Finsler metrics of scalar flag curvature and projective invariants

B. Najafi and A. Tayebi

Abstract. In this paper, we define a new projective invariant and call it \widetilde{W} -curvature. We prove that a Finsler manifold with dimension $n \geq 3$ is of constant flag curvature if and only if its \widetilde{W} -curvature vanishes. Various kinds of projectively flatness of Finsler metrics and their equivalency on Riemannian metrics are also studied.

M.S.C. 2010: 53B40, 53C60.

Key words: Projective transformation; scalar flag curvature.

1 Introduction

One of the fundamental problems in Finsler geometry is to study and characterize Finsler metrics of constant flag curvature. The best well-known result towards this question is due to Akbar-Zadeh, which classified compact Finsler manifolds with nonpositive constant flag curvature [3]. In a 25 year research, initiated by famous Yasuda-Shimada's theorem [16] and finished by Bao-Robless-Shen's theorem [7], Randers metrics of constant flag curvature have been classified.

On the other hand, there are some well-known projective invariants of Finsler metrics namely, Douglas curvature [5][6][10], Weyl curvature, generalized Douglas - Weyl curvature [4][13] and another projective invariant which is due to Akbar-Zadeh [1]. In [21], Weyl introduces a projective invariant for Riemannian metrics. Then Douglas extendes Weyl's projective invariant to Finsler metrics [10]. Finsler metrics with vanishing projective Weyl curvature are called *Weyl metrics*. In [18], Z. Szabó proves that Weyl metrics are exactly Finsler metrics of scalar flag curvature.

In [3], Akbar-Zadeh introduces the non-Riemannian quantity **H** which is obtained from the mean Berwald curvature by the covariant horizontal differentiation along geodesics. This is a positively homogeneous scalar function of degree zero on the slit tangent bundle, and recently has been studied [11][12]. Akbar-Zadeh proves that for a Weyl manifold of dimension $n \geq 3$, the flag curvature is constant if and only if $\mathbf{H} = 0$. The natural question is: Is there any projectively invariant quantity which characterizes Finsler metrics of constant flag curvature?

Balkan Journal of Geometry and Its Applications, Vol.15, No.2, 2010, pp. 90-99 (electronic version); pp. 82-91 (printed version).

[©] Balkan Society of Geometers, Geometry Balkan Press 2010.

In this paper, using Akbar-Zadeh's method in [1], we define a new projective invariant and call it \widetilde{W} -curvature (see the equation (3.14)). We show that the \widetilde{W} -curvature is another candidate for characterizing Finsler metrics of constant flag curvature. More precisely, we prove the following

Theorem 1.1. Let (M, F) be a Finsler manifold with dimension $n \ge 3$. Then F is of constant flag curvature if and only if $\widetilde{W} = 0$.

By Akbar-Zadeh's theorem and Theorem 1.1, we have the following

Corollary 1.1. Let (M, F) be a Finsler manifold with dimension $n \ge 3$. Suppose that F is of scalar flag curvature. Then $\mathbf{H} = 0$ if and only if $\widetilde{W} = 0$.

Throughout this paper, we use the Berwald connection on Finsler manifolds [19][20]. The *h*- and *v*- covariant derivatives of a Finsler tensor field are denoted by " | " and ", " respectively.

2 Preliminaries

Let M be an n-dimensional C^{∞} manifold. Denote by $T_x M$ the tangent space at $x \in M$, and by $TM = \bigcup_{x \in M} T_x M$ the tangent space of M. A Finsler metric on M is a function $F: TM \to [0, \infty)$ which has the following properties: (i) F is C^{∞} on TM_0 ; (ii) F is positively 1-homogeneous on the fibers of tangent bundle TM, and (iii) for each $y \in T_x M$, the following quadratic form g_y on $T_x M$ is positive definite,

$$g_y(u,v) := \frac{1}{2} \left[F^2(y + su + tv) \right]|_{s,t=0}, \quad u,v \in T_x M.$$

Given a Finsler manifold (M, F), then a global vector field **G** is induced by F on TM_0 , which in a standard coordinate (x^i, y^i) for TM_0 is given by

$$\mathbf{G} = y^i \frac{\partial}{\partial x^i} - 2G^i(x, y) \frac{\partial}{\partial y^i},$$

where $G^i(x, y)$ are local functions on TM_0 satisfying $G^i(x, \lambda y) = \lambda^2 G^i(x, y)$, for all $\lambda > 0$. Functions G^i are given by

(2.1)
$$G^{i} := \frac{1}{4}g^{il} \{2\frac{\partial g_{jl}}{\partial x^{k}} - \frac{\partial g_{jk}}{\partial x^{l}}\}y^{j}y^{k},$$

where g_{ij} is the vertical Hessian of $F^2/2$ and g^{ij} denotes its inverse. **G** is called the associated *spray* to (M, F). The projection of an integral curve of **G** is called a *geodesic* in M. In local coordinates, a curve c(t) is a geodesic if and only if its coordinates $(c^i(t))$ satisfy $\ddot{c}^i + 2G^i(\dot{c}) = 0$ [14].

For a vector v^i vertical and horizontal covariant derivative with respect to Berwald connection are given by

$$v^i_{,k} = \dot{\partial}_k v^i, \quad v^i_{|k} = d_k v^i + G^i_{jk} v^j,$$

where $d_k = \partial_k - G_k^m \dot{\partial}_m, \ \partial_k = \frac{\partial}{\partial x^k}, \ \dot{\partial}_k = \frac{\partial}{\partial y^k}, \ G_k^i = \dot{\partial}_k G^i \ \text{and} \ G_{jk}^i = \dot{\partial}_j G_k^i.$

In [1], Akbar-Zadeh cosideres a non-Riemannian quantity **H** which is obtained from the mean Berwald curvature by the covariant horizontal differentiation along geodesics. This is a positively homogeneous scalar function of degree zero on the slit tangent bundle. The quantity $\mathbf{H} = H_{ij}dx^i \otimes dx^j$ is defined as the covariant derivative of **E** along geodesics, where $E_{ij} = \frac{1}{2}\dot{\partial}_m G_{ij}^m$ [12]. More precisely $H_{ij} := E_{ij|m}y^m$. In local coordinates, we have

$$2H_{ij} = y^m \frac{\partial^4 G^k}{\partial y^i \partial y^j \partial y^k \partial x^m} - 2G^m \frac{\partial^4 G^k}{\partial y^i \partial y^j \partial y^k \partial y^m} - \frac{\partial G^m}{\partial y^i} \frac{\partial^3 G^k}{\partial y^j \partial y^k \partial y^m} - \frac{\partial G^m}{\partial y^j} \frac{\partial^4 G^k}{\partial y^i \partial y^k \partial y^m}.$$

The Riemannian curvature tensor of Berwald connection are given by

$$K^{i}_{\ hjk} = d_j G^{i}_{hk} + G^{m}_{hk} G^{i}_{mj} - d_k G^{i}_{hj} + G^{m}_{hj} G^{i}_{mk}.$$

Let $K_{jk}^i = K_{0jk}^i$ and $K_k^i = K_{0k}^i$. Then we have

$$K_{jk}^i = \frac{1}{3} \{ \dot{\partial}_j K_k^i - \dot{\partial}_k K_j^i \}.$$

Then, the Riemann curvature operator of Berwald connection at $y \in T_x M$ is defined by $\mathbf{K}_y = K^i_{\ k} dx^k \otimes \frac{\partial}{\partial x^i}|_x : T_x M \to T_x M$, which is a family of linear maps on tangent spaces. The flag curvature in Finsler geometry is a natural extension of the sectional curvature in Riemannian geometry, which is first introduced by L. Berwald [8]. For a flag $P = \operatorname{span}\{y, u\} \subset T_x M$ with flagpole y, the flag curvature $\mathbf{K} = \mathbf{K}(P, y)$ is defined by

$$\mathbf{K}(P,y) := \frac{\mathbf{g}_y(u, \mathbf{K}_y(u))}{\mathbf{g}_y(y, y)\mathbf{g}_y(u, u) - \mathbf{g}_y(y, u)^2}$$

When F is Riemannian, $\mathbf{K} = \mathbf{K}(P)$ is independent of $y \in P$, which is just the sectional curvature of P in Riemannian geometry. We say that a Finsler metric F is of scalar curvature if for any $y \in T_x M$, the flag curvature $\mathbf{K} = \mathbf{K}(x, y)$ is a scalar function on the slit tangent space TM_0 . If $\mathbf{K} = constant$, then F is said to be of constant flag curvature.

The projective Weyl curvature is defined as follows

$$W_{jkl}^{i} := K_{jkl}^{i} - \frac{1}{1 - n^{2}} \Big\{ -\delta_{j}^{i} (\tilde{K}_{kl} - \tilde{K}_{lk}) - \delta_{k}^{i} \tilde{K}_{jl} + \delta_{l}^{i} \tilde{K}_{jk} - y^{i} \dot{\partial}_{j} (\tilde{K}_{kl} - \tilde{K}_{lk}) \Big\}$$

where $\tilde{K}_{jk} := nK_{jk} + K_{kj} + y^r \dot{\partial}_j K_{kr}$. As it is well known, a Finsler metric is of scalar flag curvature if and only if $W^i_{jkl} = 0$.

3 C-projective Weyl curvature

Let $\phi: F^n \to \overline{F}^n$ be a diffeomorphism. We call ϕ a projective mapping if there exists a positive homogeneous scalar function P(x, y) of degree one satisfying

$$\bar{G}^i = G^i + Py^i.$$

In this case, P is called the projective factor ([17]). Under a projective transformation with projective factor P, the Riemannian curvature tensor of Berwald connection change as follows

(3.1)
$$\bar{K}^{i}_{\ hjk} = K^{i}_{\ hjk} + y^{i} \dot{\partial}_{h} Q_{jk} + \delta^{i}_{h} Q_{jk} + \delta^{i}_{j} \dot{\partial}_{h} Q_{k} - \delta^{i}_{k} \dot{\partial}_{h} Q_{j},$$

where $Q_i = d_i P - PP_i$ and $Q_{ij} = \dot{\partial}_i Q_j - \dot{\partial}_j Q_i$. A projective transformation with projective factor P is said to be C-projective if $Q_{ij} = 0$.

Let X be a projective vector field on a Finsler manifold (M, F). Let the vector field X in a local coordinate (x^i) on M be written in the form $X = X^i(x)\partial_i$. Then the complete lift of X is denoted by \hat{X} and locally defined by $\hat{X} = X^i\partial_i + y^j\partial_j X^i\partial_i$. Suppose that $\pounds_{\hat{X}}$ stands for Lie derivative with respect to the complete lift of X. Then we have

$$\begin{split} \pounds_{\hat{X}}G^{i} &= Py^{i},\\ \pounds_{\hat{X}}G^{i}_{k} &= \delta^{i}_{k}P + y^{i}P_{k},\\ \pounds_{\hat{X}}G^{i}_{jk} &= \delta^{i}_{j}P_{k} + \delta^{i}_{k}P_{j} + y^{i}P_{jk}, \end{split}$$

(3.2)
$$\pounds_{\hat{X}}G^i_{jkl} = \delta^i_j P_{kl} + \delta^i_k P_{jl} + \delta^i_l P_{kj} + y^i P_{jkl}$$

(3.3)
$$\pounds_{\hat{X}} K^{i}_{jkl} = \delta^{i}_{j} (P_{l|k} - P_{k|l}) + \delta^{i}_{l} P_{j|k} - \delta^{i}_{k} P_{j|l} + y^{i} \dot{\partial}_{j} (P_{l|k} - P_{k|l}).$$

Since $Q_{ij} = P_{i|j} - P_{j|i}$, we have

(3.4)
$$\pounds_{\hat{X}} K^i_{jkl} = \delta^i_j Q_{lk} + \delta^i_l P_{j|k} - \delta^i_k P_{j|l} + y^i \dot{\partial}_j Q_{lk}.$$

We have

(3.5)
$$\dot{\partial}_j P_{k|l} = P_{jk|l} - P_r G_{jkl}^r.$$

Contracting i and k in (3.4), we get

(3.6)
$$\pounds_{\hat{X}} K_{jl} = P_{l|j} - nP_{j|l} + P_{jl|s} y^s.$$

Consequently

(3.7)
$$\pounds_{\hat{X}}(y^r \dot{\partial}_l K_{jr}) = -(n+1)P_{jl|s}y^s$$

Hence

(3.8)
$$P_{jl|s}y^{s} = -\frac{1}{n+1}L(\hat{X})(y^{r}\dot{\partial}_{l}K_{jr}),$$

and

(3.9)
$$\pounds_{\hat{X}}(K_{jl} + \frac{1}{n+1}y^r \dot{\partial}_l K_{jr}) = P_{l|j} - nP_{j|l},$$

(3.10)
$$\pounds_{\hat{X}}(K_{lj} + \frac{1}{n+1}y^r \dot{\partial}_j K_{lr}) = P_{j|l} - nP_{l|j}.$$

B. Najafi and A. Tayebi

Using (3.9) and (3.10), one can obtain

(3.11)
$$P_{j|l} = \frac{1}{1-n^2} \pounds_{\hat{X}} \Big\{ K_{lj} + \frac{1}{n+1} y^r \dot{\partial}_j K_{lr} + nK_{jl} + \frac{n}{n+1} y^r \dot{\partial}_l K_{jr} \Big\}.$$

If $Q_{ij} = 0$, then (3.4) reduces to the following

(3.12)
$$\pounds_{\hat{X}} K^i_{jkl} = \delta^i_l P_{j|k} - \delta^i_k P_{j|l}.$$

Using (3.11) and eliminating $P_{j|l}$ from (3.12), we are led to the following tensor

(3.13)
$$\widetilde{W}_{jkl}^{i} := K_{jkl}^{i} - \frac{1}{1-n^{2}} \delta_{l}^{i} \Big\{ \tilde{K}_{jk} + \frac{n}{n+1} y^{r} (\dot{\partial}_{k} K_{jr} - \dot{\partial}_{j} K_{kr}) \Big\} + \frac{1}{1-n^{2}} \delta_{k}^{i} \Big\{ \tilde{K}_{jl} + \frac{n}{n+1} y^{r} (\dot{\partial}_{l} K_{jr} - \dot{\partial}_{j} K_{lr}) \Big\}.$$

Since $y^j y^r \dot{\partial}_k K_{jr} = 0$, if we put $\widetilde{W}_k^i := \widetilde{W}_{jkl}^i y^j y^l$, then we have

(3.14)
$$\widetilde{W}_{k}^{i} = K_{k}^{i} - \frac{1}{1 - n^{2}} \Big\{ y^{i} \widetilde{K}_{0k} - \delta_{k}^{i} \widetilde{K}_{00} \Big\}.$$

The tensor \widetilde{W}_k^i is said to be *C*-projective Weyl curvature or \widetilde{W} -curvature. According to the way we construct \widetilde{W} , it is easy to see that \widetilde{W} is *C*-projective invariant tensor. A Finsler metric *F* is called *C*-projective Weyl metric if its *C*-projective Weyl-curvature vanishes. First, we prove that the class of Weyl metrics contains the class of *C*-projective Weyl metrics.

Theorem 3.1. Let F be a C-projective Weyl metric. Then F is a Weyl metric.

Proof. By assumption, we have the following

(3.15)
$$K_k^i - \frac{1}{1 - n^2} \left\{ y^i \tilde{K}_{0k} - \delta_k^i \tilde{K}_{00} \right\} = 0.$$

Contracting (3.15) with y_i implies that

(3.16)
$$F^2 \tilde{K}_{0k} - y_k \tilde{K}_{00} = 0.$$

Hence

(3.17)
$$\tilde{K}_{0k} = F^{-2} y_k \tilde{K}_{00}.$$

Plugging (3.17) into (3.15), we get

(3.18)
$$K_k^i = \frac{1}{1 - n^2} \tilde{K}_{00} h_k^i,$$

which means that F is of scalar flag curvature. Hence, F is a Weyl metric. \Box

4 Proof of Theorem 1.1

To prove Theorem 1.1, we need to find the \widetilde{W} -curvature of Weyl metrics.

Proposition 4.1. Let F be a Finsler metric of scalar flag curvature λ . Then \widetilde{W} -curvature is given by

(4.1)
$$\widetilde{W}_k^i = \frac{1}{3} F^2 y^i \lambda_k,$$

where $\lambda_k := \dot{\partial}_k \lambda$.

Proof. By assumption, the Riemannian curvature of Berwald connection is in the following form.

$$K_{jkl}^{i} = \lambda(\delta_{k}^{i}g_{jl} - \delta_{l}^{i}g_{jk}) + \lambda_{j}F(\delta_{k}^{i}F_{l} - \delta_{l}^{i}F_{k}) + \frac{1}{3}F^{2}(h_{k}^{i}\lambda_{jl} - h_{l}^{i}\lambda_{jk}) + \frac{1}{3}\lambda_{l}F(2\delta_{k}^{i}F_{j} - 2\delta_{j}^{i}F_{k} - g_{jk}\ell^{i}) (4.2) - \frac{1}{3}F\lambda_{k}(2\delta_{l}^{i}F_{j} - 2\delta_{j}^{i}F_{l} - g_{jl}\ell^{i}).$$

where $\lambda_{ij} = \dot{\partial}_j \lambda_i$. Hence, we have

(4.3)
$$K_k^i = \lambda F^2 h_k^i.$$

Then, we get the following relations.

(4.4)

$$K_{jl} = (n-1)(\lambda g_{jl} + FF_l\lambda_j) + \frac{n-2}{3}(F^2\lambda_{jl} + 2FF_j\lambda_l),$$

$$K_{00} = \lambda(n-1)F^2, \quad \tilde{K}_{00} = \lambda(n^2-1)F^2,$$

$$K_{k0} = \lambda(n-1)FF_k + \frac{2n-1}{3}F^2\lambda_k,$$

$$K_{0k} = \lambda(n-1)FF_k + \frac{n-2}{3}F^2\lambda_k,$$

$$\tilde{K}_{0k} = (n^2-1)(\lambda FF_k + \frac{1}{3}F^2\lambda_k).$$

Plugging (4.3) and (4.4) into (3.14), we get the result.

Lemma 4.1. Let (M, F) be a C-projective Weyl manifold with dimension $n \ge 3$. Then F is of constant flag curvature.

Proof. By Theorem 3.1 and Proposition 4.1, we have

$$\widetilde{W}_k^i = \frac{1}{3} F^2 y^i \lambda_k$$

From assumption, we get $\lambda_k = 0$. It means that F is of isotropic flag curvature. The result follows by Schur's Lemma.

Now, let us consider the case F being of constant flag curvature.

Lemma 4.2. Let F be a Finsler metric of constant flag curvature $\mathbf{K} = \lambda$. Then F is C-projective Weyl metric.

Proof. If F is of constant flag curvature λ , then (4.2) reduces to the following

(4.5)
$$K_{jkl}^i = \lambda (g_{jl} \delta_k^i - g_{jk} \delta_l^i)$$

Hence

(4.6)
$$K_{jl} = \lambda(1-n)g_{jl}, \quad \tilde{K}_{jk} = \lambda(1-n^2)g_{jl}.$$

Plugging (4.6) into (3.13), we obtain $\widetilde{W}_{jkl}^i = 0$ and consequently $\widetilde{W}_k^i = 0$.

5 Reduction in Riemannian manifolds

As mentioned before, in Finsler metrics F^n of scalar flag curvature with $(n \ge 3)$, we have this equivalence $\widetilde{W} = 0$ if and only if $\mathbf{H} = 0$. Observing *C*-projective invariancy of \widetilde{W} -curvature, one can conjecture that \mathbf{H} -curvature must be *C*-projective invariant too. Here, we prove that this is true. By definition, $H_{ij} = E_{ij|s}y^s$. Under a projective transformation with the projective factor P, we have the following relations:

$$\bar{E}_{ij} = E_{ij} + \frac{n+1}{2} P_{ij},
y^l \bar{d}_l = y^l d_l - 2P y^m \dot{\partial}_m,
\bar{E}_{mj} \bar{G}_i^m = E_{mj} G_i^m + P E_{ij} + \frac{n+1}{2} (P_{mj} G_i^m + P P_{ij}).$$

Now, we can prove the following

Proposition 5.1. H-curvature is C-projective invariant.

Proof. Under a projective transformation, we have

$$\begin{aligned}
H_{ij} &= E_{ij|l}y^{l} \\
&= y^{l}\bar{d}_{l}\bar{E}_{ij} - \bar{E}_{mj}\bar{G}_{i}^{m} - \bar{E}_{im}\bar{G}_{j}^{m} \\
&= (y^{l}d_{l}\bar{E}_{ij} - 2Py^{m}\dot{\partial}_{m}\bar{E}_{ij}) - \bar{E}_{mj}\bar{G}_{i}^{m} - \bar{E}_{im}\bar{G}_{j}^{m} \\
&= y^{l}d_{l}E_{ij} + \frac{n+1}{2}y^{l}d_{l}P_{ij} + 2PE_{ij} + (n+1)PP_{ij} - \bar{E}_{mj}\bar{G}_{i}^{m} - \bar{E}_{im}\bar{G}_{j}^{m} \\
&= y^{l}d_{l}E_{ij} - E_{mj}G_{i}^{m} - E_{im}G_{j}^{m} + \frac{n+1}{2}(y^{l}d_{l}P_{ij} - P_{mj}G_{i}^{m} - P_{im}G_{j}^{m}) \\
\end{aligned}$$
(5.1)
$$\begin{aligned}
&= H_{ij} + \frac{n+1}{2}(y^{l}d_{l}P_{ij} - P_{mj}G_{i}^{m} - P_{im}G_{j}^{m}).
\end{aligned}$$

On the other hand, we have

(5.2)
$$y^{l} \dot{\partial}_{i} Q_{jl} = y^{l} d_{l} P_{ij} - P_{mj} G_{i}^{m} - y^{l} d_{j} P_{il} = y^{l} d_{l} P_{ij} - P_{mj} G_{i}^{m} - P_{mi} G_{j}^{m}$$

Plugging (5.2) into (5.1) yields

(5.3)
$$\bar{H}_{ij} = H_{ij} + \frac{n+1}{2} y^l \dot{\partial}_i Q_{jl}$$

We deal with C-projective mapping, i.e., $Q_{ij} = 0$. Hence $\bar{H}_{ij} = H_{ij}$. This completes the proof.

A locally projectively flat Finsler manifold (M, F) with the projective factor P is said to be locally C-projectively flat if P satisfies $Q_{ij} = 0$, this means F is locally C-projectively related to a locally Minkowskian metric.

Example. Let Θ be the Funk metric on the Euclidean unit ball $B^n(1)$, i.e.,

$$\Theta(x,y) := \frac{\sqrt{|y|^2 - (|x|^2|y|^2 - \langle x, y \rangle^2)} + \langle x, y \rangle}{1 - |x|^2}, \quad y \in T_x B^n(1) \simeq \mathbb{R}^n,$$

where $\langle \rangle$ and |.| denotes the Euclidean inner product and norm on \mathbb{R}^n , respectively. For a constant vector $a \in \mathbb{R}^n$, let F be the Finsler metric given by

(5.4)
$$F := \{1 + \langle a, x \rangle + \frac{\langle a, y \rangle}{\Theta} \} \{\Theta + \Theta_{x^k} x^k \}.$$

In [15], Shen proves that F is projectively flat with projective factor $P = \Theta$. A direct computation shows that $Q_{ij} = 0$. Hence, F is locally C-projectively flat. Moreover, Shen proves that F is of constant flag curvature $\mathbf{K} = 0$.

Every locally Minkowskian metric has vanishing **H**-curvature. It is well known that every locally projectively flat Finsler metric is of scalar flag curvature. In the case of locally C-projectively flat Finsler metrics we have the following

Corollary 5.1. Let F be a locally C-projectively flat Finsler metric. Then F is of constant flag curvature.

In studying the subgroups of the group of projective transformations, Akbar-Zadeh considers projective vector fields satisfying $P_{ij} = 0$ and calls this kind of vector fields, restricted projective vector field [1]. The condition $P_{ij} = 0$ means that the projective factor P is linear, which is always true in Riemannian manifolds. Hence, in Riemannian manifolds, every projective transformation is restricted.

Let us define locally restricted projectively flatness similar to C-projectively flatness. Note that Finsler metric given in Example 1 is not locally restricted projectively flat. In fact, a restricted projective vector field with $P = a_i(x)y^i$ is C-projective vector field, if $a_i(x)$ is gradient, that is $P = d\sigma$ for some scalar function on the underlying manifold.

Using (3.11) and eliminating $P_{j|l}$ from (3.4), Akbar-Zadeh introduces the following tensor

(5.5)
$${}^{*}W_{jkl}^{i} := K_{jkl}^{i} - \frac{1}{n^{2} - 1} \Big\{ \delta_{k}^{i} (nK_{jl} + K_{lj}) - \delta_{l}^{i} (nK_{jk} + K_{kj}) \Big\} - \frac{1}{n + 1} \delta_{j}^{i} (K_{kl} - K_{lk}).$$

Under a C-projective mapping, we have

(5.6)
$${}^*\overline{W}^i_{jkl} = {}^*W^i_{jkl} + 2\delta^i_k\dot{\partial}_lQ_j - 2\delta^i_l\dot{\partial}_jQ_k.$$

This means that ${}^*W_{jkl}^i$ is not a *C*-projective invariant. In fact, ${}^*W_{jkl}^i$ is a restricted projective invariant. We call ${}^*W_{jkl}^i$ restricted projective Weyl-curvature. The geometric importance of the restricted projective Weyl-curvature is to characterize Finsler metrics of constant flag curvature, i.e., a Finsler metric F^n with $(n \ge 3)$ is of constant flag curvature if and only if F has vanishing restricted projective Weyl-curvature ([2] page 209).

Now let F be a Riemannian metric. By Beltrami's well-known theorem, locally projectively flat Riemannian manifolds are exactly Riemannian manifolds of constant sectional curvature. Summarizing up, we get the following reduction theorem in Riemannian manifolds.

Theorem 5.1. Let (M, F) be Riemannian manifold with dimension $n \ge 3$. Then the following are equivalent.

- 1. F is locally projectively flat.
- 2. F is locally restricted projectively flat.
- 3. F is locally C-projectively flat.

This is not true in generic Finslerian manifolds. The non-equivalence between these kind of projective mappings in Finsler manifolds reveals the complexity of Finsler spaces.

Acknowledgments. The authors express their sincere thanks to Professors H. Akbar-Zadeh, Z. Shen and referees for their valuable suggestions and comments.

References

- H. Akbar-Zadeh, Champ de vecteurs projectifs sur le fibre unitaire, J. Math. Pures Appl. 65 (1986), 47-79.
- [2] H. Akbar-Zadeh, Initiation to Global Finslerian Geometry North-Holand Mathematical Library, Vol 68 (2006).
- [3] H. Akbar-Zadeh, Sur les espaces de Finsler A courbures sectionnelles constantes Acad. Roy. Belg. Bull. Cl. Sci. 74 (1988), 271-322.
- [4] S. Bácsó and I. Papp, A note on generalized Douglas space, Periodica Mathematicia Hungarica Vol. 48 (1-2), 2004, pp. 181-184.
- [5] V. Balan, M. Crane, V. Patrangenaru and X. Liu, Projective shape manifolds and coplanarity of landmark configurations. A nonparametric approach, Balkan J. Geom. Appl. 14, 1 (2009), 1-10.
- [6] S. Bácsó and M. Matsumoto, On Finsler spaces of Douglas type, A generalization of notion of Berwald space, Publ. Math. Debrecen. 51 (1997), 385-406.
- [7] D. Bao, C. Robles and Z. Shen, Zermelo navigation on Riemannian manifolds, J. Diff. Geom. 66 (2004), 391-449.

- [8] L. Berwald, Uber Parallelübertragung in Räumen mit allgemeiner Massbestimmung, Jber. Deutsch. Math.-Verein. 34(1926), 213-220.
- B. Bidabad, Complete Finsler manifolds and adapted coordinates, Balkan J. Geom. Appl. 14, 1 (2009), 21-29.
- [10] J. Douglas, The general geometry of path, Ann. Math. 29(1927-28), 143-168.
- [11] X. Mo, On the non-Riemannian quantity H of a Finsler metric, Differential Geometry and its Application, 27 (2009), 7-14.
- [12] B. Najafi, Z. Shen and A. Tayebi, Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata. 131 (2008), 87-97.
- [13] B. Najafi, Z. Shen and A. Tayebi, On a projective class of Finsler metrics, Publ. Math. Debrecen. 70 (2007), 211-219.
- [14] Z. Shen, *Differential Geometry of Spray and Finsler Spaces*, Kluwer Academic Publishers, Dordrecht, 2001.
- [15] Z. Shen, Projectively flat Finsler metrics of constant flag curvature, Transactions of the American Mathematical Society, 355, 4 (2003), 1713-1728
- [16] H. Shimada, Short review of Yasuda-Shimada Theorem and related topics, Periodica Mathematica Hungarica Vol. 48 (12), 2004, 17-24
- [17] S.P. Singh, Projective motion in bi-recurrent Finsler space, Diff. Geom. Dyn. Syst. 12 (2010), 221-227.
- [18] Z. Szabó, Ein Finslerscher Raum ist gerade dann von skalarer Krümmung, wenn seine Weyl sche ProjectivKrümmung verschwindet, Acta Sci. Math. 39 (1977), 163-168.
- [19] A. Tayebi, E. Azizpour and E. Esrafilian, On a family of connections in Finsler geometry, Publ. Math. Debrecen. 72 (2008), 1-15.
- [20] A. Tayebi and B. Najafi, Shen's Processes on Finslerian Connections, Bull. Iran. Math. Soc. 36 (2010), 1-17.
- [21] H. Weyl, Zur Infinitesimal geometrie, Göttinger Nachrichten. (1921), 99-112.

Authors' addresses:

Behzad Najafi Faculty of Science, Department of Mathematics, Shahed University, Tehran, Iran. E-mail: najafi@shahed.ac.ir

Akbar Tayebi Faculty of Science, Department of Mathematics, Qom University, Qom, Iran. E-mail: akbar.tayebi@gmail.com