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Abstract. In this paper, we define a new projective invariant and call it
W̃ -curvature. We prove that a Finsler manifold with dimension n ≥ 3 is
of constant flag curvature if and only if its W̃ -curvature vanishes. Various
kinds of projectively flatness of Finsler metrics and their equivalency on
Riemannian metrics are also studied.
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1 Introduction

One of the fundamental problems in Finsler geometry is to study and characterize
Finsler metrics of constant flag curvature. The best well-known result towards this
question is due to Akbar-Zadeh, which classified compact Finsler manifolds with non-
positive constant flag curvature [3]. In a 25 year research, initiated by famous Yasuda-
Shimada’s theorem [16] and finished by Bao-Robless-Shen’s theorem [7], Randers
metrics of constant flag curvature have been classified.

On the other hand, there are some well-known projective invariants of Finsler
metrics namely, Douglas curvature [5][6][10], Weyl curvature, generalized Douglas -
Weyl curvature [4][13] and another projective invariant which is due to Akbar-Zadeh
[1]. In [21], Weyl introduces a projective invariant for Riemannian metrics. Then
Douglas extendes Weyl’s projective invariant to Finsler metrics [10]. Finsler metrics
with vanishing projective Weyl curvature are called Weyl metrics. In [18], Z. Szabó
proves that Weyl metrics are exactly Finsler metrics of scalar flag curvature.

In [3], Akbar-Zadeh introduces the non-Riemannian quantity H which is obtained
from the mean Berwald curvature by the covariant horizontal differentiation along
geodesics. This is a positively homogeneous scalar function of degree zero on the slit
tangent bundle, and recently has been studied [11][12]. Akbar-Zadeh proves that for
a Weyl manifold of dimension n ≥ 3 , the flag curvature is constant if and only if
H = 0. The natural question is: Is there any projectively invariant quantity which
characterizes Finsler metrics of constant flag curvature?
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In this paper, using Akbar-Zadeh’s method in [1], we define a new projective invari-
ant and call it W̃ -curvature (see the equation (3.14)). We show that the W̃ -curvature
is another candidate for characterizing Finsler metrics of constant flag curvature.
More precisely, we prove the following

Theorem 1.1. Let (M, F ) be a Finsler manifold with dimension n ≥ 3. Then F is
of constant flag curvature if and only if W̃ = 0.

By Akbar-Zadeh’s theorem and Theorem 1.1, we have the following

Corollary 1.1. Let (M,F ) be a Finsler manifold with dimension n ≥ 3. Suppose
that F is of scalar flag curvature. Then H = 0 if and only if W̃ = 0.

Throughout this paper, we use the Berwald connection on Finsler manifolds
[19][20]. The h- and v- covariant derivatives of a Finsler tensor field are denoted
by “ | ” and “, ” respectively.

2 Preliminaries

Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent space at
x ∈ M , and by TM = ∪x∈MTxM the tangent space of M . A Finsler metric on M is
a function F : TM → [0,∞) which has the following properties: (i) F is C∞ on TM0;
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM , and (iii) for
each y ∈ TxM , the following quadratic form gy on TxM is positive definite,

gy(u, v) :=
1
2

[
F 2(y + su + tv)

] |s,t=0, u, v ∈ TxM.

Given a Finsler manifold (M, F ), then a global vector field G is induced by F on
TM0, which in a standard coordinate (xi, yi) for TM0 is given by

G = yi ∂

∂xi
− 2Gi(x, y)

∂

∂yi
,

where Gi(x, y) are local functions on TM0 satisfying Gi(x, λy) = λ2Gi(x, y), for all
λ > 0. Functions Gi are given by

(2.1) Gi :=
1
4
gil{2∂gjl

∂xk
− ∂gjk

∂xl
}yjyk,

where gij is the vertical Hessian of F 2/2 and gij denotes its inverse. G is called
the associated spray to (M, F ). The projection of an integral curve of G is called
a geodesic in M . In local coordinates, a curve c(t) is a geodesic if and only if its
coordinates (ci(t)) satisfy c̈i + 2Gi(ċ) = 0 [14].

For a vector vi vertical and horizontal covariant derivative with respect to Berwald
connection are given by

vi
,k = ∂̇kvi, vi

|k = dkvi + Gi
jkvj ,

where dk = ∂k −Gm
k ∂̇m, ∂k = ∂

∂xk , ∂̇k = ∂
∂yk , Gi

k = ∂̇kGi and Gi
jk = ∂̇jG

i
k.
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In [1], Akbar-Zadeh cosideres a non-Riemannian quantity H which is obtained
from the mean Berwald curvature by the covariant horizontal differentiation along
geodesics. This is a positively homogeneous scalar function of degree zero on the slit
tangent bundle. The quantity H = Hijdxi⊗dxj is defined as the covariant derivative
of E along geodesics, where Eij = 1

2 ∂̇mGm
ij [12]. More precisely Hij := Eij|mym. In

local coordinates, we have

2Hij = ym ∂4Gk

∂yi∂yj∂yk∂xm
− 2Gm ∂4Gk

∂yi∂yj∂yk∂ym

− ∂Gm

∂yi

∂3Gk

∂yj∂yk∂ym
− ∂Gm

∂yj

∂4Gk

∂yi∂yk∂ym
.

The Riemannian curvature tensor of Berwald connection are given by

Ki
hjk = djG

i
hk + Gm

hkGi
mj − dkGi

hj + Gm
hjG

i
mk.

Let Ki
jk = Ki

0jk and Ki
k = Ki

0k. Then we have

Ki
jk =

1
3
{∂̇jK

i
k − ∂̇kKi

j}.

Then, the Riemann curvature operator of Berwald connection at y ∈ TxM is defined
by Ky = Ki

kdxk ⊗ ∂
∂xi |x : TxM → TxM , which is a family of linear maps on tangent

spaces. The flag curvature in Finsler geometry is a natural extension of the sectional
curvature in Riemannian geometry, which is first introduced by L. Berwald [8]. For a
flag P = span{y, u} ⊂ TxM with flagpole y, the flag curvature K = K(P, y) is defined
by

K(P, y) :=
gy(u,Ky(u))

gy(y, y)gy(u, u)− gy(y, u)2
.

When F is Riemannian, K = K(P ) is independent of y ∈ P , which is just the sectional
curvature of P in Riemannian geometry. We say that a Finsler metric F is of scalar
curvature if for any y ∈ TxM , the flag curvature K = K(x, y) is a scalar function on
the slit tangent space TM0. If K = constant, then F is said to be of constant flag
curvature.

The projective Weyl curvature is defined as follows

W i
jkl := Ki

jkl −
1

1− n2

{
− δi

j(K̃kl − K̃lk)− δi
kK̃jl + δi

lK̃jk − yi∂̇j(K̃kl − K̃lk)
}

where K̃jk := nKjk +Kkj +yr∂̇jKkr. As it is well known, a Finsler metric is of scalar
flag curvature if and only if W i

jkl = 0.

3 C-projective Weyl curvature

Let φ : Fn → F̄n be a diffeomorphism. We call φ a projective mapping if there exists
a positive homogeneous scalar function P (x, y) of degree one satisfying

Ḡi = Gi + Pyi.
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In this case, P is called the projective factor ([17]). Under a projective transformation
with projective factor P , the Riemannian curvature tensor of Berwald connection
change as follows

(3.1) K̄i
hjk = Ki

hjk + yi∂̇hQjk + δi
hQjk + δi

j ∂̇hQk − δi
k∂̇hQj ,

where Qi = diP − PPi and Qij = ∂̇iQj − ∂̇jQi. A projective transformation with
projective factor P is said to be C-projective if Qij = 0.

Let X be a projective vector field on a Finsler manifold (M, F ). Let the vector
field X in a local coordinate (xi) on M be written in the form X = Xi(x)∂i. Then
the complete lift of X is denoted by X̂ and locally defined by X̂ = Xi∂i + yj∂jX

i∂̇i.
Suppose that £X̂ stands for Lie derivative with respect to the complete lift of X.
Then we have

£X̂Gi = Pyi,

£X̂Gi
k = δi

kP + yiPk,

£X̂Gi
jk = δi

jPk + δi
kPj + yiPjk,

(3.2) £X̂Gi
jkl = δi

jPkl + δi
kPjl + δi

lPkj + yiPjkl,

(3.3) £X̂Ki
jkl = δi

j(Pl|k − Pk|l) + δi
lPj|k − δi

kPj|l + yi∂̇j(Pl|k − Pk|l).

Since Qij = Pi|j − Pj|i, we have

(3.4) £X̂Ki
jkl = δi

jQlk + δi
lPj|k − δi

kPj|l + yi∂̇jQlk.

We have

(3.5) ∂̇jPk|l = Pjk|l − PrG
r
jkl.

Contracting i and k in (3.4), we get

(3.6) £X̂Kjl = Pl|j − nPj|l + Pjl|sys.

Consequently

(3.7) £X̂(yr∂̇lKjr) = −(n + 1)Pjl|sys.

Hence

(3.8) Pjl|sys = − 1
n + 1

L(X̂)(yr∂̇lKjr),

and

(3.9) £X̂(Kjl +
1

n + 1
yr∂̇lKjr) = Pl|j − nPj|l,

(3.10) £X̂(Klj +
1

n + 1
yr∂̇jKlr) = Pj|l − nPl|j .
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Using (3.9) and (3.10), one can obtain

(3.11) Pj|l =
1

1− n2
£X̂

{
Klj +

1
n + 1

yr∂̇jKlr + nKjl +
n

n + 1
yr∂̇lKjr

}
.

If Qij = 0, then (3.4) reduces to the following

(3.12) £X̂Ki
jkl = δi

lPj|k − δi
kPj|l.

Using (3.11) and eliminating Pj|l from (3.12), we are led to the following tensor

W̃ i
jkl := Ki

jkl −
1

1− n2
δi
l

{
K̃jk +

n

n + 1
yr(∂̇kKjr − ∂̇jKkr)

}

+
1

1− n2
δi
k

{
K̃jl +

n

n + 1
yr(∂̇lKjr − ∂̇jKlr)

}
.(3.13)

Since yjyr∂̇kKjr = 0, if we put W̃ i
k := W̃ i

jkly
jyl, then we have

(3.14) W̃ i
k = Ki

k −
1

1− n2

{
yiK̃0k − δi

kK̃00

}
.

The tensor W̃ i
k is said to be C-projective Weyl curvature or W̃ -curvature. According

to the way we construct W̃ , it is easy to see that W̃ is C-projective invariant tensor. A
Finsler metric F is called C-projective Weyl metric if its C-projective Weyl-curvature
vanishes. First, we prove that the class of Weyl metrics contains the class of C-
projective Weyl metrics.

Theorem 3.1. Let F be a C-projective Weyl metric. Then F is a Weyl metric.

Proof. By assumption, we have the following

(3.15) Ki
k −

1
1− n2

{
yiK̃0k − δi

kK̃00

}
= 0.

Contracting (3.15) with yi implies that

(3.16) F 2K̃0k − ykK̃00 = 0.

Hence

(3.17) K̃0k = F−2ykK̃00.

Plugging (3.17) into (3.15), we get

(3.18) Ki
k =

1
1− n2

K̃00h
i
k,

which means that F is of scalar flag curvature. Hence, F is a Weyl metric. ¤



Finsler metrics of scalar flag curvature and projective invariants 95

4 Proof of Theorem 1.1

To prove Theorem 1.1, we need to find the W̃ -curvature of Weyl metrics.

Proposition 4.1. Let F be a Finsler metric of scalar flag curvature λ. Then W̃ -
curvature is given by

(4.1) W̃ i
k =

1
3
F 2yiλk,

where λk := ∂̇kλ.

Proof. By assumption, the Riemannian curvature of Berwald connection is in the
following form.

Ki
jkl = λ(δi

kgjl − δi
lgjk) + λjF (δi

kFl − δi
lFk) +

1
3
F 2(hi

kλjl − hi
lλjk)

+
1
3
λlF (2δi

kFj − 2δi
jFk − gjk`i)

− 1
3
Fλk(2δi

lFj − 2δi
jFl − gjl`

i).(4.2)

where λij = ∂̇jλi. Hence, we have

(4.3) Ki
k = λF 2hi

k.

Then, we get the following relations.

Kjl = (n− 1)(λgjl + FFlλj) +
n− 2

3
(F 2λjl + 2FFjλl),

K00 = λ(n− 1)F 2, K̃00 = λ(n2 − 1)F 2,

Kk0 = λ(n− 1)FFk +
2n− 1

3
F 2λk,

K0k = λ(n− 1)FFk +
n− 2

3
F 2λk,

K̃0k = (n2 − 1)(λFFk +
1
3
F 2λk).(4.4)

Plugging (4.3) and (4.4) into (3.14), we get the result. ¤

Lemma 4.1. Let (M, F ) be a C-projective Weyl manifold with dimension n ≥ 3.
Then F is of constant flag curvature.

Proof. By Theorem 3.1 and Proposition 4.1, we have

W̃ i
k =

1
3
F 2yiλk.

From assumption, we get λk = 0. It means that F is of isotropic flag curvature. The
result follows by Schur’s Lemma. ¤

Now, let us consider the case F being of constant flag curvature.
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Lemma 4.2. Let F be a Finsler metric of constant flag curvature K = λ. Then F
is C-projective Weyl metric.

Proof. If F is of constant flag curvature λ, then (4.2) reduces to the following

(4.5) Ki
jkl = λ(gjlδ

i
k − gjkδi

l ).

Hence

(4.6) Kjl = λ(1− n)gjl, K̃jk = λ(1− n2)gjl.

Plugging (4.6) into (3.13), we obtain W̃ i
jkl = 0 and consequently W̃ i

k = 0. ¤

5 Reduction in Riemannian manifolds

As mentioned before, in Finsler metrics Fn of scalar flag curvature with (n ≥ 3), we
have this equivalence W̃ = 0 if and only if H = 0. Observing C-projective invariancy
of W̃ -curvature, one can conjecture that H-curvature must be C-projective invariant
too. Here, we prove that this is true. By definition, Hij = Eij|sys. Under a projective
transformation with the projective factor P , we have the following relations:

Ēij = Eij +
n + 1

2
Pij ,

yld̄l = yldl − 2Pym∂̇m,

ĒmjḠ
m
i = EmjG

m
i + PEij +

n + 1
2

(PmjG
m
i + PPij).

Now, we can prove the following

Proposition 5.1. H-curvature is C-projective invariant.

Proof. Under a projective transformation, we have

H̄ij = Ēij|lyl

= yld̄lĒij − ĒmjḠ
m
i − ĒimḠm

j

= (yldlĒij − 2Pym∂̇mĒij)− ĒmjḠ
m
i − ĒimḠm

j

= yldlEij +
n + 1

2
yldlPij + 2PEij + (n + 1)PPij − ĒmjḠ

m
i − ĒimḠm

j

= yldlEij − EmjG
m
i − EimGm

j +
n + 1

2
(yldlPij − PmjG

m
i − PimGm

j )

= Hij +
n + 1

2
(yldlPij − PmjG

m
i − PimGm

j ).(5.1)

On the other hand, we have

yl∂̇iQjl = yldlPij − PmjG
m
i − yldjPil

= yldlPij − PmjG
m
i − PmiG

m
j(5.2)
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Plugging (5.2) into (5.1) yields

(5.3) H̄ij = Hij +
n + 1

2
yl∂̇iQjl.

We deal with C-projective mapping, i.e., Qij = 0. Hence H̄ij = Hij . This completes
the proof. ¤

A locally projectively flat Finsler manifold (M, F ) with the projective factor P is
said to be locally C-projectively flat if P satisfies Qij = 0, this means F is locally
C-projectively related to a locally Minkowskian metric.

Example. Let Θ be the Funk metric on the Euclidean unit ball Bn(1) , i.e.,

Θ(x, y) :=

√
|y|2 − (|x|2|y|2− < x, y >2)+ < x, y >

1− |x|2 , y ∈ TxBn(1) ' Rn,

where <,> and |.| denotes the Euclidean inner product and norm on Rn, respectively.
For a constant vector a ∈ Rn, let F be the Finsler metric given by

(5.4) F := {1+ < a, x > +
< a, y >

Θ
}{Θ + Θxkxk}.

In [15], Shen proves that F is projectively flat with projective factor P = Θ. A direct
computation shows that Qij = 0. Hence, F is locally C-projectively flat. Moreover,
Shen proves that F is of constant flag curvature K = 0.

Every locally Minkowskian metric has vanishing H-curvature. It is well known
that every locally projectively flat Finsler metric is of scalar flag curvature. In the
case of locally C-projectively flat Finsler metrics we have the following

Corollary 5.1. Let F be a locally C-projectively flat Finsler metric. Then F is of
constant flag curvature.

In studying the subgroups of the group of projective transformations, Akbar-
Zadeh considers projective vector fields satisfying Pij = 0 and calls this kind of vector
fields, restricted projective vector field [1]. The condition Pij = 0 means that the
projective factor P is linear, which is always true in Riemannian manifolds. Hence,
in Riemannian manifolds, every projective transformation is restricted.

Let us define locally restricted projectively flatness similar to C-projectively flat-
ness. Note that Finsler metric given in Example 1 is not locally restricted projectively
flat. In fact, a restricted projective vector field with P = ai(x)yi is C-projective vec-
tor field, if ai(x) is gradient, that is P = dσ for some scalar function on the underlying
manifold.

Using (3.11) and eliminating Pj|l from (3.4), Akbar-Zadeh introduces the following
tensor

∗W i
jkl := Ki

jkl −
1

n2 − 1

{
δi
k(nKjl + Klj)− δi

l (nKjk + Kkj)
}

− 1
n + 1

δi
j(Kkl −Klk).(5.5)
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Under a C-projective mapping, we have

(5.6) ∗W
i

jkl = ∗W i
jkl + 2δi

k∂̇lQj − 2δi
l ∂̇jQk.

This means that ∗W i
jkl is not a C-projective invariant. In fact, ∗W i

jkl is a restricted
projective invariant. We call ∗W i

jkl restricted projective Weyl-curvature. The geomet-
ric importance of the restricted projective Weyl-curvature is to characterize Finsler
metrics of constant flag curvature, i.e., a Finsler metric Fn with (n ≥ 3) is of constant
flag curvature if and only if F has vanishing restricted projective Weyl-curvature ([2]
page 209).

Now let F be a Riemannian metric. By Beltrami’s well-known theorem, locally
projectively flat Riemannian manifolds are exactly Riemannian manifolds of constant
sectional curvature. Summarizing up, we get the following reduction theorem in
Riemannian manifolds.

Theorem 5.1. Let (M, F ) be Riemannian manifold with dimension n ≥ 3. Then the
following are equivalent.

1. F is locally projectively flat.

2. F is locally restricted projectively flat.

3. F is locally C-projectively flat.

This is not true in generic Finslerian manifolds. The non-equivalence between
these kind of projective mappings in Finsler manifolds reveals the complexity of
Finsler spaces.
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