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Abstract. We study the Da-homothetic deformations of generalized (κ, µ)-
space forms. We prove that the deformed spaces are again generalized
(κ, µ)-space forms in dimension 3, but not in general, although a slight
change in their definition would make them so. We give infinitely many
examples of generalized (κ, µ)-space forms of dimension 3.
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1 Introduction

In [1], the first named author (jointly with Pablo Alegre and David E. Blair) defined
a generalized Sasakian space form as an almost contact metric manifold (M,φ, ξ, η, g)
whose curvature tensor R is given by

(1.1) R = f1R1 + f2R2 + f3R3,

where f1, f2, f3 are some differentiable functions on M and

R1(X, Y )Z = g(Y,Z)X − g(X, Z)Y,

R2(X, Y )Z = g(X, φZ)φY − g(Y, φZ)φX + 2g(X, φY )φZ,

R3(X, Y )Z = η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y,Z)η(X)ξ,

for any vector fields X,Y, Z on M . We denote it by M(f1, f2, f3).
P. Alegre and A. Carriazo study in [2] and [3] the generalized Sasakian space

forms with contact metric structure, its submanifolds and how conformal changes
of metric affects them, respectively. P. Alegre, A. Carriazo, Y. H. Kim and D. W.
Yoon give results in [4] about B.-Y. Chen’s inequality on submanifolds of generalized
complex space forms and generalized Sasakian space forms. R. Al-Ghefari, F.R. Al-
Solamy and M. H. Shahid analyse in [5] and [6] the CR-submanifolds of generalized
Sasakian space forms while I. Mihai, M. H. Shahid and F. R. Al-Solamy study in
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[17] the Ricci curvature of contact CR-submanifolds of such spaces. S. Hong and M.
M. Tripathi in [13] and S. S. Shukla and S. K. Tiwari in [19] also observe the Ricci
curvature of some submanifolds of generalized Sasakian space forms. In [14], U. K.
Kim gives results if the generalized Sasakian space forms are conformally flat or locally
symmetric, while F. Gherib, F. Z. Kadi and M. Belkhelfa in [12] and F. Gherib, M.
Gorine and M. Belkhelfa in [11] study them under some other symmetry properties.
Lastly, D. W. Yoon and K. S. Cho consider in [21] immersions of warped products
in generalized Sasakian space forms, establishing inequalities between intrinsic and
extrinsic invariants and A. Olteanu provides in [18] analogous inequalities when the
immersion is Legendrian.

In a recent paper, [10], the authors (jointly with M. M. Tripathi) defined a general-
ized (κ, µ)-space form as an almost contact metric manifold (M2n+1, φ, ξ, η, g) whose
curvature tensor can be written as

(1.2) R = f1R1 + f2R2 + f3R3 + f4R4 + f5R5 + f6R6,

where f1, f2, f3, f4, f5, f6 are differentiable functions on M , R1, R2, R3 are the tensors
defined above and

R4(X,Y )Z = g(Y, Z)hX − g(X,Z)hY + g(hY, Z)X − g(hX,Z)Y,

R5(X,Y )Z = g(hY, Z)hX − g(hX, Z)hY + g(φhX, Z)φhY − g(φhY, Z)φhX,

R6(X,Y )Z = η(X)η(Z)hY − η(Y )η(Z)hX + g(hX, Z)η(Y )ξ − g(hY, Z)η(X)ξ,

for any vector fields X, Y, Z, where 2h = Lξφ and L is the usual Lie derivative. This
manifold was denoted by M(f1, . . . , f6). They obviously include generalized Sasakian
space forms, for f4 = f5 = f6 = 0. Moreover, it was proved in [15] that (κ, µ)-space
forms are natural examples of generalized (κ, µ)-space forms for constant functions

(1.3) f1 =
c + 3

4
, f2 =

c− 1
4

, f3 =
c + 3

4
− κ, f4 = 1, f5 =

1
2
, f6 = 1− µ.

In [10], after the formal definition of a generalized (κ, µ)-space form was given,
it was checked that some results that had been true for generalized Sasakian space
forms were also correct for these spaces. Then, some basic identities for generalized
(κ, µ)-space forms were obtained in an analogous way to those satisfied by Sasakian
manifolds.

The case of contact metric generalized (κ, µ)-space forms was deeply studied. It
was proved that they are generalized (κ, µ)-spaces with κ = f1 − f3 and µ = f4 − f6.
Furthermore, if dimension is greater than or equal to 5, then they are (−f6, 1− f6)-
spaces with constant φ-sectional curvature 2f6 − 1, where f4 = 1, f5 = 1/2 and
f1, f2, f3 depend linearly on the constant f6.

Moreover, it was proved that the curvature tensor of a generalized (κ, µ)-space form
is not unique in the 3-dimensional case and that several properties and results must
be satisfied. Examples of generalized (κ, µ)-space forms with non-constant functions
f1, f3 and f4 were also given.

In this paper, we continue the study of generalized (κ, µ)-space forms by analysing
the behavior of such spaces under Da-homothetic deformations. It is organized as fol-
lows. After reviewing some necessary background on almost contact metric geometry,
we will see in Section 3 how the Da-homothetic deformations affect the Riemannian
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curvature tensor of a generalized (κ, µ)-space form. We will also introduce an alterna-
tive definition of this type of space, called generalized (κ, µ)-space form with divided
R5, and we will prove that they remain so after a Da-homothetic deformation, albeit
with different functions f1, . . . , f6.

2 Preliminaries

In this section, we recall some general definitions and basic formulas which will be
used later. For more background on almost contact metric manifolds, we recommend
the reference [7].

An odd-dimensional Riemannian manifold (M, g) is said to be an almost contact
metric manifold if there exist on M a (1, 1)-tensor field φ, a vector field ξ (called the
structure vector field) and a 1-form η such that η(ξ) = 1, φ2X = −X + η (X) ξ and
g(φX, φY ) = g(X, Y )− η(X)η(Y ) for any vector fields X, Y on M . In particular, in
an almost contact metric manifold we also have φξ = 0 and η ◦ φ = 0.

Such a manifold is said to be a contact metric manifold if dη = Φ, where Φ(X,Y ) =
g(X, φY ) is the fundamental 2-form of M . If, in addition, ξ is a Killing vector field,
then M is said to be a K-contact manifold. It is well-known that a contact metric
manifold is a K-contact manifold if and only if

(2.1) ∇Xξ = −φX

for all vector fields X on M . Even an almost contact metric manifold satisfying the
equation (2.1) becomes a K-contact manifold.

On the other hand, the almost contact metric structure of M is said to be normal
if the Nijenhuis torsion [φ, φ] of φ equals −2dη⊗ξ. A normal contact metric manifold
is called a Sasakian manifold. It can be proved that an almost contact metric manifold
is Sasakian if and only if

(2.2) (∇Xφ)Y = g(X,Y )ξ − η(Y )X

for any vector fields X, Y on M . Moreover, for a Sasakian manifold the following
equation holds:

R(X,Y )ξ = η(Y )X − η(X)Y.

Given an almost contact metric manifold (M, φ, ξ, η, g), a φ-section of M at p ∈ M
is a section Π ⊆ TpM spanned by a unit vector Xp orthogonal to ξp, and φXp. The
φ-sectional curvature of Π is defined by K(X,φX) = R(X, φX, φX,X). A Sasakian
manifold with constant φ-sectional curvature c is called a Sasakian space form. In
such a case, its Riemann curvature tensor is given by equation (1.1) with functions
f1 = (c + 3)/4, f2 = f3 = (c− 1)/4.

It is well known that on a contact metric manifold (M, φ, ξ, η, g), the tensor h,
defined by 2h = Lξφ, is symmetric and satisfies the following relations [7]:

(2.3) hξ = 0, ∇Xξ = −φX − φhX, hφ = −φh, trh = 0, η ◦ h = 0.

Therefore, it follows from equations (2.1) and (2.3) that a contact metric manifold is
K-contact if and only if h = 0.
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On the other hand, a contact metric manifold (M2n+1, φ, ξ, η, g) is said to be a
generalized (κ, µ)-space if its curvature tensor satisfies the condition

R(X, Y )ξ = κ{η(Y )X − η(X)Y }+ µ{η(Y )hX − η(X)hY },
for some smooth functions κ and µ on M independent of the choice of vectors fields
X and Y . If κ and µ are constant, the manifold is called a (κ, µ)-space, which were
introduced in [8] under the name contact metric manifold with ξ belonging to the
(κ, µ)-nullity distribution. T. Koufogiorgos proved in [15] that if a (κ, µ)-space M
has constant φ-sectional curvature c and dimension greater than or equal to 5, the
curvature tensor of this (κ, µ)-space form is given by equation (1.2), with functions
as in (1.3).

Let (M,φ, ξ, η, g) be an almost contact metric manifold. We recall that a Da-
homothetic deformation is defined by

(2.4) φ = φ, ξ =
1
a
ξ, η = aη, g = ag + a(a− 1)η ⊗ η,

where a is a positive constant (see [20]). It is clear that the Da-deformed manifold
(M, φ, ξ, η, g) is also an almost contact metric manifold and that

(2.5) h =
1
a
h.

Furthermore, it is well known ([8], [16]) that a Da-homothetic deformation of a
generalized (κ, µ)-space yields a new generalized (κ, µ)-space with

(2.6) κ =
κ + a2 − 1

a2
, µ =

µ + 2a− 2
a

,

for some a > 0.
Finally, we assume that all the functions considered in this paper will be differen-

tiable functions on the corresponding manifolds.

3 Generalized (κ, µ)-space forms and Da-homothetic
deformations

In this section we will study how Da-homothetic deformations affect generalized (κ, µ)-
space forms. We will see that the manifold obtained by this deformation is not always
a generalized (κ, µ)-space form (except in dimension 3) but that a little change in the
definition of the curvature tensor of the original manifold would make it so.

We will first study how a Da-homothetic deformation affects the curvature tensor
of an almost contact metric manifold. A direct computation proves:

Lemma 3.1. If (M,φ, ξ, η, g) is a contact metric manifold with Riemannian con-
nection ∇, the connection ∇ of the Da-deformed manifold, (M, φ, ξ, η, g), is given
by

(3.1) ∇XY = ∇XY +
a− 1

a
g(hX, φY )ξ − (a− 1){η(X)φY + η(Y )φX},

for any X, Y on M .
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We will now use (3.1) to prove the next proposition.

Proposition 3.2. Let (M, φ, ξ, η, g) be a contact metric manifold with Riemannian
curvature R. Then the Riemannian curvature R of the Da-deformed manifold is given
by

R(X,Y )Z = R(X,Y )Z
+ (a− 1){g(Y, φZ)φX − g(X, φZ)φY − 2g(X, φY )φZ

+ η(X)(∇Y φ)Z − η(Y )(∇Xφ)Z + η(Z)((∇Y φ)X − (∇Xφ)Y )}
+

a− 1
a

{g((∇Y φh)X − (∇Xφh)Y, Z)ξ + g(φhY, Z)φhX − g(φhX, Z)φhY }
+ (a− 1)2{η(Y )η(Z)X − η(X)η(Z)Y }

+
(a− 1)2

a
{η(Y )g(hX, Z)ξ − η(X)g(hY, Z)ξ},(3.2)

for any X, Y, Z on M .

Proof. If we substitute equation (3.1) in the definition of the Riemannian curvature
tensor

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z,

after long calculations we obtain:

R(X,Y )Z = R(X,Y )Z
+ (a− 1){−η(X)φ(∇Y Z)− η(∇Y Z)φX + η(Y )φ(∇XZ) + η(∇XZ)φY

− g(hY, φZ)φX) + g(hX, φZ)φY − 2g(X, φY )φZ

+ η(Z)(∇Y φX −∇XφY + φ(∇XY −∇Y X))
−X(η(Z))φY + η(X)∇Y φZ + Y (η(Z))φX − η(Y )∇XφZ}

+
a− 1

a
{g(hX, φ∇Y Z)ξ − g(hY, φ∇XZ)ξ

+ X(g(hY, φZ))ξ − Y (g(hX, φZ))ξ
− g(h[X, Y ], φZ)ξ − g(hY, φZ)φhX + g(hX, φZ)φhY }

+ (a− 1)2{η(Y )η(Z)X − η(X)η(Z)Y }

+
(a− 1)2

a
{η(Y )g(hX,Z)ξ − η(X)g(hY, Z)ξ}.

Using now the properties of h and the fact that ∇ is the Levi-Civita connection of g,
we conclude that equation (3.2) is satisfied. ¤

We will now give a couple of lemmas that will be useful to prove the next theorem.

Lemma 3.3. Let (M, φ, ξ, η, g) be a contact metric manifold with Riemannian cur-
vature R and tensors R1, . . . , R6 defined as in (1.2). Then the tensors R1, . . . , R6
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defined analogously on the manifold (M, φ, ξ, η, g) satisfy

R1(X, Y )Z =
1
a
R1(X, Y )Z − (a− 1)(η(Y )η(Z)X − η(X)η(Z)Y ),

R2(X, Y )Z =
1
a
R2(X, Y )Z,

R3(X, Y )Z =
1
a
R3(X, Y )Z + (a− 1)(η(Y )η(Z)X − η(X)η(Z)Y ),

R4(X, Y )Z = R4(X,Y )Z − (a− 1)(η(Y )η(Z)hX − η(X)η(Z)hY ),

R5(X, Y )Z = aR5(X, Y )Z,

R6(X, Y )Z = R6(X,Y )Z + (a− 1)(η(Y )η(Z)hX − η(X)η(Z)hY ),

for any X, Y, Z on M .

Proof. We only need to substitute (2.4) and (2.5) in R1, . . . , R6. ¤

Lemma 3.4. Let (M,φ, ξ, η, g) be a generalized (κ, µ)-space. Then

(∇Xφ)Y = g(X + hX, Y )ξ − η(Y )(X + hX),(3.3)
(∇Xφh)Y − (∇Y φh)X = φ((∇Xh)Y − (∇Y h)X) =(3.4)

= (1− κ){η(Y )X − η(X)Y }+ (1− µ){η(Y )hX − η(X)Y },

for any X, Y on M .

Proof. Similar to the one given for (κ, µ)-spaces in Lemma 3.1 of [8]. ¤

Theorem 3.5. If M(f1, . . . , f6) is a generalized (κ, µ)-space form with contact met-
ric structure (φ, ξ, η, g), a Da-homothetic deformation transforms the Riemannian
curvature tensor R into R in the following way:

R(X, Y )Z =
(

f1

a
R1 +

f2 − a + 1
a

R2 +
1
a2

((a− 1)f1 + f3 + 1− a2)R3

)
(X, Y )Z

+
(

f4R4 + af5R5 +
1
a
((a− 1)f4 + f6 − 2(a− 1))R6

)
(X,Y )Z

+ (a− 1){g(φhY, Z)φhX − g(φhX, Z)φhY },

(3.5)

for any X, Y, Z vector fields on M .

Proof. If we apply Lemma 3.4 to equation (3.2) and use the definition of tensors
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R1, . . . , R6, we obtain:

R(X, Y )Z = f1R1(X, Y )Z + (f2 − a + 1)R2(X, Y )Z

+
1
a
((a− 1)f1 + f3 + 1− a2)R3(X, Y )Z + f4R4(X, Y )Z + f5R5(X, Y )Z

+
1
a
((a− 1)f4 + f6 − 2(a− 1))R6(X, Y )Z

+
a− 1

a
(f1 − f3 + a2 − 1){η(Y )η(Z)X − η(X)η(Z)Y }

+
a− 1

a
(f4 − f6 + 2(a− 1)){η(Y )η(Z)hX − η(X)η(Z)hY }

+
a− 1

a
{g(φhY, Z)φhX − g(φhX, Z)φhY }.(3.6)

If we now use Lemma 3.3 in (3.6) and reorder, then

R(X, Y )Z =
(

f1

a
R1 +

f2 − a + 1
a

R2 +
1
a2

((a− 1)f1 + f3 + 1− a2)R3

)
(X, Y )Z

+
(

f4R4 + af5R5 +
1
a
((a− 1)f4 + f6 − 2(a− 1))R6

)
(X,Y )Z

+
a− 1

a
{g(φhY, Z)φhX − g(φhX, Z)φhY )}.

To obtain equation (3.5), it is enough to observe that

g(φhY, Z)φhX − g(φhX,Z)φhY = a(g(φhY, Z)φhX − g(φhX, Z)φhY )

by equations (2.4) and (2.5). ¤

The previous theorem suggests that it would be useful to redefine generalized
(κ, µ)-space forms M(f1, . . . , f6) with the tensor field

R5(X, Y )Z = g(hY,Z)hX − g(hX, Z)hY + g(φhX, Z)φhY − g(φhY, Z)φhX

divided in two:

R5,1(X, Y )Z = g(hY, Z)hX − g(hX, Z)hY,

R5,2(X, Y )Z = g(φhY, Z)φhX − g(φhX, Z)φhY.

It follows that R5 = R5,1 −R5,2.
It is obvious that the manifolds defined this way, which we will call generalized

(κ, µ)-space forms with divided R5 will include generalized (κ, µ)-space forms because

R = f1R1 + f2R2 + f3R3 + f4R4 + f5R5 + f6R6

= f1R1 + f2R2 + f3R3 + f4R4 + f5R5,1 − f5R5,2 + f6R6,

and it would be enough to take f5,1 = f5 and f5,2 = −f5. We would then obtain:
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Theorem 3.6. Let M(f1, . . . , f6) be a contact metric generalized (κ, µ)-space form
with divided R5. Then the Riemannian curvature tensor R of the Da-deformed man-
ifold has the form

R(X,Y )Z =
f1

a
R1 +

f2 − a + 1
a

R2 +
1
a2

((a− 1)f1 + f3 + 1− a2)R3

+ f4R4 + af5,1R5,1 + (af5,2 + a− 1)R5,2 +
1
a
((a− 1)f4 + f6 − 2(a− 1))R6,

(3.7)

for any X,Y, Z on M . Therefore, (M, φ, ξ, η, g) is also a generalized (κ, µ)-space form
with divided R5.

Remark 3.7. Using the new notation, the theorem that Boeckx presented in [9] based
in [8] would say that a non-Sasakian (κ, µ)-space M has curvature tensor R given by

R =
(
1− µ

2

)
R1 − µ

2
R2 +

(
1− µ

2
− κ

)
R3

+ R4 +
1− µ

2
1− κ

R5,1 +
κ− µ

2
1− κ

R5,2 + (1− µ)R6.

This result means that every non-Sasakian (κ, µ)-space is a contact metric gener-
alized (κ, µ)-space form with divided R5

M

(
1− µ

2
,−µ

2
, 1− µ

2
− κ, 1,

1− µ/2
1− κ

,−µ/2− κ

1− κ
, 1− µ

)
.

Both the expressions (3.5) and (3.7) can be simplified if the generalized (κ, µ)-space
form is of dimension 3 as shown by the following lemma and proposition.

Lemma 3.8. Let (M3, φ, ξ, η, g) be an almost contact metric manifold. Then the
following equation holds:

(3.8) R2 = 3(R1 + R3).

If M is also contact metric, then it is satisfied:

(3.9) R6 = −R4.

If M is also a generalized (κ, µ)-space, then:

(3.10) R5,1 = R5,2 = (κ− 1)(R1 + R3).

Proof. Equation (3.8) can be easily proved using a φ-basis.
For equation (3.9), we also use that h is symmetric and satisfies hφ = −φh because

the structure is contact metric.
We know from [16] that h2 = (κ − 1)φ2. Therefore, if κ = 1, then h = 0 and

(3.10) is trivial. If κ < 1, then there exists a φ-basis {E, φE, ξ} satisfying hE = λE,
where λ =

√
1− κ > 0. If we calculate R2(X,Y )Z and R5,2(X, Y )Z for all X, Y, Z ∈

{E, φE, ξ}, it is easy to check that the only non-zero values are:

R2(E, φE)e = −3φE, R2(E, φE)φe = 3E,

R5,2(E, φE)e = −(κ− 1)φE, R5,2(E, φE)φe = (κ− 1)E.
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Therefore, R5,2(X, Y )Z =
κ− 1

3
R2(X, Y )Z, for every X, Y, Z. We only need to use

(3.8) to obtain (3.10). ¤

Using the previous lemma, we obtain a generalization of a result obtained in [10]:

Proposition 3.9. Let M3(f1, . . . , f6) be a contact metric generalized (κ, µ)-space
form with divided R5.Then its curvature tensor can be written as follows:

R = f∗1 R1 + f∗3 R3 + f∗4 R4,

where

f∗1 = f1 + 3f2 + (f5,1 + f5,2)(f1 − f3 − 1),
f∗3 = f3 + 3f2 + (f5,1 + f5,2)(f1 − f3 − 1)
f∗4 = f4 − f6.

Applying the previous result, Theorem 3.5 can be simplified to:

Theorem 3.10. Let M3(f1, 0, f3, f4, 0, 0) be a contact metric generalized (κ, µ)-space
form. Then the Riemannian curvature tensor R of the Da-deformed manifold can be
written as

R = f1R1 + f3R3 + f4R4,

where

f1 =
1
a2

((2a− 1)f1 − (a− 1)f3 − 3a2 + 2a + a),

f3 =
1
a2

(2(a− 1)f1 + (2− a)f3 − 4a2 + 2a + 2),

f4 =
1
a
(f4 + 2a− 2).

Therefore, (M, φ, ξ, η, g) is a generalized (κ, µ)-space form M3(f1, 0, f3, f4, 0, 0).

Proof. Using Theorem 3.5 with f2 = f5 = f6 = 0, we know that the deformed
manifold would be a generalized (κ, µ)-space form with divided R5 M(f1, . . . , f6) with
functions:

f1 =
f1

a
, f2 =

−a + 1
a

,

f3 =
1
a2

((a− 1)f1 + f3 + 1− a2), f4 = f4,

f5,1 = 0, f5,2 = a− 1,

f6 =
1
a
((a− 1)f4 − 2(a− 1)).

Applying now Proposition 3.9, we obtain that the deformed manifold has curvature
tensor as follows:

R = f
∗
1R1 + f

∗
3R3 + f

∗
4R4,
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where

f
∗
1 =f1 + 3f2 + (f5,1 + f5,2)(f1 − f3 − 1)

=
f1

a
+ 3

−a + 1
a

+ (a− 1)
(

f1

a
− 1

a2
((a− 1)f1 + f3 + 1− a2)− 1

)
,

f
∗
3 =f3 + 3f2 + (f5,1 + f5,2)(f1 − f3 − 1)

=
1
a2

((a− 1)f1 + f3 + 1− a2) + 3
−a + 1

a

+ (a− 1)
(

f1

a
− 1

a2
((a− 1)f1 + f3 + 1− a2)− 1

)
,

f
∗
4 =f4 − f6 = f4 − 1

a
((a− 1)f4 − 2(a− 1)).

A simple calculation would produce the desired result. ¤

We proved in [10] that Example 1 of [16] is a contact metric generalized (κ, µ)-space
form M3(f1, 0, f3, f4, 0, 0) with non-constant functions:

f1 = −3 +
2
x2

3

+
1
x4

3

+
2
x6

3

, f3 = −4 +
2
x2

3

+
2
x4

3

+
2
x6

3

, f4 = 2
(

1− 1
x2

3

)
.

If we transform it by a Da-homothetic deformation, we get a contact metric gen-
eralized (κ, µ)-space form M3(f1, 0, f3, f4, 0, 0) with

f1 =
1
a2

(
−3a2 +

2a

x2
3

+
1
x4

3

+
2a

x6
3

)
,

f3 =
2
a2

(
−2a2 +

a

x2
3

+
1
x4

3

+
a

x6
3

)
, f4 =

2
a

(
a− 1

x2
3

)
,

for every constant a > 0.
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