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Abstract. In this paper we consider a complete connected Ricci soliton
(M, g, ξ, λ) of positive Ricci curvature and assign the Ricci tensor Ric = g,
a role of another Riemannian metric on M . It is shown that the identity
map i : (M, g) → (M, g) is a harmonic map. In addition, we also study
compact shrinking gradient Ricci soliton (M, g,∇f, λ) of positive Ricci
curvature and obtain a lower bound for the average value of the potential
function f and show that if the lower bound is attended then the gradient
Ricci soliton is an Einstein manifold.
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1 Introduction

A Riemannian manifold (M, g) is said to be a Ricci soliton if there exists a smooth
vector field ξ on M satisfying

(1.1) Ric +
1
2
£ξ = λg

where Ric denotes the Ricci tensor of M , £ξ denotes the Lie derivative in the direction
of ξ and λ is a constant. A Ricci soliton (M, g, ξ, λ) is shrinking soliton, steady soliton
or expanding soliton according as λ > 0, λ = 0 or λ < 0. Compact Ricci solitons are
the fixed points of the Ricci flow

(1.2)
∂g

∂t
= −2Ric

projected from the space of metrics onto its quotient modulo diffeomorphism and
scaling (cf. [4], [5]) and the complete Ricci solitons arise as blow-up limits for the
Ricci flow on compact manifolds. Topology of Ricci solitons has been studied by
Derdzenski, Lopez and Garcia-Rio, Wylie (cf. [7], [11], [15], [17]. If the vector field
ξ is gradient ∇f of a smooth function f , the Ricci soliton (M, g,∇f, λ) is called a
gradient Ricci soliton and the function f is called the potential function. Gradient
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Ricci solitons have been studied quite extensively in last decade (cf. [6], [9], [12], [13],
[17]). Hamilton [8], conjectured that a compact gradient shrinking Ricci soliton with
positive curvature operator must be Einstein, which is settled in [2] and since then the
question of obtaining conditions under which a Ricci soliton is an Einstein manifold
has been taken up with interest.

A harmonic map from a Riemannian manifold to other Riemannian manifold has
played an important role in linking the geometry to global analysis on Riemannian
manifolds as well as its importance in physics is also well established (cf. [2], [14]).
Therefore it is in interesting question to find harmonic maps on Ricci soliton. In this
paper we are interested in Ricci solitons (M, g, ξ, λ) of positive Ricci curvature and
in assigning the Ricci tensor Ric of M , the role of a Riemannian metric g = Ric on
M . It turns out that the identity map i : (M, g) and (M, g) is a harmonic map. In
fact we prove the following:

Theorem 1.1. Let (M, g, ξ, λ) be an n-dimensional complete connected Ricci soliton
of positive Ricci curvature. Then the identity map i : (M, g) → (M, g) is a harmonic
map, where g = Ric is the Ricci tensor of (M, g).

It is interesting to note that, this is the first attempt to assign the role of Rie-
mannian metric to the Ricci tensor on a Ricci soliton (M, g, ξ, λ) of positive Ricci
curvature. We found the relation between the Levi-Civita connections of these two
metrics on the manifold M (cf. Lemma 2.1), which then ultimately relates the curva-
ture tensor fields of these two metrics. We hope it will be interesting to analyze the
geometry of Ricci soliton vis-a-vis the geometry of the Riemannian manifold (M, g),
where g = Ric.

In case of a gradient Ricci soliton (M, g,∇f, λ), where ∇f is the gradient of a
smooth function f on M , the average value of the potential function f , fav is defined
as

fav =
∫

f

V (M)
,

where V (M) is the volume of M . We find a lower bound for fav, in the case of non-
Einstein gradient Ricci soliton and as a consequence, we show that the lower bound
is attended only by Einstein manifolds. In fact we prove the following:

Theorem 1.2. Let (M, g,∇f, λ) be an n-dimensional compact non-Einstein gradient
shrinking Ricci soliton of positive Ricci curvature. Then

fav ≥ n

2

We also show that on an n-dimensional compact gradient shrinking Ricci soliton
(M, g,∇f, λ) of positive Ricci curvature the inequality 2fav ≤ n implies that M is an
Einstein manifold with Einstein constant λ (cf. Corollary 4.1 in Section 4).

2 Preliminaries

Let (M, g, ξ, λ) be an n-dimensional Ricci soliton of positive Ricci curvature. We treat
the Ricci tensor Ric = g as another Riemannian metric on M . Let ∇ and ∇ be the
Riemannian connections with respect to the metrics g and g respectively. The Ricci
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operator Q of the Riemannian manifold (M, g) is defined by Ric(X,Y ) = g(QX, Y ),
X, Y ∈ X(M), where X(M) is the Lie-algebra of smooth vector fields on M . Using
Kozul’s formula together with equation (1.1) of the Ricci soliton, after a straight
forward calculation we arrive at the following expression for the covariant derivative
with respect to the connection ∇

2g(∇XY,Z) = 2g(∇XY,Z) + R(X, ξ; Y,Z)− g (∇X∇Y ξ −∇∇XY ξ, Z) ,

X, Y, Z ∈ X(M), where R is the curvature tensor of the Riemannian manifold (M, g).
Since Ric = g, the above equation gives

(2.1) 2Q(∇XY −∇XY ) = R(X, ξ)Y −∇X∇Y ξ +∇∇XY ξ.

Now, since the Ricci curvature is positive, at each point p ∈ M , the Ricci operator Q :
X(M) → X(M) gives an isomorphism Qp : TpM → TpM of the tangent space TpM of
M at p, and consequently for the tangent vector 1

2 (R(X, ξ)Y −∇X∇Y ξ +∇∇XY ξ)p ∈
TpM , there exists a vector (T (X, Y ))p ∈ TpM such that

Qp (T (X, Y ))p =
1
2

(R(X, ξ)Y −∇X∇Y ξ +∇∇XY ξ)p

Consequently we get

(2.2) Q (T (X,Y )) =
1
2

(R(X, ξ)Y −∇X∇Y ξ +∇∇XY ξ) , X,Y ∈ X(M),

where T : X(M)×X(M) → X(M) is a tensor field of type (1, 2) on M . Thus equation
(2.1) can be expressed as

2Q(∇XY −∇XY ) = 2Q (T (X,Y ))

and as Q is non-singular (as the Ricci tensor is positive definite), we have the follow-
ing:

Lemma 2.1. Let (M, g, ξ, λ) be an n-dimensional Ricci soliton of positive Ricci curva-
ture. If g = Ric and ∇, ∇ are Riemannian connections on the Riemannian manifolds
(M, g), (M, g) respectively, then

∇XY = ∇XY + T (X, Y ), X,Y ∈ X(M)

where
2Q(T (X, Y )) = R(X, ξ)Y −∇X∇Y ξ +∇∇xY ξ.

Note that as both connections ∇, ∇ being Riemannian connections, are torsion
free, and consequently

(2.3) T (X, Y ) = T (Y, X), X, Y ∈ X(M)

that is the tensor field T is symmetric.
Let (M, g), (N, g

′
) be two Riemannian manifolds of dimensions m and n respec-

tively. Consider a smooth map f : (M, g) → (N, g
′
), and define the Lagrangian of f

by

£f = e(f) =
1
2
‖df‖2 .
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The map f is said to be harmonic if it is stationary point of the variational principle
for £f on any compact subset U ⊂ M , that is, if f is solution of the Euler-Lagrange
equation

δ£f = 0,

where δ denotes the functional derivative (cf. [1], [6], [14]). If we denote the covariant
derivative operators on (M, g) and(N, g

′
) by ∇ and ∇ respectively, then the second

fundamental form αf of the map f is defined by (cf. [12], [14])

(2.4) αf (X,Y ) = ∇df(X)df(Y )− df(∇XY ), X, Y ∈ Γ(TM).

It is known that a smooth map f : (M, g) → (N, g
′
) is harmonic if and only if the

Trace of the second fundamental form αf is zero (cf. [6]).

3 Proof of Theorem 1.1

Let (M, g, ξ, λ) be an n-dimensional complete connected Ricci soliton of positive
Ricci curvature. Then by Lemma 2.1, it follows that T is the second fundamental
form of the identity map i : (M, g) → (M, g). Choose a local orthonormal frame
{e1, ....., en} on (M, g), which together with equation (2.2) gives

2Q

(
n∑

i=1

T (ei, ei)

)
=

n∑

i=1

(
R(ei, ξ)ei −∇ei∇eiξ +∇∇ei

eiξ
)

= −Q(ξ)−∆ξ(3.1)

where ∆ξ is the rough Laplacian of the vector field ξ. Let η be the 1-form dual to ξ
and define a skew-symmetric operator φ : X(M) → X(M) by

(3.2) dη(X, Y ) = 2g(φ(X), Y ), X, Y ∈ X(M).

Then using Kozul’s formula, it is straight forward to verify that

2g(∇Xξ, Y ) = (£ξg) (X,Y ) + dη(X, Y ), X,Y ∈ X(M).

Using equations (1.1) and (3.2) in above equation we arrive at

(3.3) ∇Xξ = λX −Q(X) + φ(X), X ∈ X(M).

The covariant derivative (∇Q) of the operator Q is defined as (∇Q) (X, Y ) = ∇XQY −
Q(∇XY ), X,Y ∈ X(M) and it is well known that

(3.4)
n∑

i=1

(∇Q) (ei, ei) =
1
2
∇S,

where S is the scalar curvature of the Riemannian manifold (M, g). Using above
equation together with equation (3.3) to compute ∆ξ, we get

(3.5) ∆ξ = −1
2
∇S +

n∑

i=1

(∇φ)(ei, ei).
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Note that φ being skew symmetric we have

(3.6) g((∇φ)(X, Y ), Z) = −g (Y, (∇φ)(X, Z)) , X, Y, Z ∈ X(M).

Choosing a point wise constant local orthonormal frame {e1, ....., en} on the Rieman-
nian manifold (M, g), we use equation (3.3) to compute

R(ei, X)ξ = − (∇Q) (ei, X) + (∇φ) (ei, X) +∇XQ(ei)−∇Xφ(ei), X ∈ X(M).

Taking inner product with ei in above equation with respect to metric g and summing
the equations we arrive at

Ric(X, ξ) = −1
2
g(∇S,X)− g

(
X,

n∑

i=1

(∇φ) (ei, ei)

)
+ g(X,∇S),

where we have used equations (3.4), (3.6), the facts that Q is symmetric, φ is skew-
symmetric and TraceQ = S, Traceφ = 0. Thus the above equation gives

Q(ξ) =
1
2
∇S −

n∑

i=1

(∇φ) (ei, ei),

which together with equation (3.5) gives

∆ξ + Q(ξ) = 0.

Thus Q being non-singular, the above equation together with equation (3.1) implies
that

(3.7)
n∑

i=1

T (ei, ei) = 0.

This proves that the tension τ(i) =TraceT = 0 that is the identity map is harmonic.

Remark 3.1. Suppose that the Ricci soliton (M, g, ξ, λ) has positive Ricci curvature.
We denote by R and R the curvature tensor fields of the Riemannian manifolds (M, g)
and (M, g) respectively. Then using Lemma 2.1, it is a straight forward calculation
to show that

R(X,Y )Z = R(X, Y )Z + (∇XT ) (Y, Z)− (∇Y T ) (X, Z)
+T (X, T (Y, Z))− T (Y, T (X,Z)).

If we assume that the Ricci tensor of the Ricci soliton (M, g, ξ, λ) is parallel, then the
uniqueness of the Levi-Civita connection on the Riemannian manifold (M, g), where
g = Ric and Lemma 2.1 will imply that T = 0 and consequently in this case the above
relation between curvature tensor fields reduces to

(3.8) R(X, Y )Z = R(X, Y )Z.

Choosing a local orthonormal frame {e1, .., en} on an open subset U of the Ricci soliton
(M, g, ξ, λ) that diagonalizes Q with Qei = µiei. Then as µi > 0 on U , we define

Ei =
1√
µi

ei,
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which gives a local orthonormal frame {E1, .., En} for the Riemannian manifold (M, g).
Consequently the equation (3.8) gives the Ricci tensor Ric of the Riemannian manifold
(M, g) as Ric = g, that is the Riemannian manifold (M, g) is an Einstein manifold.
Thus we have the following corollary.

Corollary 3.2. Let (M, g, ξ, λ) be an n-dimensional Ricci soliton of positive Ricci
curvature. If g = Ric is parallel on the Riemannian manifold (M, g), then the Rie-
mannian manifold (M, g) is an Einstein manifold.

Note that in Corollary 3.2 we did not assume compactness of the Ricci soliton
nor we have assumed any condition on the sectional curvature of the Ricci soliton
and as such even though the Ricci tensor being parallel, the Ricci soliton need not
be an Einstein manifold. For, if (M, g, ξ, λ) is Einstein manifold of positive scalar
curvature, then (M, g) will be homothetic to (M, g, ξ, λ) and therefore trivially will
be an Einstein manifold.

4 Proof of Theorem 1.2

Suppose that (M, g,∇f, λ) is an n-dimensional compact shrinking gradient soliton
with potential function f . Then equation (1.1) takes the form

(4.1) Q + A = λI,

where A is the Hessian operator of the function f defined by A(X) = ∇X∇f . The
Hessian operator A satisfies

(4.2) (∇A) (X, Y )− (∇A) (Y, X) = R(X, Y )∇f , trA = ∆f = nλ− S,

where ∆f is the Laplacian of the function f and S is the scalar curvature of the Rie-
mannian manifold (M, g). Using symmetry of the operator A and local orthonormal
frame {e1, .., en} in equation (4.2) we immediately get

n∑

i=1

(∇A) (ei, ei) = Q(∇f)−∇S.

Using equations (3.5) and (4.1) in above equation we conclude

(4.3) Q(∇f) =
1
2
∇S.

Also, using equations (4.1) and (4.3), we have that

1
2
X

(
‖∇f‖2

)
= λX(f)− g(Q(∇f), X) = λX(f)− 1

2
X(S), X ∈ X(M),

which proves that 1
2 (‖∇f‖2 +S)−λf = c, where c is a constant. We can replace f by

f − c
λ to conclude that the potential function f of the gradient soliton (M, g,∇f, λ)

satisfies

(4.4) 2λf = ‖∇f‖2 + S,
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which together with the second equation in (4.2) gives

(4.5) ∆f + 2λf = nλ + ‖∇f‖2 .

Let k0(n− 1) be the infimum and K0(n− 1) be the supremum of the Ricci curvatures
of the compact Ricci soliton (M, g,∇f, λ). As the Ricci curvature is positive, both
numbers k0 and K0 are positive, multiplying equation (4.5) by (n−1)k0 and (n−1)K0

respectively and integrating the resulting equations, we arrive at

2λ(n− 1)k0

∫

M

f ≤ nλ(n− 1)k0V (M) +
∫

M

Ric(∇f,∇f),

nλ(n− 1)K0V (M) +
∫

M

Ric(∇f,∇f) ≤ 2λ(n− 1)K0

∫

M

f,

where V (M) is the volume of M . Adding these two inequalities, we conclude that

nλ(n− 1)(K0 − k0)V (M) ≤ 2λ(n− 1)(K0 − k0)
∫

M

f.

As the Ricci soliton (M, g,∇f, λ) is shrinking and non-Einstein, we get that

fav ≥ n

2
.

This proves the result. ¤

Finally we have the following:

Corollary 4.1. Let (M, g,∇f, λ) be an n-dimensional compact shrinking gradient
Ricci soliton of positive Ricci curvature. If the average value of the potential function
f satisfies 2fav ≤ n, then M is an Einstein manifold.

Proof. Integrating equation (4.5) and using

favV (M) =
∫

M

f,

we get ∫

M

‖∇f‖2 ≤ 0,

which proves that A = 0 and consequently M is an Einstein manifold with Einstein
constant λ. ¤
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