On complete hypersurfaces with two distinct
principal curvatures in a hyperbolic space
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Abstract. We investigate complete hypersurfaces in a hyperbolic space
with two distinct principal curvatures and constant m-th mean curvature.
By using Otsuki’s idea, We obtain some global classification results. As
their applications, we obtain some global rigidity results for hyperbolic
cylinders and obtain some non-existence results.
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1 Introduction

In 1970 Otsuki [3] studied the minimal hypersurfaces in a unit (n+ 1)-sphere S"*1(1)
(n > 3) with two distinct principal curvatures and proved that if the multiplicities
of the two principal curvatures are both greater than 1, then they are the Clifford
minimal hypersurfaces. As for the case when the multiplicity of one of the two princi-
pal curvatures is n — 1, it corresponds to an ordinary differential equation. Recently,
there has been a surge of new interest in the theory of hypersurfaces in space forms
based on Otsuki’s work (see e.g., [1, 2, 4, 5, 6, 7, 8, 9]). The key of the study is to
analyze the case when one of the two principal curvatures is simple.

In this paper we focus our interest on hypersurfaces in hyperbolic space. By using
Otsuki’s idea, we obtain some global classification results for immersed hypersurfaces
in H"™!(—1) of constant m-th mean curvature and two distinct principal curvatures
of multiplicities n — 1, 1. As their applications, we obtain some global rigidity results
for hyperbolic cylinders and obtain some non-existence results.

2 The local construction of the isometric immersion
In this section, we shall provide the explicit construction of isometric immersion of

hypersurface in H"*!(—1) with constant m-th mean curvature H,, and two distinct
principal curvatures with multiplicities n — 1, 1. Since the argument is similar to that
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of [8], we shall only give the outline and omit the most of detailed discussions and
computations.

Let M be an n-dimensional hypersurface in the hyperbolic space H"*1(—1) of
constant curvature —1. We choose a local orthonormal frame field eq, - ,ep,€n41
of H"*1(—1) along M with coframe wy, -+ , w41 such that, when restricted on M,
e1, -+ ,e, are tangent to M. It is well-known that there exist local functions h;;
such that w11 = Zj hijws, (hij = hj;) which determines the second fundamental
form h =737, hijw; @ w; of M. We call the eigenvalues of matrix (h;;) the principal
curvatures of M. The mean curvature of M is given by H = %tr(h) = % Yo i M is
said to be of constant mean curvature if H is a constant. In particular, when H = 0,
M is said to be minimal. We choose local frame field ey, - - - , e, such that h;; = A;d;5.
For 1 < m < n, the m-th mean curvature H,, of M is defined by

1<i1 <<t <n.
The important class of hypersurfaces in the hyperbolic space is the following.

Example 2.1. (The hyperbolic cylinders in H**1(—1)) For 1 <k <n—1,\ > 1,
let My n—i(X) = S¥(A2 — 1) x H"*(§z — 1), where H*(c) denotes the k-dimensional
hyperbolic space of constant curvature ¢, while S¥(¢/) denotes the k-dimensional
sphere of constant curvature ¢/. We view z = (z1,22) € Mg n—r(X) as a vector
in R = RFHL x RPHF ) then » € H™H!(—1). This is the standard isometric
embedding of My ,—x()\) into H""(—1) as a hypersurface, and it has two distinct
principal curvatures \ of multiplicity £ and pu = % of multiplicity n — & (for suit-
ably chosen e, 4+1) , and clearly My, ,—x(\) has constant m-th mean curvature for all
1 < m < n. We shall refer My, ,,_x(\) as the hyperbolic cylinders in H" ! (—1).

It is natural to ask that whether there are hypersurfaces in H"*1(—1) with two
distinct principal curvatures and constant m-th mean curvature other than the hy-
perbolic cylinders as described in Example 2.1. The answer is negative when the two
principal curvatures are both non-simple and two principal curvatures are nonzero
when m > 2. In fact one can prove the following proposition by the similar argument

as in [3].

Proposition 2.1. Let M be a (connected) hypersurface in H" 1 (—1) with two distinct
principal curvatures of multiplicities k,n — k and constant m-th mean curvature H,,.
If2 <k <n-—2, then M is either locally a hyperbolic cylinder My, ,—i () described as
in Example 2.1, or M has two distinct principal curvatures A\y = --- = A\ = 0, A1 =
<o =X\, and m >n—k (In this case H,, = 0).

Thus, to consider the hypersurfaces with two distinct principal curvatures and
constant m-th mean curvature, we need only to deal the case when one of the two
principal curvatures is simple. Let M be a (connected) hypersurface in H™*!(—1)
with constant m-th mean curvature H,, and two distinct principal curvatures A,
with multiplicities n — 1, 1. Since the multiplicities are constant, their eigenspaces are
completely integrable, and we can show as in [8] that the integral curves corresponding
to p are geodesics, and they are orthogonal trajectories of the family of the integral
submanifolds corresponding to A. Let u be the parameter of arc length of the geodesics
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corresponding to u, and we may put w, = du. Then A = A(u) is locally a function of
u, and by a similar computation as in [8] we get

S (G D=t

(2.1) (log A" H,,

By putting w = [\ — H,,|~#, (2.1) is reduced to

(2.2) dw _ ("H’" il Gk OL 1> .

du? mA™—2

Note that )
w— (N — Hp) " w, for A\ —H, >0,
" (Hp—A™)"w, for A™—H,, <0,

(2.2) can be rewritten as
d*w

@ew et
du2 wf™(w)
(2.3) =—w (— G ;@m) (W™ 4 Hyp)w + %Hm(w_" S+ Hy)w b — 1) ,
for \™ — H,,, > 0, or
dPw _
= )
(2.4) =—w ( i ;Lm) (Hm —w ™) + %Hm(Hm o 1> ,

for \™ — H,,, < 0. Integrating (2.3) or (2.4), we get

dw > n 0 N )
(25) % =C—-F (w) =C—-w (’u) —+ H"L)m + w
for \™ — Hp, > 0, or

(2.6) <‘$>2 =C—F (w):=C—w?(Hpy —w™ ™" + w?

for ™ — H,, < 0, where C is the integration constant. We have +- F"(w) = 2w f*(w)
and L F~(w) = 2wf~ (w). We view H""1(—1) as a hypersurface in R, then the

local orthonormal frame ey, - - , e, 1 of H"*1(—1) along M gives rise to a local frame
e1, -, enya of R along M, where e, 2 = x is the position vector of M in R}*2.
By putting

1 !
W=e1 N Nep_1 A ((log |)\m _ Hm|5) e, + )\€n+1 + €n+2> s
we can get as in [8] that

(2.7) AW = (1og A — Hmﬁ)/ Wdu.
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(2.7) shows that the n-vector W in R}™? is constant along integral submanifold
M™ ' (u). Hence there exists an n-dimensional linear subspace E™(u) in R?*? con-
taining M !(u), and we can argument as in [8] that the curvature of M™~1(u) is

2
/
l) ) A= %
w
Now we consider the cases when C' < 0 or C' > 0. Let us first assume that C < 0. In
A 1 i
this situation, A2 = 1— ((log A — Hmﬁ) ) +K <1, and (log AT — Hm\ﬁ> en+

Aént1+enia is a timelike vecotr field, and E™(u) & RY, and thus M~ !(u) = E™(u)N
H"1(—1) 2 H" (K (u)). The center of H" (K (u)) is given by

(2.8) K=K(u) = <(10g ™ H,,

/
(log A — Hm|%) €n + Aeni1+ €nio

It is clear that the curve ¢ = g(u) lies in a fixed 2-plane R? through the origin of R7*?
which is orthogonal to E™(u). The tangent vector field of ¢ = g(u) is

(A2~ 1)e, — (log A" H,,

li
%> (Aent1 + €nt2)
K(u) '

(2.10) ¢ (u) =

Letting €,4+1 = ﬂ—ﬁq, then we can show by using (2.9) and (2.10) that

dény1 deng1\  —NK
du ~ du (1+ K)?

Thus we can choose a new frame field of R?"‘Q along M as following:

/
(log (A" — Hm|%) €n + Aepi1 + enao
€q = €q, €Ep= ,

—K(u)

z . -K z . 1+ K dén+1
n+1—\/71+Kq, n+2—7)\ K du

Then €,41, &2 spans the fixed 2-plane R2. We can rewrite (2.9) as

1
Na

and the curve ¢ = g(u) in R? can be expressed by

1+ K _
(2.12) q= —5 Cnt1-

We fix an orthonormal basis ¢;, g5 for R? and write

(2.11) r=q+

€n,

(2.13) €nt1 = cosbey +sinfes, €,42 = —sinfe; + cosbes.
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By the definition of €,, 41 and €,42 we have

) AWK
du~ 1+K

(2.14)

Note that (2.11) define an isometric immersion x : (a,b) x H*1(=1) — H"*1(-1),
here (a,b) x H"~1(—1) is endowed with a warped product metric as following:

1
(2.15) ds* = du® + jdEQ,

here d3? denotes the standard metric on hyperbolic (n—1)-space H"~1(—1). As usual
we write (a,b) x, H"~*(—1) when endowed with the metric (2.15), here p = \/%(u)

Conversely, assume that w = w(u) : (a,b) — R be a positive solution of equation
(2.5) or (2.6) for some constants H,, and C < 0, and we also assume that A\ =
(w™" + Hy,)m for (2.5) or A = (H,, — w™")w for (2.6) is well-defined, and define
K = K(u) by (2.8). We consider H"*1(—1) as H"*!(—1) c R?*? = R} x R? and
€, denoting the position vector of H"~!(—1) in R}, then (2.11) define an immersion
z: (a,b) x,H""!(—1) — H"*'(—1), where the curve ¢ = ¢(u) in R? is determined by
(2.12)-(2.14), and we can show as in [8] that A = A(u) is the principal curvature with
multiplicity n — 1 of the immersion x and it has constant m-th mean curvature H,,.

!

In the following we assume that C' > 0. Then (log A — Hmﬁ) €n—Aenti—€nya
is a spacelike vecotr field, and E"(u) = R", and thus M"~!(u) = E"(u) NH" 1 (-1) =
S"~1(K (u)). The center of S*~1(K (u)) is again given by (2.9), and it lies in a fixed
Lorentzian 2-plane R?. Now ¢ is timelike, and we can choose the new frame field of
R?Jrz along M as following:

A
1
— (log [N — H,,| n) €n — Nepil — Ento
€q = €a, €En = s

_ | K _ 1+ K de,iq
ent1 =4/ —=q, Epy2 = —— .
+1 1+Kq +2 )\\/E du

Then €,,41, €,+2 spans the fixed Lorentzian 2-plane R% with €,41 timelike. Now the
position vector of M in R""? can be written as

1
2.16 T=q+ ——=éy,
(2.16) 9+ =

and the curve ¢ = q(u) in R? can be expressed by

1+ K _
(2.17) g=1/ et

We fix an orthonormal basis €1, eo for R% with 1 timelike, and write

(2.18) €n+1 = coshfeq + sinh fea, €42 = sinh e + cosh Oe,.
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By the definition of €,, 41 and €,42 we have

VK
(2.19) 9 = MK .
duv 1+ K

Now (2.16) define an isometric immersion z : (a, b) X i S"=1(1) — H"*!(~1). Con-
K

versely, assume that w = w(u) : (a,b) — R be a positive solution of equation (2.5) or

(2.6) for some constants H,, and C' > 0, we have the similar result as the case C' < 0.

In summary, we have the following

Theorem 2.1. Let M be an n-dimensional spacelike hypersurface immersed into
H"*t1(=1) for n > 3. Assume that M has constant m-th mean curvature H,, and
that M has two distinct principal curvatures A and p with multiplicities n — 1 and 1,
respectively (when m > 2, we assume that A # 0). Then A = A(u) depends only on
u, the arc parameter of the integral curves of p, and w = |A\™ — Hm|_% satisfies the
ordinary differential equation (2.5) or (2.6) for some constant C'. Moreover,

(1) if C < 0, then M is locally isometric to (a,b) x, H""1(—1) with p = \/%(u),
and the immersion x of M into H"T(—1) is given by (2.11)-(2.14), where &, is
the position vector of H""1(—1) in R}. Conversely, if w = w(u) : (a,b) — R be a
positive solution of equation (2.5) or (2.6) for some constants Hy, and C < 0, and
that X = (w™" + H,,)w for (2.5) or X = (Hy,, —w™™)m for (2.6) is well-defined,
and define K = K(u) by (2.8). Then formulas (2.11)-(2.14) defines an isometric
immersion x : (a,b) x , H"~1(—=1) — H"*1(=1) which is a hypersurface with constant
m-th mean curvature H,, and two distinct principal curvatures one of which is simple;
(2) if C > 0, then M is locally isometric to (a,b) x, S""*(1) with p = \/ﬁ,
and the immersion x of M into H""(—1) is given by (2.16)-(2.19). Conversely, if
w = w(u) : (a,b) — R be a positive solution of equation (2.5) or (2.6) for some
constants H,, and C > 0, then (2.16)-(2.19) determines an isometric immersion of
(a,b) x, S""1(1) into H"1(—1) with constant m-th mean curvature H,, and two

distinct principal curvatures one of which is simple.

3 Global classification results: m =1

In the following we shall consider the global results, namely, the complete hypersurface
in H"*1(—1) of constant m-th mean curvature and two distinct principal curvatures
with one of which is simple. Clearly, it is related to the complete solution of ordinary
differential equation (2.5) or (2.6), here we call a solution w = w(u) of (2.5) or (2.6)
to be complete if it is defined on R. Let us first consider the case when m = 1 in this
section. In this situation, replace e, 11 by —e, 11 if necessary, we can always assume
that A— H > 0, here H = H; is the mean curvature. That is to say, we need only to
consider complete hypersurface M in H"*!(—1) which satisfies the following
Condition (*): The hypersurface (or the immersion) is of constant mean curva-
ture H and two distinct principal curvatures A > H, u with multiplicities n — 1, 1.
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Notice that - F*+(w) = 2wf*(w) = 2w(—(n — 1)A? + nHA — 1). Denoting

BSOSy Sy e y A
W= 2n—1) ’

we have following tables:

Table I: m=1,A>H > 1

w 0 | (0,wo) Wy = Wy (wg,+00) | 400
ff=ftw) | —o| <0 0 >0 H? -1
Ft =FT(w) | 400 . A=A(H)>0 /! +00

Table 2: m=1,A> H,—2¥"=1 < H <1

w 0 | (0,+00) +00
ff=ffw) | —o | <0 HZ-1<0
Ft =F*t(w) | +o0 AN (i(g(;l; 1)

Table 3: m =1,\ > H = —2¥n-1

n

w 0 (0,wp) | wo = (n";:)_ﬁ (wp, +00) | 00
ffT=ft(w) | —o | <0 0 <0 <0
Ft=FT(w) | 400 AV A=A(H) <0 \ —00

The following theorem can be shown by use of Tables 1-5. Since the proof is sim-
ilar to that of [8, 9], we omit it.

Theorem 3.1. Suppose that n > 3.
(1) Let H > 1. Then for any C < A, there exists no complete positive solution for
(2.5). On the other hand, for each C > A, there exists a unique complete positive
solution w = w(u) : R — (0,+00) up to a parameter translation. Each solution is
periodical, and it determines an isometric immersion of Rx #KS"_l(l) into H"t1(—1)

satisfying the condition (*), and the immersion is given by (2.16)-(2.19). There is
only a constant solution w = wq for (2.5) with C = A which is corresponding to the

hyperbolic cylinder S"~1(A§ — 1) x H'({x — 1), here Xg = UELRRY "2H2_)4(n_1).
)

2(n—1
(2) Let H = 1. Then for any C < 0, there exists no complete positive solution for
(2.5). On the other hand, for each C > 0, there exists a unique complete positive
solution w = w(u) : R — (0,400) up to a parameter translation. The solution
w = w(u) can be chosen in a way that it is an even function which is strictly increasing
and unbounded on (0,+00). FEach solution determines an isometric immersion of

R X L SP=1(1) into H"*1(—1) satisfying the condition (*) and the immersion is
K
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Table 4: m =1,A> H,-1 < H < —2¥2=1

w 0 (0,w1) w1 (w1, wa) Wy (wa, +00) 400
ff=fT(w) | —o| <0 0 >0 0 <0 H?>-1<0
F+:F+(U}) +00 . A <O ya Ay <O . —00

I —I

[ —(n=2)H4+/n2H2—4(n—1) " [ —(n=2)H—+/n2H2—4(n-1) "

wy = ( 3(n—1) ) w2 = ( 2(n—1) )

Table 5: m=1,A> H,H < -1

w 0 (0,wp) Wy = Ws (wo, +00) 400
ff=ft(w) | —o| <0 0 >0 H? -1
Fr—Ftw) | 400 | N\ |A=AH)<0]| O(H =—1)

+oo(H < —1)

given by (2.16)-(2.19).

(8) Let —@ < H < 1. Then for any constant C there exists a unique complete
positive solution for (2.5) up to a parameter translation with the same property as in
(2). If C # 0, it determines an isometric immersion of either R X1 S*=1(1) into
H"*tY(=1) by (2.16)-(2.19) when C' > 0, or R X 1 H"=1(-1) into H"*(-1) by
(2.11)-(2.14) when C < 0, of condition (*).

(4) Let H = —Znﬂ. Then for any C # A, we have the same conclusion as in (3);
There is only a constant solution w = wq for (2.5) with C = A which is corresponding
to the hyperbolic cylinder H"~'(—2=2) x S'(n — 2).

(5) Let —1 < H < —2‘/+T1. Then for any C € R\(A1,As), there is a unique
unbounded solution for (2.5) with the same conclusion as in (3); furthermore, for
C € (A1, As), apartment from the unbounded solution, there exists a unique complete
positive periodical solution for (2.5) up to a parameter translation. When C # 0,
each complete solution determines an isometric immersion as in (3). The constant
solutions w = w1 and w = wy correspond to C = Ay and C' = Ay, and they correspond
to the hyperbolic cylinders H" (A} — 1) x S'(55 — 1) with \; = w; " + H,i = 1,2.
(6) Let H = —1. Then for any C < A(-1), there exists no complete positive solution
for (2.5). On the other hand, for any C > 0, we have the same conclusion as in
(8); and for any C € (A(—1),0), there exists a unique complete positive periodical
solution for (2.5) which determines an isometric immersion as in (3). There is only
a constant solution w = wqy for (2.5) with C = A(—1) which is corresponding to the
hyperbolic cylinder H" (A3 — 1) x Sl(%g —1), here Ao =wy " + H.

(7) Let H < —1. Then for any C < A(H), there exists no complete positive solution
for (2.5). On the other hand, for each C > A(H), there exists a unique complete
positive periodical solution up to a parameter translation. If C # 0, each solution
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determines an isometric immersion of either Rx 1_S"~1(1) into H"**(—1) for C > 0
VK
by (2.16)-(2.19), or R x 1 H""1(=1) into H""1(=1) for C < 0 by (2.11)-(2.14),

K

of condition (*). There is ;nly a constant solution w = wq for (2.5) with C = A(H)
which is corresponding to the hyperbolic cylinder described as in (6).

4 Global classification results: m > 2

In this section we shall consider the case when m > 2. In this situation A never
vanishes unless it equals to zero identically, and in the following we always assume
that A never vanishes, and replace e, 11 by —en+1 if necessary, we can always assume
that A > 0. Hence we need only to deal with the following three cases: Case A:
A™ > H,, > 0; Case B: H,, > A" > 0 and Case C: \™ > 0 > H,,. For simplicity, We
will say that the hypersurface M in H"T!(—1) or the corresponding immersion is of
property A (resp. property B, property C) If M has constant m-th mean curvature H,,
and two distinct principal curvatures A, p of multiplicities n — 1,1 with A™ > H,,, > 0
(vresp. Hp > A™ > 0,\™ > 0> H,,). We have the following tables:

Table 6: m >2,\" > H,, > 1

w 0 (0,wo) wo (wo, +00) +oo
fr=ft(w) :i’?ﬁlm;n? <0 0 >0 w1
Ft = F+(w) f(onj(f; NN | A >0 % +00

Table 7: m >2,\" > H,,,1 > H,, >0

w 0 (0, +-00) 0
ferrw) | s <0 Hi -1
+oo(m < n) 0(Hm =1)
Ft =F*(w) :{ 1(m = n) N a:{ —oo(Hp < 1)

Theorem 4.1. Suppose that n > 3, m > 2.
(1) For 0 < H,, <1, let a,b be given by Table 7. Then for any C € R\(a,b), there
exists no complete positive solution of (2.5), and for any C € (a,b), there exists a
unique unbounded complete positive solution of (2.5) up to a parameter translation
with the same property as in part (2) of Theorem 3.1, and when C # 0, it determines
an isometric immersion of property A described as in part (3) of Theorem 3.1;
(2) Let Hy, > 1, and 2 < m < n. Then for any C < A,,, there exists no complete

positive solution of (2.5); On the other hand, for each C > A,,, there exists a unique
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Table 8: m > 2, H,, > A\ >0,H,, > 1

T T

H,," (Hm™,+00) +o0
e +oo(m > 2) 2z
F- = F(w) —H;L% ) A=+4oo(Hp > 1)

A=0(H, =1)

Tableg:m>2,Hm>)\m>0,Hm<1or1>H2>%Whenm:Q

w Hp," (Hm™,wo) wo (wp, +00) +0o0
o +oo(m > 2) 2z
F~ = F(w) _Hy," J A <0 N —0

complete periodical positive solution with the same property as in the part (1) of
Theorem 3.1. Each solution determines an isometric immersion of R X 1 Sn=1(1)
K

into H"*1(—1) of Property A which is given by (2.16)-(2.19). There is only a constant
solution w = wq for (2.5) with C = A,, which is corresponding to the hyperbolic
cylinder S*1 (A3 — 1) x ]I-]Il(%8 —1), here Ao = (wy™ + Hyp ) ;

(8) Let H,, > 1, and m = n. Then for any C < A, or C > 1, there is no complete
positive solution of (2.5); and for C' € [A,, 1) there is a unique complete solution with

the same conclusions as in (2).

Theorem 4.2. Suppose that n > 3,m > 2.
(1) If H,, > 1, then for any constant C, there exists no complete positive solution of
(2.6); Consequently, there is no complete hypersurface of property B in this case.
(2) If 0 < Hy, < 1, then for C > A,,, there exists no complete solution of (2.6) with
1

w > H,,™; on the other hand, for each C < A,,, there exists a unique complete positive

solution w = w(u) : R — (HT;%,+OO) up to a parameter translation. The solution
can be chosen so that it is a even function which is strictly increasing and unbounded
on (0,+00), and it determines an isometric immersion of R X iz H"=1(—1) into
H"*1(—1) of property B. The immersion is given by (2.11)-(2.14). When m > 2
orm = 2 and Hy > %, the constant solution w = wqg corresponds to C = A,
and it corresponds to the hyperbolic cylinder H"1(\3 — 1) x Sl()\ig — 1) with Ay =

—ny L
(Hp —wy ).
Theorem 4.3. Let H,, < 0,n > 3. Then there exists no complete solution of

(2.5) with 0 < w < (—H,,)" % for any C. Consequently, there exists no complete
hypersurface in H" 1 (—1) of property C in this case.
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Table 10: m =2,2 > Hy > A? >0

w Hp™ | (Hu",+00) | +oo
f_ :f_(IU) %Hg—l \ H2—1
F-=F (w) | Ao =—-Hy, " \, —00

5 Applications: the characterizations for hyperbolic
cylinders and some non-existence results

In this last section we shall use the global classification results to give some character-
izations for hyperbolic cylinders in H"*!(—1) and obtain some non-existence results.
We only state the results and omit the proofs.

Theorem 5.1. Let H be a number with |H| < 2+‘/j, then the hyperbolic cylin-
der H"~1(—2=2) x S!(n — 2) is the only complete hypersurface in H" ™ (—1)(n > 3)
of constant mean curvature H with two distinct principal curvatures X\, u satisfying
inf(A—u)? > 0. Consequently, there is no complete hypersurface in H" "1 (—1)(n > 3)
of constant mean curvature |H| < @ with two distinct principal curvatures A,
satisfying inf(\ — )% > 0.

Theorem 5.2. Let H be a constant with |H| > 1, and M a complete hypersur-
face in H" 1 (—=1)(n > 3) of constant mean curvature H and two distinct principal
curvatures with multiplicities n — 1,1. Set

n3H? n(n

S T y T

— f; |H|\/n2H? — 4(n — 1).

(1) If the square length of the second fundamental form satisfies S < Sy or S > S_,
then S = Sy or S =5_, and M is isometric to hyperbolic cylinder S”_l()\%r —1) x
Hl(ﬁ —1) or H" ' (\2 = 1) x S' (55 — 1), here

_ nlH|+\/n?H? —4(n —1)

A 2(n— 1)

(2) If the square length of the second fundamental form is constant, then S = Sy or
S = 5_, and M ‘s isometric to hyperbolic cylinder S*"*(A\} — 1) x H' (5> — 1) or
T

H' ' (A2 = 1) x S' (53 — 1) .

Let wg be given by Table 6, and put

1

(5.1) o= (wg" 4+ Hp)™,
m 2
(52) 0= (n - )+ (2 S )
mA
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Theorem 5.3. (1) Let n > 3,m > 2, H,, be a number with |H,,| > 1, and
Ao, So be given by (5.1) and (5.2). Let M be a complete hypersurface in H" T (—1)
with constant m-th mean curvature H,, and two distinct principal curvatures one
of which is simple. If the square length of the second fundamental form satisfies
S < Sy orS > Sy, then S = Sy, and M is isometric to the hyperbolic cylinder
S"I(AE - 1) x Hl(% —1).

(2) Let n > 3 and m be even. Then there exists no complete hypersurface in H" T (—1)
of constant negative m-th mean curvature and two distinct principal curvatures.
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