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Abstract. The geometric significance of semi-symmetric connections was
originally studied by K. Yano ([13]). The notion was extended to quarter
symmetric connections by S. Golab ([3]).

In the present paper the theory is extended and it is shown that the Golab
algebra associated to a quarter symmetric metric connection is essential
in order to characterize the geometry of a pseudo-Riemannian manifold.
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Introduction

Throughout this paper one considers M a connected paracompact, smooth man-
ifold of dimension n. Let X (M) be the Lie algebra of vector fields on M, T,M the
vector space of tangent vectors in a point p € M, T (M) the C>(M)-module of
tensor fields of type (r,s) on M, AP (M) the C*° (M) —module of p—forms on M.

Let A be a (1,2)—tensor field on M. The C* (M) —modul X (M) becomes a
C>® (M) —algebra if we consider the multiplication rule given by
XoY = AX)Y), VX, Y € X (M). This algebra is denoted by U (M, A) and it
is called the algebra associated to A. If V and V' are two linear connections on M
and A =V’ —V, then U (M, A) is called the deformation algebra defined by the pair
(V, V") (10)).

In the present paper we continue and develop the study of [4], generalizing the no-
tion of quarter-symmetric metric connections along the line of symmetric connections
on pseudo-Riemann manifolds. Interesting properties of semi-symmetric connections
or quarter-symmetric connections can be obtained on manifolds endowed with special
structures ([1], [6], [7]) and extensive literature with applications can be mentioned
(12], [12).

The aim of this work is to characterize the F-principal vector fields in the de-
formation algebra of two linear connections. It is illustrated the close ties between
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certain algebraic properties of the Golab algebras and the geometric properties of
the manifold. It is proven that the Golab algebra is associative is equivalent with the
fact that the curvature tensor of the quarter-symmetric metric connection R coincides

[e] [e]
with the curvature tensor of the Levi-Civita connection R, when R, is a surjective

mapping. This invariance is also studied on Einstein spaces. In the last section Golab
connections are extended.

1 [ -principal vector fields in the algebra
associated to a (1,2)-tensor field

Definition 1.1 Let F € T(MD(M) and A € T2 (M). Let m be a positive
integer. An element X € U (M, A) is called a (m, F') -principal vector field if there
exists a 1-form w € A*(M) such that

(1.1) A(Z, X)) = w(Z)F(X),VZ € X(M),X™ = X" Do Xx X! =X,

Remark 1.1 Almost (m, F)-principal vector fields were studied in ([3]). In the
present paper one considers (m, F')-principal vector fields, with m = 1, called F-
principal vector fields.

Proposition 1.1 Let F € T4 (M) and A € T2 (M).

The following assertions are equivalent:

i) All the elements of the algebra U(M, A) are F- principal vector fields.
ii) There exists a 1-form w € AY(M) such that

(1.2) A=waF.

Proposition 1.2 If the algebra U(M, A) is commutative and rank(F) = n, the
following assertions are equivalent:

i) All the elements of the algebra U(M, A) are F- principal vector fields.

i) A= 0.

Proof. i) = ii) In local coordinates (1.2) becomes

ro__ r

From A%, = A}, one has wiF] = w; Fy. Therefore (wid§ —w;03)Fs = 0.
Since rank(F) = n, the previous relation implies
wrd; — wjdyp = 0.

We take s = j, we summ and get (n — 1)w, = 0. Hence w =0 and A = 0.
ii) = 4). Obvious. O

Theorem 1.1 Let (M, g) be a 2 -dimensional Riemann space such that the Ricci
tensor is nondegenerate. Let V, respectively V be the Levi-Civita connection associ-
ated to g, respectively Ric and A =V — V. We consider F € T(Ll)(M) defined by
g(F(X),Y) = Rie(X,Y), VX, Y € X(M).

The following assertions are equivalent:
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i) (M, g) is a space of (nonvanishing) constant curvature.

1) All the elements of the algebra U(M, A) are F- principal vector fields.

i) V and ¥V have the same geodesics.

iv) V=V.

Proof. 1) & iii) < iv) ([10])

ii) < iv) We use proposition 1.2. O

Theorem 1.2. Let A € TW2(M). If U(M, A) is a commutative algebra and
F e TOD (M) such that F? = eI, where € € {—1,1} and I is the identity tensor field,
then the following assertions are equivalent:

i) All the elements of the algebra U(M, A) are F- principal vector fields.

i) A=0.

Proof. One uses Proposition 1.2. a

The geometric significance of the F-principal vector fields for hypersurfaces in the
Euclidean space is given by the following results:

Theorem 1.3 Let M C R™™ be a hypersurface in the Euclidean space, n > 2.
Let g, respectively b be the first, respectively the second fundamental form. Let V,
respectively V be the Levi-Civita connection associated to g, respectively b. We consider
A=Y —V and F the shape operator.

The following assertions are equivalent:

i) the V -geodesics are the V-geodesics.

ii) the V -geodesics are the V-geodesics.

i) Vxb=0,vX € X(M).

iv) V=V.

v) M is a spheric hypersurface.

vi) All the elements of the algebra U(M, A) are F'- principal vector fields.

Proof. 1) & ii) & iii) < iv) < v) We use Theorem D ([11]).

iv) < vi) From proposition 1.2. O

2 Quarter-symmetric metric connections on pseudo-
Riemannian manifolds

Let (M, g) be an n-dimensional pseudo-Riemannian manifold, § € A'(M) and F €
TED(M).

Definition 2.1 A linear connection V on M is called a quarter-symmetric metric
connection or Golab connection associated to the pair (6, F) if

Vxg=0,VxY — Vy X — [X,Y] = 0(Y)F(X) — 0(X)F(Y),

VXY € X(M).

Remark 2.1 For a given pair (6, F),0 € A*(M),F € TUY (M) on a pseudo-
Riemannain manifold (M, g), there exists an unique Golab connection associated to
(0, F).

If one denotes by % the Levi-Civita connection associated to g, then the quarter-
symmetric metric connection associated to (6, F) is given by the formula

(2.1) VxY =Vx Y +0(Y)F(X) — S(X,Y)P,¥X,Y € X(M),
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where g(P, Z) = 0(Z),S(X,Y) =g(F(X),Y),VX,Y,Z € X(M).

The deformation algebra U (M ,V— %) is called the Golab algebra associated to
the pair (6, F).

We denote by V the transposed connection of V, i.e.,

ViV = Vy X + [X,Y].

The relation (2.1) leads to
(2.2) VxY =Vx Y + 0(X)F(Y) — S(X,Y)P.

S
Let us denote by ¥ the symmetric connection associated to V i.e.
S —
V= %(V + V). Hence

(23) VxY =VxY+ %Q(X)F(Y) + %H(Y)F(X) - %{S(K Y) + S(Y, X)}P.

Let R, ]O%,E and Ric, Ric, Ric be the curvature, respectively the Ricci tensors associ-
ated to V,V, V.
One denotes by A = V— %,Z =V- %, j{:% — % and therefore

(2.1) AX,Y) = 0(Y)F(X) - S(X,Y)P,

(2.2)) A(X,Y) = 0(X)F(Y) — S(Y, X)P,

2.3) AXY)= %{G(X)F(Y) +OY)F(X)} — %{S(X, Y) + S(Y, X)}P.

Theorem 2.1 Let (M, g) be an n-dimensional (n > 3) pseudo-Riemannian manifold.
Let 6 be a 1-form on M and F = fI € TMYD (M), where f € F(M), f(p) #0,Yp e M
and I is the identity tensor field. Let V be the Golab connection associated to the pair
(0, F).

If the mapping ]o{p: ToM x T,M x T,M — T,M is surjective, for each p € M,
then the following assertions are equivalent:
i) 6 =0.

i) R=R .

ii1) Ric —Ric.

iv) R :]% .

v) ]Sfi:é, forn # 4.

vi) The Golab algebra U(M,V— %) is commutative.
vii) The Golab algebra U(M,V — %) is associative.

viii) All the elements of the Golab algebra U(M,V — %) are F'- principal vector
fields.
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Proof. 1)=ii), 1) =iii), i)=iv), i)=v), i)<vi), 1)=-vii) are obvious.
ii)=i). From ii) we get VxR = Vx R,VX € X(M). Also

(Vx R)(Y,Z,V) = (VxR)(Y, Z,V) + AX, R (Y, Z)V)—

24) — RAXY), 2)V= R (V, AX, 2)V— ] (Y, Z)A(X, V).

Using Bianchi identities, (2.4) and (2.1)’, one has in coordinates
(2.5)  fl(0; R ?jk"‘d]r‘ R +oL R ?ij)9q+(gil R gik 951 R grit9xk R ;)0 = 0,
where 69 = ¢*6,. Contracting r = i and summing, (2.5) implies

- rlj ] rj; — Y5 ) r = U.
(2.6) [(n — 3) Rrijk +gw Ric,j — g Ric)0" =0

Multiplying with g7’ in (2.6) and summing, one gets
(2.7) (n —2) Ric ¢87 = 0.

From (2.6) and (2.7) we get (n —3) ﬁquk 07 = 0. Since n > 3, one has fo R= 0.

Moreover R, is surjective and then Vp € M,60,(T,M) = 0 and 6, = 0. Therefore
0 =0.
iii) = ii) From (2.1) one gets

(2.8) Ripy =R — 52(7Tj,l — i) + 0f (mj 5 — e )+

+9ixg"(mq1 — mqm) — G1g" Wk — Tg7r) — T (S gi1 — 01 9jk),

where m = f6. Using iii), (2.8) becomes

(2.9) mja = mim = ——— g {(1 = n)mgr® — " (mr g — mrmg) }-
Multiplying with ¢/* and summing, one has

(2.10) g Ty g — Tpmg) = 7%71'(171'[1.

Replacing (2.10) in (2.9), we find

1
(2.11) Wi — T = figjﬂrqwq.

From (2.11) and (2.8) one has R =R.

iv) = i) From R :]O%, one gets VxR = Vx ;%, VX € X(M). Hence, using Bianchi
identities, one has

p— o p— (e} — o 7q (e} r 7q (e} r 7(1 o r

(2.12) Ay RYp+ A R+ A RYy = Ay R e+ Ajy R+ Age R
o —k

Using A4;; = f(@iéé? — g:;0%), we get

(2.13) (9it R} +9j1 Ry +9u R %7 =0,
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where ij are the components of A. Multiplying with ¢* and summing, we obtain
(n—2) R 4mq = 0. Since n > 2, we get f0 = 0 and therefore 6 = 0.

vii) = 1) The associativity condition

Xo(YoZ)=(XoY)oZ ¥X,Y,Z € UM, V- )
becomes
2.14)  [9(Y, Z2)m(X) + 9(X, Z)n(Y) = g(X, V)7 (Z)|P — g(Z,Y)m(P)X =0,
where m = f0. For Z =Y we get n(X)P = n(P)X. Then myn" = m,m947.

Taking ¢ = r and summing, we obtain ff = 0 and therefore 8 = 0.

v) = i) From %X]fz:%;do%, using Bianchi identities, one has

(215) 20" (ginR k. + G R i + gknR 1ig) + (0 R g, + 05 R i + 0k R 1,55) =0,
where m = f6. Contracting [ =4 in (2.15), one has

o

(2.16) 21" (grn Ric rj — gjn Ric px) + (n —4) R} 7 = 0.

o
Multiplying with ¢7* and summlng, we get (n — 2) Ric Tk7r =0.

Formula (2.16) implies (n —4) thk mr = 0. From OOR 0, we get § = 0, since Rp
is surjective, Vp € M.
i) < viii) One uses the Proposition 2.1. O

A more general characterization of the associativity condition can be given:
Theorem 2.2 The same hypothesis of the Theorem 2.1.

i) If R =\ Eoi, where X\ is a nonvanishing constant, then the Golab algebra
UM, V- %) is associative.

i) If R= )\ ]%L, where X\ is a nonvanishing constant, then the deformation algebra
UM,V — %) is associative.

Proof. i). From R = A ]o% one gets

o o

(vX R)Y,Z,V) = A{( xR)(Y,Z,V) +A(X R (Y, Z)V)—
CRAX,Y),Z)V— R (Y, AX,Z2))V— R (Y, 2)A(X, V)}.

Using Bianchi identities and the fact that R, is a surjective mapping, one has ¢ = 0.

Theorem 2.1 implies that U(M,V— %) is associative.
ii) One uses a similar argument. O

3 Quarter-symmetric metric connections on Einstein
spaces

In the sequel we consider F € TV (M), given by g(F(X),Y) = Ric(X,Y) and 6§ an
arbitrary 1-form on M.
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In the case of an Einstein space, certain algebraic properties of some properly
chosen deformation algebras are translated into geometric ones.

Theorem 3.1 Let (M, g) be an n-dimensional (n > 3), Einstein space.
If V is the quarter-symmetric metric connection associated to the pair (0, F), V

S
is its transposed connection and Y 1is its associated symmetric connection, then the
following assertions are equivalent:

i) The Golab algebra U(M,V — %) is associative.

ii) The Golab algebra U(M,V— %) is commutative.

iti) The deformation algebra U(M,V— %) is associative.
iv) The deformation algebra U(M,V — %) commutative.

v) The deformation algebra U(M, V- %) is associative.
vi) 0 = 0.

vii) All the elements of the Golab algebra U(M,V — %) are F- principal vector
fields.
Proof. vi) =1), vi) =1ii), vi) =ii), vi) =iv), vi) =v), iv) =vi) are obvious.

i) =vi) Since the Golab algebra U(M,V— %) is associative, we find
(3.1) A AL = A AL

(M, g) is an Einstein space and then Ric = ag,a being a non vanishing constant.
Therefore F} = ad? and (3.1) becomes

(3.2) 6§gjk6T0T — gijekﬁq + gjkeﬂq + gikejeq =0.
Taking ¢ = ¢ and summing, we obtain 6,07 = 0. Formula (3.2) implies
(33) gijﬂkﬁq - gjkﬂﬂq - gzkﬂjﬂq =0.

Multiplying with ¢7% and summing, (3.3) implies (n — 2)6;07 = 0,Vi,q € {1,...,n}
and then 6 = 0. .

ii) =vi) Since the Golab algebra U(M,V— V) is commutative, one gets
5?@- — gijek = (5;-“92- — giij. Taking k& = ¢ and summing, we obtain 6 = 0.

iii) =vi) The algebra U (M, V— %) is associative and then
5.4 A =T

Using ZZ = a(@iéf — g;0%), one has (n — 2)0,07 = 0,Vi,q € {1,...,n} and then
0 =0.

v) = vi)

Since A K, = 2(0:8% + 0,65 — 29,,6%),

the associativity condition of the algebra U (M, v — %) implies

5£6j9k — 2(5§gjk0r9’” — 2glj9k9l+

(35) +69jk9i91 — 5}66)1& + 2529”-0’“070 =0.
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Taking [ = ¢ and summing, then (3.5) becomes
(3.6) (n—3)8;6, —2(n —4)g;10"0, = 0.

Multiplying with ¢’¥ and summing, one has 676, = 0. The relation (3.6) implies
(n—3)8,0; =0 and then 6 = 0.
vi) < vii) One uses the Proposition 1.2. ]

The invariance of the curvature tensor field or the Ricci tensor field is one of the
central concepts of Riemannian geometry and it can be studied from different points of
view. We illustrate the close ties that exist between this invariance and the algebraic
properties of the Golab deformation algebra.

Theorem 3.2 Under the same hypothesis as the previous theorem, one has:

i) IfR R (or ;{:]O%, for n # 4). then the Golab algebra U(M,V — %) is associa-
tive.

it) If Ric —Ric . then the Golab algebra U(M,V — V) is associative.

Proof. ) If R R, using V x R— VxR and the Bianchi identity, one has

(n—2)R jklﬁi =0, where 8 = a#.

Hence @ = 0. Therefore the Golab algebra U(M,V— %) is associative.

If }82:;27 for n # 4, we get %Xﬁzexﬁ. It follows

(n—4) R kB +26"(gnk Rrj —9jn Ren) = 0.

We multiply by ¢?* and summ. One gets

(n — 2) Rk B =0.
Therefore
(n—4) R ijﬁr =0.
Hence # = 0. The result follows from 6 = 0.
ii) Ric =Ric implies
1
Bij — BiBj = —§9ij5kﬁk-

Therefore, by a direct computation we get R = ]O% and then we use the idea of i). O

4 F-principal Golab connections

The aim of the last section is to extend the notion of quarter-symmetric metric con-
nections.

Let (M,g) be an n-dimensional pseudo-Riemannian manifold. Let § € A'(M),
F ¢ T (M) and V be the Golab connection associated to (6, F).

Definition 4.1 A linear connection V on M is called a F'-principal Golab con-
nection if all the elements of the algebra U(M,V — V) are F-principal vector fields.



64 Tulia Elena Hirica and Liviu Nicolescu

Theorem 4.1 Let (M, g) be an n-dimensional pseudo-Riemannian manifold, 6 €
AY (M) and F € TOD (M),
If V is the quarter-symmetric metric connection associated to (0, F) and V is a

F-principal connection, then the deformation algebras U(M,V — %) and U(M,V— %)
have the same F'- principal vector fields.

Proof. The proposition 1.1 implies that V is a F-principal connection if and only
if there exists the 1-form w € A*(M) such that

VxY =VxY +w(X)F(Y),VX,Y € X(M).
The previous relation implies
VxY =Vx Y +w(X)F(Y) + 0(Y)F(X) - $(X,Y)P,

where g(P, Z) = 0(Z),S(X,Y) =g(F(X),Y),VX,Y,Z € X(M).
We denote A = V— %, A=vV- % . Therefore

AX,)Y)=0Y)F(X)—-S(X,Y)P,

AX,Y) = w(X)F(Y) +0(Y)F(X) — S(X,Y)P.

Hence A(X,Y) — A(X,Y) = w(X)F(Y),VX,Y € X(M).

If W € U(M, A) is a F-principal vector field, there exists o € A'(M) such that
A(ZW)=0(Z)F(W),YZ € X(M).

Hence A(Z,W) = (0 + w)(Z)F(W),YZ € X(M). Therefore W is a F-principal
vector field in the algebra U(M, A).

The converse is also true. This implies that the deformation algebras U (M, V — %)

and U(M,V— %) have the same F- principal vector fields. O

Example 4.1

Let (M, g) be a pseudo-Riemannian manifold, % be the Levi-Civita associated to
g, Ric be the Ricci tensor field and K be the Ricci invariant. One considers the 1-form

0 € AY(M) defined by 0(X) =Vyx K,¥X € X(M) and let F € TV (M), given by
g(F(X),Y) = Rice(X,Y), VX, Y € X(M).

The quarter-symmetric metric connection V associated to the pair (0, F') is given
by the formula

VxY :%X Y +0(Y)F(X)— Rie(X,Y)P,VX,Y € X(M),
where g(P,Z) = 0(Z),YZ € X(M). )
Let w € A1(M) be an arbitrary 1-form. Therefore the linear connection V given
by
VxY =Vx Y +w(X)F(Y) + 0(Y)F(X) — Ric(X,Y)P,VX,Y € X(M),

is a F-principal Golab connection.
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