . . . , n−1) are homothetic of each other. This
is just the well-known Aleksandrov-Fenchel inequality for mixed projection bodies
which was given by Lutwak [11].
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(ii) In (4.1), taking r = n− 1, we obtain

Dwi(Π(K1, . . . ,Kn−1),Π(D1, . . . , Dn−1))n−1 ≥
n−1∏

j=1

Dwi(ΠKj ,ΠDj). (4.5)

Let D1, D2, . . . , Dn−1 be single points and take K1 = · · · = Kn−j−1 = K, Kn−j =
· · · = Kn−1 = L in (4.5), then (4.5) changes to

Wi(Πj(K, L)n−1 ≥ Wi(ΠK)n−j−1Wi(ΠL)j , (4.6)

with equality if and only if K and L are homothetic. This is just the well-known
Minkowski inequality for mixed projection bodies which was given by Lutwak [11].

(iii) Taking i = 0, K1 = · · · = Kn−2 = K,Kn−1 = L,D1 = · · · = Dn−2 =
D, Dn−1 = D′ in (4.5), it becomes

(V (Π1(K,L))− V (Π1(D, D′)))n−1 ≥ Dv(ΠK, ΠD))n−2Dv(ΠL,ΠD′)).

This is just a mixed projection form of the following result which was given by
Leng [8]

(V1(K, L)− V1(D,D′))n ≥ Dv(K,D)n−1Dv(L,D′). (4.7)

Theorem 2. Let Ki(i = 1, 2, . . . , n) and Di(i = 1, 2, . . . , n) be convex bodies in
Rn, Di ⊂ Ki and Di(i = 1, 2, . . . , n) be homothetic copies of each other, respectively.
Then for 0 ≤ r ≤ n,

Dv((K1, . . . , Kn), (D1, . . . , Dn))r

≥
r∏

j=1

Dv((Kj , . . . ,Kj︸ ︷︷ ︸
r

,Kr+1, . . . ,Kn), (Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn)). (4.8)

Proof. From the classical Aleksandrov-Fenchel inequality, for K1, . . . ,Kn being
convex bodies and 0 ≤ r ≤ n, we have

V (K1, . . . ,Kn)r ≥
r∏

j=1

V (Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . ,Kn). (4.9)

In fact, the sufficient and necessary conditions of the equality in the Aleksandrov-
Fenchel inequality (4.9) are, in general, unknown. But the equality holds if K1, . . . , Kn

are homothetic. Hence, in view of Di(i = 1, . . . , n) are homothetic copies of each other,
we obtain

V (D1, . . . , Dn)r =
r∏

j=1

V (Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn). (4.10)

From (4.9) and (4.10), we have

V (K1, . . . , Kn)− V (D1, . . . , Dn)

≥



r∏

j=1

V (Kj , . . . ,Kj︸ ︷︷ ︸
r

,Kr+1, . . . ,Kn)




1/r

−



r∏

j=1

V (Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn)




1/r



The Aleksandrov-Fenchel type inequalities for volume differences 171

In view of inequality (3.3), we obtain

Dv((K1, . . . , Kn), (D1, . . . , Dn))

≥



r∏

j=1

(V (Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn)− V (Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn))




1/r

=
r∏

j=1

Dv((Kj , . . . , Kj︸ ︷︷ ︸
r

,Kr+1, . . . , Kn), (Dj , . . . , Dj︸ ︷︷ ︸
r

, Dr+1, . . . , Dn))1/r.

This completes the proof of Theorem 2. xBox

Remark 4.2. In (4.8), taking r = n, we obtain

Dv((K1, . . . , Kn), (D1, . . . , Dn))n ≥
n∏

j=1

Dv(Kj , Dj). (4.11)

Taking K1 = · · · = Kn−1 = K, Kn = L,D1 = · · · = Dn−1 = D, Dn = D′ in (4.11), it
becomes

(V1(K, L)− V1(D, D′))n ≥ Dv(K,D)n−1Dv(L,D′).

This is just the inequality (4.7).
On the other hand, let D and D′ be single points in (4.11), then (4.11) becomes the

classical Brunn-Minkowski inequality. For interrelated research about these classical
inequalities, one is directed to [1, 2, 3, 4, 5, 6, 12, 13, 15, 17, 19, 21] et al.

5 Conclusions

In the present paper we present the Aleksandrov-Fenchel type inequalities for volume
differences and Quermassintegral differences. These new results will be applied in the
area of convex geometry.
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