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Abstract. This paper studies functionals defined by multiple integrals as-
sociated to differential forms on the jet bundle of first order corresponding
to some Riemannian manifolds; the domain of these functionals consists in
submanifold maps satisfying certain conditions of integrability. Our idea
is to give geometric properties to the domain of a functional allowing us to
properly define convexity. The method we use consists in creating an ex-
tended Riemannian submanifold of the first order jet bundle, in connection
to this domain and carrying back its geometric properties. This process
allows us to consider and use the geodesic deformations. Furthermore,
fixing a pairing map, allows us to define generalized convex (preinvex and
invex) functionals.
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1 Introduction

The research in convexity of functions is an old theory turning permanently into new
directions: one of these directions consists in studying generalized convex (namely
invex, preinvex, quasipreinvex, pseudopreinvex, quasiinvex, pseudoinvex...) functions
[12]-[15], [17] and another one focuses on studying convex functions in Riemannian
setting [7]-[9], [16], [22]. The most recent works in convexity combine these two ideas,
using geodesics in order to define Riemannian preinvex and invex functions [1], [3]-[4],
[18].

This paper extends various Riemannian convexities from functions to functionals.
The theory developed here is entirely original. The necessity of creating a consistent
analyze of Riemannian convex functionals was suggested by their utility in optimal
control or variational problems [10], [11], [23]-[25], [26], [28]-[34].

The similitude between this paper and the above-quoted books, and also its novelty
in the study of the convex functionals, consist in the introduction and use of geodesic
deformations and pairing maps. These two objects become geometric parameters for
convexity, since altering one or both of them can create, destroy or preserve convexity.
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To define the Riemannian convexity of functionals, we also join some ideas from
Differential Geometry [2], [5], [6], [11], Geometric Dynamics [20], [21], Riemannian
Convexity and Optimization [26], [16], [19].

Section 1 contains some bibliographical notes. Section 2 defines and studies the
geodesic deformations and their impact on functionals in Riemannian setting. Section
3 and 4 use pairing maps in order to define and study Riemannian preinvex function-
als. Sections 5 turns to η-convex and invex functionals. The most important result of
this theory asserts that being an invex functional is equivalent with having equality
between the set of critical points and the set of global minimum points. Section 6
gives some examples of geometric invex functionals. Section 7 points out the main
outcomes of this theory.

2 Geodesic deformations and convex
functionals in Riemannian setting

Let (M, g) be a complete n-dimensional Riemannian manifold and (N, h) be a compact
m-dimensional Riemannian manifold. We denote by J1(N, M) the first order jet
bundle and by G = h + g + h−1 ⊗ g its induced metric (see [25]). Let E be a set
of submanifold maps from N to J1(N, M) and E(I) be the set of those submanifold
maps that are integral maps for a family I of differential 1-forms on J1(N, M). If θ is
a differential m-form on J1(N, M) we can associate the functional (multiple integral)

(2.1) Jθ : E(I) → R, Jθ[Φ] =
∫

N

Φ∗θ,

where Φ∗θ denotes the pull-back of θ on N .
For a fixed submanifold map Φ ∈ E(I) we associate a deformation map ϕ : N ×

(−δ, δ) → J1(N,M), satisfying ϕ(·, 0) = Φ. We denote by

XΦ ∈ XΦ(J1(N,M)), X(Φ(t)) = ϕ∗
∂

∂ε
|ε=0

the infinitesimal deformation induced by ϕ, that is, XΦ is the vector field along Φ(N)
satisfying XΦ(t) = ∂ϕ

∂ε (t, 0), ∀t ∈ N . Since all the maps from E(I) preserve the
boundary of N , it follows that XΦ also satisfies the condition XΦ(t) = 0, ∀t ∈ ∂N .
From now on, TΦE(I) will denote the set of all infinitesimal deformations of Φ as
above and

TE(I) = ∪Φ∈E(I)TΦE(I).

It seems natural now to consider also the set

(2.2) X (E(I)) = {X ∈ X (J1(N, M))| XΦ = X|Φ(N) ∈ TΦE(I), ∀Φ ∈ E(I)}.

Our basic example is the multitime variational problem: (N,h) a compact m-
dimensional Riemannian manifold with local coordinates (t1, ..., tm); (M, g) an n-
dimensional manifold with local coordinates (x1, ..., xn); the induced local coordinates
(tγ , xi, xi

γ) on J1(N, M); L : J1(N,M) → R a Lagrangian and θ the Cartan form
associated to L, that is θ = Ldt + ∂L

∂xi
γ
ωi ∧ dtγ , where I = {ωi ∈ Λ1(J1(N, M))| ωi =
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dxi − xi
σdtσ, i = 1,m} and dtγ = i ∂

∂tγ
dt. If we introduce the set E(I) = {Φ : N →

J1(N, M)| Φ(t) = (t, x(t), ∂x
∂t (t))}, then its tangent space is

TΦE(I) = {X = (Xγ , Xi, Xi
γ)| Xγ ◦ Φ = 0, Dγ(Xi ◦ Φ) = Xi

γ ◦ Φ,

Xi(Φ(t)) = 0, ∀t ∈ ∂N}(2.3)

and Jθ : E(I) → R is defined by Jθ[Φ] =
∫

N
Φ∗θ =

∫
N

L ◦ Φdt = JL[Φ]. From now
on, when dealing with such a variational problem, we replace Jθ by JL, emphasizing
the fact that the m-form θ is related to the Lagrangian L.

We return to the general problem and, after associating to E(I) the previous
structures on J1(N, M), we look for analyzing their geometric properties and car-
rying these properties back to the set E(I). We remark that X (E(I)) is not an
F(J1(N, M))-module. Therefore, instead X (E(I)), we consider the set X̃ (E(I)) rep-
resenting the F(J1(N, M))-module generated by X (E(I)) and we also denote by
T̃ΦE(I) the F(J1(N, M))-module generated by TΦE(I).

Lemma 2.1. The set X̃ (E(I)) is an involutive distribution on J1(N,M) and, for
each Φ ∈ E(I), there is an integral submanifold AΦ ⊂ J1(N, M) such that XΨ(AΦ) =
T̃ΨE(I), ∀Ψ ∈ E(I) a submanifold map resulting after a deformation of Φ in E(I).

Remark 2.2. If E(I) is connected, then Ψ(N) ⊂ AΦ, ∀Φ, Ψ ∈ E(I). Otherwise,
for each connected component of E(I) we can associate a submanifold, as we did
above, and we consider A the submanifold for which the previous submanifolds are the
connected components. The submanifold A is called the image of E(I) on J1(N, M).

Definition 2.1. A deformation map ϕ : N × [0, 1] → J1(N,M) is called geodesic
deformation if ϕ(t, ·) is a geodesic in (A,G), for each t ∈ N .

Definition 2.2. A subset F ⊂ E(I) is called totally convex if, for all pairs of subman-
ifold maps Φ, Ψ ∈ F and all geodesic deformation ϕ : N×[0, 1] → J1(N, M), ϕ(·, 0) =
Φ, ϕ(·, 1) = Ψ, we have

(2.4) ϕ(·, ε) ∈ F, ∀ε ∈ [0, 1].

Definition 2.3. Let F ⊂ E(I) be a totally convex subset of submanifold maps and
let θ be a differential m-form on J1(N,M). The functional

Jθ : F → R, Jθ[Φ] =
∫

N

Φ∗θ

is called Riemannian convex if

(2.5) Jθ[ϕ(·, ε)] ≤ (1− ε)Jθ[Φ] + εJθ[Ψ],

for all Φ and Ψ in F , for all the geodesic deformations ϕ : N × [0, 1] → J1(N,M)
connecting Φ and Ψ and for all ε ∈ [0, 1].

The functional Jθ is called Riemannian strictly convex if

(2.6) Jθ[ϕ(·, ε)] < (1− ε)Jθ[Φ] + εJθ[Ψ],

for all Φ, Ψ, ϕ as above, Φ 6= Ψ and ε ∈ (0, 1).
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Definition 2.4. Let Jθ : E(I) → R be the functional associated to the differential
m-form θ. The map

(2.7) dJθ(Φ) : TΦE(I) → R, dJθ(Φ)[XΦ] =
d

dε
J [ϕ(·, ε)]|ε=0,

where ϕ : N × (−δ, δ) → J1(N, M) is a deformation of Φ in E(I) such that XΦ(t) =
∂ϕ
∂ε (t, 0), is called the differential of the functional Jθ at Φ.

Definition 2.5. A map Φ ∈ E(I) is called critical point of the functional Jθ if
dJθ(Φ)[XΦ] = 0, ∀XΦ ∈ TΦE(I).

Theorem 2.3. The functional Jθ : F → R is convex iff

(2.8) Jθ[Ψ]− Jθ[Φ] ≥ dJθ(Φ)[X], ∀Φ,Ψ ∈ F,

where X ∈ TΦE(I) is the infinitesimal deformation associated to a geodesic deforma-
tion between Φ and Ψ.

Moreover, the functional Jθ : F → R is strictly convex iff

(2.9) Jθ[Ψ]− Jθ[Φ] > dJθ(Φ)[X], ∀Φ 6= Ψ ∈ F.

Corollary 2.4. If L is a C1 Lagrangian in a multitime variational problem, then JL

is convex iff

(2.10)
∫

N

L ◦Ψdt−
∫

N

L ◦ Φdt ≥
∫

N

X(L) ◦ Φdt, ∀Φ, Ψ ∈ F,

where X ∈ TΦE(I) is associated again to a geodesic deformation between Φ and Ψ.

3 Riemannian η-preconvex functionals

Definition 3.1. Let F ⊆ E(I) be a nonvoid subset. A vector map

(3.1) η : F × F → TE(I), η(Ψ, Φ) ∈ TΦE(I)

is called pairing map on F .

Example If Φ ∈ E(I) and VΦ = {Ψ ∈ E(I)| Ψ(t) ∈ VΦ(t), ∀t ∈ N}, where VΦ(t) is a
neighborhood of Φ(t) such that expΦ(t) : TΦ(t)J

1(N, M) → VΦ(t) is a diffeomorphism,
then we consider the map

(3.2) η(Φ) : VΦ → TΦE(I), η(Φ)(Ψ)(t) = exp−1
Φ(t)(Ψ(t)).

Furthermore, we denote by η0 a pairing map satisfying

(3.3) η0(Ψ, Φ) = η(Φ)(Ψ), ∀Ψ ∈ VΦ.

Remark 3.1. For a multitime variational problem and a pairing map η : F × F →
TE(I) we write

η(Ψ,Φ)(t) =
(
0, ηi(t, xi(t), yi(t), xi

γ(t), yi
γ(t)),

Dα[ηi(t, xj(t), yj(t), xj
σ(t), yj

σ(t))]
)
,

(3.4)

where Dα denotes the total derivative with respect to tα.
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If η : F × F → TE(I) is a pairing map and Φ, Ψ ∈ F , we consider γΨΦη :
N × (−δ, δ) → J1(N, M), [0, 1] ⊂ (−δ, δ), a geodesic deformation satisfying

(3.5) γΨΦη(t, 0) = Φ(t), ∀t ∈ N and
∂γΨΦη

∂ε
(t, 0) = η(Ψ, Φ)(t), ∀t ∈ N.

Definition 3.2. Let F ⊆ E(I) be a nonvoid subset and η : F × F → TE(I) be a
pairing map on F . The subset F is called totally η-convex if

(3.6) γΨΦη(·, ε) ∈ F, ∀Ψ,Φ ∈ F, ∀ε ∈ [0, 1].

We consider F ⊂ E(I), η : F × F → TE(I) a pairing map such that F is
totally η-convex, θ ∈ Λm(J1(N, M)) and Jθ the functional defined by multiple integral
associated to θ. From now on, γΨΦη denotes a geodesic deformation generated by
Ψ,Φ ∈ F and the pairing map η as above.

Definition 3.3. The functional Jθ : F → R is called Riemannian η-preconvex on F
if

(3.7) Jθ[γΨΦη(·, ε)] ≤ (1− ε)Jθ[Φ] + εJθ[Ψ], ∀Φ, Ψ ∈ F, ∀ε ∈ [0, 1].

The functional Jθ : F → R is called Riemannian strictly η-preconvex on F if

(3.8) Jθ[γΨΦη(·, ε)] < (1− ε)Jθ[Φ] + εJθ[Ψ], ∀Φ,Ψ ∈ F, Φ 6= Ψ, ∀ε ∈ (0, 1).

Definition 3.4. A functional Jθ : F → R is called Riemannian (strictly) preinvex on
F if there exists a pairing map η such that F is totally η-convex and Jθ is Riemannian
(strictly) η-preconvex on F .

The next Theorem ensures us that the usual Riemannian convexity of functionals
is a particular case of Riemannian η-preconvexity, when considering η to be the pairing
map induced by the inverse of the exponential map (see the example).

Theorem 3.2. If F ⊆ E(I) is a totally convex subset, Jθ : F → R is a Riemannian
(strictly) convex functional on F and η0 is the pairing map induced by the inverse of
the exponential map, then Jθ is Riemannian (strictly) η0-preconvex.

Proof. We recall that F is called totally convex if

(3.9) ϕΦΨ(·, ε) ∈ F, ∀Φ,Ψ ∈ F, ∀ε ∈ [0, 1],

where ϕΦΨ : N × [0, 1] → J1(N, M) is a geodesic deformation between Φ and Ψ, that
is, for each t ∈ N , ϕ(t, ·) is a geodesic between Φ(t) and Ψ(t). Moreover, Jθ is a
convex functional if

(3.10) Jθ[ϕΦΨ(·, ε)] ≤ (1− ε)Jθ[Φ] + εJθ[Ψ], ∀Φ, Ψ ∈ F, ∀ε ∈ [0, 1].

For Φ,Ψ and ϕΦΨ as above, we have

η0(Ψ, Φ)(t) = exp−1
Φ(t)(Ψ(t)) =

∂ϕΦΨ

∂ε
(t, 0), ∀t ∈ N.
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If γ = γΨΦη0 , we have γ(t, 0) = Φ(t) = ϕΦΨ(t, 0) and

∂γ

∂ε
(t, 0) = η0(Ψ, Φ)(t) =

∂ϕΦΨ

∂ε
(t, 0), ∀t ∈ N.

It follows that γ(t, ε) = ϕΦΨ(t, ε), ∀t ∈ N, ∀ε ∈ [0, 1] and, consequently, F is a totally
η0-convex set and Jθ is a Riemannian η0-preconvex functional. ¤

The following results analyze the behavior of the η-preconvex functionals when
changing coordinates.

Theorem 3.3. Let F ⊂ E(I) be a totally η-convex subset and Jθ : F → R be a
Riemannian η-preconvex functional. If I is the F(J1(N,M))-module generated by I
and if f : J1(N, M) → J1(N, M) is a diffeomorphism preserving I, that is f∗(I) = I,
then the set f(F ) = {f ◦ Φ | Φ ∈ F} is an η̄-totally convex subset and J(f−1)∗θ is a
Riemannian η̄-preconvex functional on f(F ), where

η̄(f ◦Ψ, f ◦ Φ)(t) = f∗(η(Ψ, Φ)(t)), ∀Ψ,Φ ∈ F, ∀t ∈ N.

Proof. If Φ ∈ F , let Φ̄ = f ◦ Φ ∈ ϕ(F ). Since f∗ω ∈ I, ∀ω ∈ I, it follows Φ∗(f∗ω) =
Φ̄∗ω = 0,∀ω ∈ I, which proves that Φ̄ ∈ E(I). Therefore f(F ) ⊂ E(I).

Let γ = γΨΦη : N × (−δ, δ) → J1(N, M) be the geodesic deformation associated
to Φ, Ψ ∈ F and η, and let γ̄ = γΨ̄Φ̄η̄ : N × (−δ, δ) → J1(N,M) be the geodesic
deformation associated to Φ̄, Ψ̄ and η̄. We know that, for each point t ∈ N ,

γ̄(t, 0) = Φ̄(t) = f ◦ Φ(t) = (f ◦ γ)(t, 0)

and
∂γ̄

∂ε
(t, 0) = η̄(Ψ̄, Φ̄)(t) =

∂(f ◦ γ)
∂ε

(t, 0),

and it follows that γ̄ = f ◦ γ.
Since F is totally η-convex, we have γ(·, ε) ∈ F, ∀ε ∈ [0, 1]. Therefore γ̄(·, ε) ∈

f(F ), ∀ε and f(F ) is totally η̄-convex.
Moreover, we have

J(f−1)∗θ[γ̄(·, ε)] =
∫

N

γ̄∗ε ((f−1)∗θ) =
∫

N

(f−1 ◦ γ̄ε)∗θ

= Jθ[f−1 ◦ γ̄(·, ε)] ≤ (1− ε)Jθ[Φ] + εJθ[Ψ]
= (1− ε)J(f−1)∗θ[Φ̄] + εJ(f−1)∗θ[Ψ̄].

Therefore J(f−1)∗θ is a Riemannian η̄-preconvex functional. ¤

Corollary 3.4. Let JL be a Riemannian η-preconvex action associated to a multitime
variational problem. If f : J1(N, M) → J1(N, M) is a diffeomorphism preserving I
and η̄ is the induced pairing map as in the Theorem 3.3, then JL◦f−1 is a Riemannian
η̄-preconvex functional.

Proof. Since f∗(I) = I, we previously proved that f(E(I)) ⊂ E(I) is a totally η̄-
convex subset. Let θ be the Cartan form associated to L and Φ̄ ∈ f(E(I)), that is
Φ̄ = f ◦ Φ, with Φ ∈ E(I). Then Φ̄∗((f−1)∗θ) = Φ∗θ = L ◦ Φdt = (L ◦ f−1) ◦ Φ̄dt,
therefore J(f−1)∗θ = JL◦f−1 and, by applying the Theorem 3.3, we find that JL◦f−1

is an η̄-preconvex functional. ¤
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Corollary 3.5. If JL : E(I) → R is a functional as above, then the property of JL

of being Riemannian preinvex is invariant with respect to any change of coordinates
on M .

Proof. We consider (x1, .., xn) and (x̃1, ..., x̃n), two systems of coordinates on M ,
and (t1, ..., tm) some local coordinates on N . They generate two sets of coordinates
(t, xi, xi

γ) and (t, x̃i, x̃i
γ) on J1(N, M). If f : J1(N, M) → J1(N,M) is the diffeomor-

phism associated to this change of coordinates, then f∗(I) = I. Indeed,

f∗ωi = f∗(dx̃i − x̃i
σdtσ) =

∂x̃i

∂xj
dxj − ∂x̃i

∂xj
xj

σdtσ =
∂x̃i

∂xj
ωj ∈ I.

It follows f∗(I) ⊂ I. Since f : J1(N, M) → J1(N, M) is a diffeomorphism, f∗(I) = I.
If L(t, xi, xi

γ) = L◦f−1(t, x̃i, x̃i
γ), then, by applying the previous Corollary, we obtain:

if JL is Riemannian preconvex with respect to a pairing map η, then there exists a
pairing map η̄ such that JL◦f−1 is Riemannian η̄-preconvex. ¤

4 Properties of Riemannian η-preconvex functionals

Theorem 4.1. If Jθ : F → R is a Riemannian η-preconvex functional on F , then
every local minimum point for Jθ is also a global minimum point.

Proof. Let Φ ∈ F be a local minimum point for Jθ. There is a neighborhood G of Φ
in F such that Jθ[ξ] ≥ Jθ[Φ], ∀ξ ∈ G. We suppose that there is Ψ ∈ F −G such that
Jθ[Ψ] < Jθ[Φ] and we consider γ = γΨΦη. Due to the η-preconvexity of Jθ, we have

Jθ[γ(·, ε)] ≤ (1− ε)Jθ[Φ] + εJθ[Ψ] < Jθ[Φ], ∀ε ∈ (0, 1].

On the other hand, there is some δ ∈ (0, 1] such that γ(·, δ) ∈ G and Jθ[γ(·, δ)] ≥
Jθ[Φ]. We obtain a contradiction, therefore Φ is a global minimum point for Jθ. ¤

Theorem 4.2. If Jθ : F → R is the functional associated to a differential m-form θ,
the following properties hold:

1. if Jθ is a Riemannian η-preconvex functional and k > 0, then kJθ is also Rie-
mannian η-preconvex;

2. if Jθ and JΩ are two Riemannian preconvex functionals with respect to the same
pairing map η, then Jθ + JΩ is also an η-preconvex functional;

3. if {Jθi}i=1,k are Riemannian η-preconvex functionals and {ki}i=1,k are positive

scalars, then
∑k

i=1 kiJθi is also η-preconvex.

Theorem 4.3. If {Jθi}i∈Λ are Riemannian η-preconvex functionals, then

(sup
i∈Λ

Jθi) : F → R, (sup
i∈Λ

Jθi)[Φ] = sup
i∈Λ

(Jθi [Φ]),

is also Riemannian η-preconvex.

Theorem 4.4. If Jθ is Riemannian η-preincave on F and Jθ[Φ] > 0, ∀Φ ∈ F , then
1/Jθ is a Riemannian preconvex functional with respect to η.
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Proof. Let Ψ,Φ ∈ F and γ = γΨΦη. Then

Jθ[γ(·, ε)] ≥ (1− ε)Jθ[Φ] + εJθ[Ψ], ∀ε ∈ [0, 1]

and
(1/Jθ)[γ(·, ε)] ≤ 1/[(1− ε)Jθ[Φ] + εJθ[Ψ]], ∀ε ∈ [0, 1].

On the other side, if x, y > 0 and ε ∈ [0, 1], we have

(1− ε)
1
x

+ ε
1
y

=
[(1− ε)y + εx][(1− ε)x + εy]

xy[(1− ε)x + εy]

=
(1− ε)ε(x− y)2 + xy

xy[(1− ε)x + εy]
≥ 1

(1− ε)x + εy
.

Applying the previous inequality for x = Jθ[Φ] and y = Jθ[Ψ], we obtain

(1/Jθ)[γ(·, ε)] ≤ (1− ε)(1/Jθ)[Φ] + ε(1/Jθ)[Ψ], ∀ε ∈ [0, 1],

therefore, 1/Jθ is Riemannian η-preconvex. ¤

Theorem 4.5. Let Jθ : F → R be a Riemannian η-preconvex functional and ϕ : R→
R a convex increasing function. Then ϕ ◦ Jθ : F → R is also η-preconvex on F .

Proof. If Φ, Ψ ∈ F , let γ = γΨΦη. Then Jθ[γ(·, ε)] ≤ (1 − ε)Jθ[Φ] + εJθ[Ψ], which
implies (ϕ ◦ Jθ)[γ(·, ε)] ≤ ϕ((1− ε)Jθ[Φ] + εJθ[Ψ]) ≤ (1− ε)ϕ(Jθ[Φ]) + εϕ(Jθ[Ψ]). ¤

5 η-Convexity of functionals

Theorem 5.1. If F ⊆ E(I) is an open, totally η-convex subset and Jθ : F → R is a
Riemannian η-preconvex functional, then Jθ satisfies

Jθ[Ψ]− Jθ[Φ] ≥ dJθ(Φ)[η(Ψ,Φ)], ∀Φ, Ψ ∈ F.

Moreover, if the functional Jθ : F → R is Riemannian strictly η-preconvex, then

Jθ[Ψ]− Jθ[Φ] > dJθ(Φ)[η(Ψ, Φ)], ∀Φ,Ψ ∈ F, Ψ 6= Φ.

Definition 5.1. Let F ⊆ E(I) be an open subset, Jθ : F → R be the functional
associated to a differential m-form θ and η : F ×F → TE(I) be a pairing map on F .
The functional Jθ is called η-convex at Φ ∈ F if

(5.1) Jθ[Ψ]− Jθ[Φ] ≥ dJθ(Φ)[η(Ψ,Φ)], ∀Ψ ∈ F.

The functional Jθ is called strictly η-convex at Φ ∈ F if

(5.2) Jθ[Ψ]− Jθ[Φ] > dJθ(Φ)[η(Ψ, Φ)], ∀Ψ ∈ F, Ψ 6= Φ.

Definition 5.2. The functional Jθ is called invex if there is a pairing map η : F×F →
TE(I) such that Jθ is η-convex.
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Remark 5.2. If L : J1(N, M) → R is a C1 Lagrangian associated to a multitime
variational problem, then the functional JL : F → R is η-convex if

(5.3)
∫

N

L(Ψ(t))dt−
∫

N

L(Φ(t))dt ≥
∫

N

η(Ψ, Φ)(t)(L)dt, ∀Ψ, Φ ∈ F

which, furthermore, is equivalent to

∫

N

L(t, yi(t), yi
σ(t))dt−

∫

N

L(t, xi(t), xi
σ(t))dt≥

∫

N

{ηk(t, xi(t), yi(t), xi
σ(t), yi

σ(t))

· ∂L

∂xk
(t, xi(t), xi

σ(t)) + Dγ [ηk(t, xi(t), yi(t), xi
σ(t), yi

σ(t))]
∂L

∂xk
γ

(t, xi(t), xi
σ(t))}dt,

∀x, y : N → M.

(5.4)

We establish next the relation between the invexity and the Riemannian convexity
of functionals introduced and studied in the previous sections.

Proposition 5.3. Let F ⊆ E(I) be an open totally convex subset and Jθ : F → R be
the functional associated to a differential m-form θ. The functional Jθ is Riemannian
convex iff

(5.5) Jθ[Ψ]− Jθ[Φ] ≥ dJθ(Φ)[X], ∀Ψ, Φ ∈ F,

where X is the infinitesimal deformation associated to a geodesic deformation in E(I)
between Φ and Ψ.

Theorem 5.4. If F ⊆ E(I) is an open totally convex subset, θ is a differential m-
form on J1(N, M) and the functional Jθ : F → R is Riemannian convex, then Jθ is
η0-convex, where η0 is the pairing map induced by the inverse of the exponential map
on J1(N,M).

Remark 5.5. We have proved that the preconvexity implies the convexity, and they
are equivalent for η0. Therefore, it seems natural and more appropriate, from now
on, to refer to the classic convexity by using the term of η0-convexity.

Same as before, the η-convexity is invariant with respect to some coordinate
changes.

Theorem 5.6. Let F ⊂ E(I) be an open subset and Jθ : F → R be an η-convex
functional. If f : J1(N, M) → J1(N, M) is a diffeomorphism preserving I, then the
functional J(f−1)∗θ is η̄-convex on f(F ), where

η̄(f ◦Ψ, ϕ ◦ Φ)(t) = f∗(η(Ψ, Φ)(t)), ∀Ψ, Φ ∈ F, ∀t ∈ N.

Proof. By computation, we have

dJ(f−1)∗θ(f ◦ Φ)[η̄(f ◦Ψ, ϕ ◦ Φ)] =
∫

N

(f ◦ Φ)∗[η̄(f ◦Ψ, ϕ ◦ Φ)((f−1)∗θ)]

=
∫

N

(f ◦ Φ)∗[(f−1)∗(η(Ψ, Φ)(θ))]

= dJθ(Φ)[η(Ψ, Φ)].

Moreover, since J(f−1)∗θ[f ◦ Φ] = Jθ[Φ], ∀Φ ∈ F and Jθ is η-convex, it follows that
J(f−1)∗θ is η̄-convex. ¤
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Corollary 5.7. Let JL be an η-convex action associated to a multitime variational
problem. If f : J1(N, M) → J1(N,M) is a diffeomorphism preserving I and η̄ is the
induced pairing map as in the Theorem 5.6, then JL◦f−1 is an η̄-convex functional.

Corollary 5.8. If JL : E(I) → R is a functional as above, then the property of JL

of being invex is invariant with respect to any change of coordinates on M .

Theorem 5.9. Let F ⊆ E(I) be an open subset, η : F×F → TE(I) be a fixed pairing
map and Jθ be the functional associated to a differential m-form θ. Then,

1. if Jθ : F → R is an η-convex functional, the functional kf, k > 0 is also
η-convex;

2. if Jθ, JΩ : F → R are η-convex functionals, then Jθ + JΩ is also η-convex;

3. if Jθi : F → R, i = 1, k are η-convex functionals and ki > 0, ∀i = 1, k, then the
functional

∑m
i=1 kiJθi

is η-convex.

Theorem 5.10. Let F ⊆ E(I) be an open subset, η : F×F → TE(I) be a fixed pairing
map and Jθ be the functional associated to a differential m-form θ. If Jθ : F → R
is η-convex and Ψ : R → R is an increasing C1 convex function, then Ψ ◦ Jθ is also
η-convex.

Theorem 5.11. Let F ⊆ E(I) be an open subset and Jθ : F → R be the functional
associated to the differential m-form θ. The functional Jθ is invex iff all the critical
points of Jθ are global minimum points.

Proof. Let Φ ∈ F be a critical point for Jθ. Then dJθ(Φ)[η(Ψ, Φ)] = 0, ∀Ψ ∈ F
and, since Jθ is invex, it follows that Jθ[Ψ] ≥ Jθ[Φ], ∀Ψ ∈ F , therefore Φ is a global
minimum point.

Conversely, we suppose that every critical point is a global minimum. If Φ ∈ F
is a critical point, then dJθ(Φ)[X] = 0, ∀X ∈ TΦE(I) and, for Ψ ∈ F arbitrary, we
consider η(Ψ, Φ)(t) = 0, ∀t ∈ N . If Φ is not a critical point, there is a vector field X
such that JX(θ)[Φ] 6= 0 and we consider

η(Ψ, Φ)(t) =
[Jθ[Ψ]− Jθ[Φ]]X(Φ(t))

JX(θ)[Φ]
.

The vector map η is a pairing map and satisfies the condition

Jθ[Ψ]− Jθ[Φ]− dJθ(Φ)[η(Ψ, Φ)] ≥ 0,

therefore Jθ is η-convex. ¤

Theorem 5.12. If L : J1(N, M) → R is a C1 Lagrangian and all the points of the
set CritA(L) = {(t, xi, xi

α) ∈ J1(N, M)| X(L)(t, xi, xi
α) = 0, ∀X ∈ X (E(I))} are

minimum points for L, then JL is invex and all the solutions of the Euler-Lagrange
PDEs are optimal solutions.

Proof. The hypotheses allow us to consider a pairing map η : J1(N, M)×J1(N, M) →
TJ1(N,M) such that L is η-convex and the map η′(Ψ, Φ)(t) = η(Ψ(t), Φ(t)) satisfies
the condition η′(Ψ, Φ) ∈ TΦE(I) (is a pairing map for JL). We have:
JL[Ψ]− JL[Φ]− dJL(Φ)[η′(Ψ, Φ)] =

∫
N

L(Ψ(t))− L(Φ(t))− η(Ψ(t), Φ(t))(L)dt ≥ 0. ¤
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6 Examples

In this section we will analyze some examples of variational problems, establishing
their invexity by applying the Theorem 5.12. From now on, if L is the Lagrangian
associated to a variational problem, then

CritA(L) = {(t, xi, xi
α) ∈ J1(N,M)| X(L)(t, xi, xi

α) = 0, ∀X ∈ X (E(I))},
Crit(L) is the set of critical points of L on J1(N, M) and Crit(JL) denotes the
solutions of the Euler-Lagrange PDEs (i.e. the critical points of the functional JL).
We have Crit(L) ⊂ CritA(L).

Example We consider the functional

J [x(·)] =
∫ 2

1

[ẋ(t)2 + 2x(t)ẋ(t) + x(t)2]dt,

with x(·) satisfying the conditions x(1) = 1 and x(2) = 2.
The Lagrangian is L(t, x, ẋ) = ẋ2 + 2xẋ + x2 and the Euler-Lagrange ODE

writes as ẍ(t)− x(t) = 0. We have

Crit(J) = {x0 : [1, 2] → R| x0(t) =
2− e−1

e2 − 1
et +

e3 − 2e2

e2 − 1
e−t}

A point (t, x, ẋ) is in CritA(L) if X(L)(t, x, ẋ) = 0, ∀X ∈ X (E(I)). Since the ele-
mentary vector field X0 = x ∂

∂x + ẋ ∂
∂ẋ is a vector field from X (E(I)) and

X0(L) = 0 ⇔ 2(x + ẋ)2 = 0 ⇔ ẋ = −x.

It follows that CritA(L) = {(0, α,−α)| α ∈ R} and since all the elements of
CritA(L) are minimum points for the Lagrangian, it follows that L and J are invex,
therefore x0(·) minimizes the functional.

Example We consider the functional

J [x(·)] =
∫ T

0

[ẋ(t)2
t

2
+ x(t)2]dt.

Same arguments as above ensure us that CritA(L) = {(t, 0, 0)| t ∈ R} and since all
these points are minimum points for L it follows that L and J are invex and, therefore,
the solution of the Euler-Lagrange PDE associated to this variational problem is also
a global minimum point. By computation, this minimum point is

x : [0, T ] → R, x(t) = c1
1
t

+ c2,

where c1 and c2 are real constants.

Example We look for minimizing the functional

J [x(·)] =
∫ 3

0

√
1 + ẋ(t)2dt,
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between the points A(0, 2) and B(3, 5).
We have

Crit(J) = {x0 : [0, 3] → [2, 5]| x0(t) = t + 2}
and

CritA(L) = {(t, x, 0)| t ∈ [0, 3], x ∈ [2, 5]}.
All the elements of CritA(L) are minimum points and it follows that x0 is an optimal
solution for the variational problem.

In the following we prove the invexity of volumetric and kinetic energy, when g
is considered to be the Euclidean structure and M = Rn. Let N be a compact m-
dimensional Riemannian manifold with (t1, ..., tm) local coordinates and let E be the
set of all submanifolds maps from N to M .

Definition 6.1. The functional J : E → R, J [x(·)] = 1
2

∫
N

det(x∗g)(t)dt is called the
volumetric energy associated to N , where x∗g denotes the pull-back of the Euclidean
metric g on N .

Theorem 6.1. The volumetric energy functional is invex.

Proof. We introduce the following differentiable functions on J1(N, M):

gαβ(tγ , xi, xi
γ) = δijx

i
αxj

β ; g(tγ , xi, xi
γ) = det(gαβ).

The Lagrangian corresponding to the previous functional is

L(tγ , xi, xi
γ) =

1
2
g(tγ , xi, xi

γ)

and
X0(L) = 0 ⇔ ggαβδijx

i
αxj

β = 0 ⇔ g = 0.

It follows that
CritAL ⊂ {(tγ , xi, xi

γ)| g(tγ , xi, xi
γ) = 0},

and, because all these critical points are also minimum points, it follows that the
Lagrangian is invex on A and, consequently, the functional J is invex. ¤

Definition 6.2. If h is a Riemannian structure on N , the functional

J : E → R,

J(x(·)) =
1
2

∫

N

Trh(gαβ(t, x(t), xi
γ(t))

√
hdt =

∫

N

(Trh(x∗g)
√

h)(t)dt

is called the kinetic energy functional associated to (N,h).

Theorem 6.2. The kinetic energy functional is invex.
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Proof. The Lagrangian associated to this functional is

L(tγ , xi, xi
γ) =

1
2
hαβ(t)δijx

i
αxj

β

and

X0(L) = 0 ⇔ hαβδijx
i
αxj

β = 0 ⇔ G(T, T ) = 0 ⇔ T = 0,

where T = xi
α

∂
∂xi

α
. Consequently,

CritAL = {(t, x, 0)| t ∈ N, x ∈ M}.

Since all the elements of the previous set are also minimum points it follows that L
is an invex Lagrangian on A and J is an invex functional. ¤

7 Conclusions

(1) The pairing maps used for defining the preinvexity and the invexity are local
generalizations for the inverse of the exponential map on the jet bundle.

(2) The Riemannian η0-preconvexity or the η0-convexity (Section 3-5) associated
to the elementary pairing map η0 = exp−1 are equivalent with the classic Riemannian
convexity (Section 2).

(3) The η-convexity, unlike the preconvexity, is a differential concept and not a
Riemannian one.

(4) Our results prove a strong correlation between the convex (invex, preinvex) na-
ture of an action associated to a Lagrangian and the convex nature of the Lagrangian
itself restricted to a submanifold of the first order jet bundle.

(5) An invex variational problem has the advantage to precisely identify the op-
timal solutions: all the solutions of the Euler-Lagrange PDEs are solutions for the
variational problem.

(6) We can define convexity (invexity, preinvexity) of functionals associated to
differential forms outside the variational setting. For that we need an arbitrary Rie-
mannian manifold instead of a jet bundle and the set of the submanifold maps between
a differential manifold and a Riemannian one. If so, by customization, we can regain
from this theory the Riemannian convexity of functions if taking N = {t0}, (M, g)
a Riemannian manifold and, for E the set of all the maps from N to M and f a
differentiable function on M , by considering

Jf : E → R, Jf [Φ] = f ◦ Φ.
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[31] C. Udrişte, I. Ţevy, Multi-time Euler-Lagrange Dynamics, Proc. 7th. WSEAS
Int. Conf. on Systems Theory and Sci. Comp. (ISTASC’07), Greece, August
24-26, 2007, 66-71.
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