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Abstract. In order to give a new proof of a theorem concerned with
conformally symmetric Riemannian manifolds due to Roter and Derdzin-
sky [8], [9] and Miyazawa [15], we have adopted the technique used in a
theorem about conformally recurrent manifolds with harmonic conformal
curvature tensor in [3]. In this paper, we also present a new proof of a suc-
cessive refined version of a theorem about conformally recurrent manifolds
with harmonic conformal curvature tensor. Moreover, as an extension of
theorems mentioned above we prove some theorems related to quasi con-
formally recurrent Riemannian manifolds with harmonic quasi conformal
curvature tensor.
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1 Introduction

Let M be a non flat n(≥ 4) dimensional Riemannian manifold with metric gij and
Riemannian connection ∇. It is said to be conformally recurrent if the conformal
curvature tensor satisfies ∇iCjk`

m = λiCjk`
m (See [1], [3] and [11]), where λi is some

non null covector and the components of the conformal curvature tensor [16] are given
by :

Cjk`
m = Rjk`

m +
1

n− 2
(δm

j Rk` − δm
k Rj` + Rm

j gk` −Rm
k gj`)

− R

(n− 1)(n− 2)
(δm

j gk` − δm
k gj`).

(1.1)

Here we have defined the Ricci tensor to be Rk` = −Rmk`
m [23] and the scalar

curvature R = gijRij . The recurrence properties of Weyl’s tensor has been analized
also in [13]. If ∇iCjk`

m = 0, the manifold is said to be conformally symmetric (See [5],
[8],[10] and [18]). If ∇mCjk`

m = 0, the manifold is said to have harmonic curvature
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tensor (See [4]). If Cjk`
m = 0, the manifold is called conformally flat (See [16]). In

[13] the properties of some class of conformally flat manifolds are pointed out. It may
be scrutinized that the conformal curvature tensor vanishes identically if n = 3 and if
M is a space of constant curvature. A manifold is said to be Ricci recurrent if its non
null Ricci tensor is recurrent, i.e. if ∇kRij = βkRij (See [11]) where βk is another
non null covector.
Recently a theorem concerning conformally recurrent Riemannian or semi-Riemannian
manifolds with harmonic curvature tensor was introduced in [3] (Theorem 3.4) and [19].
We refer to it as :

Theorem 1.1. Let M be an n(≥ 4) dimensional Riemannian manifold with Rieman-
nian connection ∇. Assume that M is conformally recurrent and has the harmonic
conformal curvature tensor. If the scalar curvature is constant (∇jR = 0), then M is
conformally symmetric, conformally flat or Ricci recurrent.

This theorem was used in [3] to give a complete classification of conformally re-
current Riemannian manifolds with harmonic curvature tensor. In the same reference
it was stated another Theorem ([3], Theorem 3.6) that refines Theorem 1.1. We refer
to it as:

Theorem 1.2. Let M be an n(≥ 4) dimensional Riemannian manifold with Rieman-
nian connection ∇. Assume that M is conformally recurrent and has the harmonic
conformal curvature tensor. If the scalar curvature is non zero constant, then M is
conformally flat or locally symmetric.

In [19] the authors extended Theorem 1.2 to the case of semi-Riemannian man-
ifolds. Moreover they also pointed out that the assumption of a constant scalar
curvature may be dropped in the case of a definite metric and stated the following
(see [19] Remark 3.3) :

Theorem 1.3. Let M be an n(≥ 4) dimensional Riemannian manifold with Rieman-
nian connection ∇. Assume that M is conformally recurrent and has the harmonic
conformal curvature tensor. Then M is conformally symmetric.

In this paper we give a new proof of a classical theorem about conformally symmetric
Riemannian manifolds using a technique adopted in [3] for Theorem 1.1. Now we
assert the following :

Theorem 1.4. An n(≥ 4) dimensional conformally symmetric manifold is confor-
mally flat or locally symmetric.

This result is fulfilled on a manifold with positive definite metrics. Miyazawa proved
this statement with the extra assumption of n > 4 in [15]. A proof of the general
case n > 3 was pointed out by Derdzinski and Roter in [9]. In section 2 of this paper
we reobtain Theorem 1.4 by a correction of the procedure employed in the proof of
Theorem 1.1 used in [3]. In section 3 we give an alternative proof of Theorem 1.3 and
provide extensions of Theorems 1.1, 1.3 and 1.4 related to quasi-conformal symmetric
or quasi-conformal recurrent Rimannian manifold.
Moreover, combining the results of Theorems 1.3 and 1.4, we can state another the-
orem as follows:
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Theorem 1.5. Let M be an n(≥ 4) dimensional Riemannian manifold with Rieman-
nian connection ∇. Assume that M is conformally recurrent and has the harmonic
conformal curvature tensor. Then M is conformally flat or locally symmetric.

2 The proof of Theorem B

In this section the procedure adopted in [3] is pursued to obtain a proof of The-
orem 1.4. It is worth to notice that the assumption of constant scalar curvature
mentioned in Theorem 1.1 and employed in [3] is not used here in the proof of The-
orem 1.4. Let M be an n dimensional conformally symmetric manifold. Then the
following relation is fulfilled :

∇iRjk`
m = − 1

n− 2
(δm

j ∇iRk` − δm
k ∇iRj` +∇iR

m
j gk` −∇iR

m
k gj`)

+
∇iR

(n− 1)(n− 2)
(δm

j gk` − δm
k gj`).

(2.1)

From the previous result we can state the following

Remark 2.1. Any conformally symmetric manifold with parallel Ricci tensor is sym-
metric in the sense of Cartan, that is, ∇iRjk`

m = 0 ( See [12], [16] and [18]).

From the notion of conformally symmetric manifold one easily gets (∇b∇a −
∇a∇b)Cjk`m = 0. Then by the Ricci identity [23], we can write the following equation:

(2.2) Rbaj
p Cpk`m + Rbak

p Cjp`m + Rba`
p Cjkpm + Rbam

p Cjk`p = 0.

Performing the covariant derivative of equation (2.2) and taking account that∇iCjk`
m =

0, one obtains :

(2.3) ∇iRbaj
p Cpk`m +∇iRbak

p Cjp`m +∇iRba`
p Cjkpm +∇iRbam

p Cjk`p = 0.

From (2.3) and the fact that the manifold is conformally symmetric we obtain :

(2.4)

(∇iRbjCak`m +∇iRbkCja`m +∇iRb`Cjkam +∇iRbmCjk`a)

−(∇iRajCbk`m +∇iRakCjb`m +∇iRa`Cjkbm +∇iRamCjk`b)

+
1

n− 1
∇iR(gajCbk`m + gakCjb`m + ga`Cjkbm + gamCjk`b)

− 1
n− 1

∇iR(gbjCak`m + gbkCja`m + gb`Cjkam + gbmCjk`a)

−∇iR
p
b (gajCpk`m + gakCjp`m + ga`Cjkpm + gamCjk`p)

+∇iR
p
a(gbjCpk`m + gbkCjp`m + gb`Cjkpm + gbmCjk`p) = 0.

Now transvecting the last equation with gjb taking account of the first Bianchi identity
for the conformal curvature tensor we have :

(n− 2)∇iRabCm`k
b +∇iRbkCm`a

b +∇iRb`Cmak
b +∇iRbmCa`k

b

− (ga`Cmpk
b + gamCp`k

b)∇iR
p
b = 0.

(2.5)
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Again the previous equation is transvected with gim to obtain :

(n− 2)∇mRabCm`k
b +∇mRbkCm`a

b +∇mRb`Cmak
b +

1
2
(∇bR)Ca`k

b

− ga`Cmpk
b∇mRp

b − Cp`k
b∇aRp

b = 0.
(2.6)

Now it is well known that the divergence of the conformal curvature is given by ([8]
and [9]) :

(2.7) ∇mCjk`
m =

n− 3
n− 2

[
∇kRj` −∇jRk` +

1
2(n− 1)

{(∇jR)gk` − (∇kR)gj`}
]
.

So if the manifold is conformally symmetric, it is easily seen that :

(2.8) ∇jRk` −∇kRj` =
1

2(n− 1)
{(∇jR)gk` − (∇kR)gj`}.

This result allows us to examine the last two terms contained in equation (2.6). The
first term vanishes; in fact :

ga`Cmpk
b∇mRp

b =
1
2
ga`Cmpk

b(∇mRp
b −∇pRm

b )

=
1
2
ga`C

mp
k

b(∇mRpb −∇pRmb)

=
1

4(n− 1)
ga`C

mp
k

b{(∇mR)gpb − (∇pR)gmb}

= 0.

(2.9)

Moreover with similar procedure the last term results to be :

Cp`k
b∇aRp

b = Cp
`k

b∇aRpb

= Cp
`k

b
[
∇pRab +

1
2(n− 1)

{(∇aR)gpb − (∇pR)gab}
]

= Cp
`k

b∇pRab − 1
2(n− 1)

Cp
`k

b(∇pR)gab

= Cm`k
b∇mRab − 1

2(n− 1)
(∇mR)Cm

`ka.

(2.10)

So equation (2.6) can be rewritten in the following form :

(n− 3)∇mRabCm`k
b +∇mRbkCm`a

b +∇mRb`Cmak
b +

1
2
(∇mR)Ca`k

m

+
1

2(n− 1)
(∇mR)Cm

`ka = 0.
(2.11)

Now in [3] an interesting Lemma is pointed out (See also [9]) :

Lemma 2.2. Let M be an n dimensional conformally symmetric manifold. Then the
following equations hold :

(2.12)
RabCm`k

b + RmbC`ak
b + R`bCamk

b = 0,

∇sRabCm`k
b +∇sRmbC`ak

b +∇sR`bCamk
b = 0.
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Transvecting the last of the previous relations with gsm one obtains :

(2.13) ∇mRabCm`k
b −∇mR`bCmak

b =
1
2
(∇mR)Ca`k

m.

The equivalent relation −2∇mRbaCm`k
b = −2∇mRb`Cmak

b − (∇mR)Ca`k
m is then

substituted in equation (2.11) to obtain :

(n− 1)∇mRabCm`k
b +∇mRbkCm`a

b −∇mRb`Cmak
b − 1

2
(∇mR)Ca`k

m

+
1

2(n− 1)
(∇mR)Cm

`ka = 0.
(2.14)

Again employing Lemma 2.2 with indices k and a exchanged gives :

(2.15) ∇mRbkCm`a
b −∇mRb`Cmka

b =
1
2
(∇mR)Ck`a

m.

So equation (2.14) takes the form :

(n− 1)∇mRabCm`k
b +∇mRb`(Cmka

b − Cmak
b) +

1
2
(∇mR)(Ck`a

m + C`ak
m)

+
1

2(n− 1)
(∇mR)Cm

`ka = 0.
(2.16)

Recalling that Cmka
b + Ckam

b + Camk
b = 0, the previous equation may be written in

the following form :
(2.17)

(n− 1)∇mRabCm`k
b +∇mRb`Cakm

b +
1
2
(∇mR)Cka`

m +
1

2(n− 1)
(∇mR)Cm

`ka = 0.

Now recalling that ∇mRb` −∇bRm` =
1

2(n− 1)
{(∇mR)gb` − (∇bR)gm`}, the second

term of the previous equation satisfies the following identities chain :

∇mRb`Cakm
b = ∇mRb`Cak

mb =
1
2

Cak
mb(∇mRb` −∇bRm`)

=
1

4(n− 1)
Cak

mb(∇mRgb` −∇bRgm`)

=
1

2(n− 1)

[
(∇mR)Cakm` − (∇bR)Cak`

b
]

=
1

4(n− 1)
(∇mR)

[
Cakm` − Cak`m

]
=

(∇mR)
2(n− 1)

Cakm`.

(2.18)

So equation (2.16) takes the form :

(n− 1)∇mRabCm`k
b +

1
2(n− 1)

(∇mR)Cakm`

+
1
2
(∇mR)Cka`

m +
1

2(n− 1)
(∇mR)Cm`ka = 0,

(2.19)
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or better :

(2.20) (n− 1)∇mRabCm`k
b +

1
2
(∇mR)Cka`m = 0.

Now one can observe that ∇mRab = ∇aRmb +
1

2(n− 1)
{(∇mR)gab− (∇aR)gmb} and

thus we can write :

∇mRabCm`k
b = ∇mRabC

m
`k

b

= ∇aRmbC
m

`k
b +

1
2(n− 1)

[
(∇mR)Cm

`k
bgab − (∇aR)Cm

`k
bgmb

]
.

(2.21)

This fact implies that :

(2.22) ∇mRabC
m

`k
b = ∇aRmbC

m
`k

b +
1

2(n− 1)
(∇mR)Cm`ka.

If the equivalent relation (n−1)∇mRabC
m

`k
b = (n−1)∇aRmbC

m
`k

b+
1
2
(∇mR)Cm`ka

is substituted in equation (2.20), one obtains that the following holds :

(2.23) (n− 1)∇aRmbC
m

`k
b = 0.

At last equation (2.5) takes the form :

(2.24) (n− 2)∇iRabCm`k
b +∇iRbkCm`a

b +∇iRb`Cmak
b +∇iRbmCa`k

b = 0.

Now Lemma 2.2 is again employed in the form∇iRmbCa`k
b+∇iRabC`mk

b+∇iR`bCmak
b =

0 to equation (2.24) to obtain :

(2.25) (n− 1)∇iRabCm`k
b = −∇iRbkCm`a

b.

Now exchanging the indices k and a in the previous result gives immediately :

(2.26) (n− 1)∇iRkbCm`a
b = −∇iRabCm`k

b.

This implies that (n− 1)2∇iRabCm`k
b = ∇iRabCm`k

b and so as in [3] and [19] that :

(2.27) ∇iRbkCm`a
b = 0.

Transvecting the previous result with gik it follows immediately that :

(2.28)
1
2
∇bRCm`a

b = 0.

Transvecting (2.4) with ∇iRbj or with Cak`m and applying (2.27), one can obtain the
following results :

∇iRbj∇iRbjCak`m = 0 or ∇iRbjCak`mCak`m = 0 .

In fact if equation (2.4) is transvected with ∇iRbj one obtains:

(2.29) (∇iRbj∇iRbj − 1
n− 1

∇iR∇iR)Cak`m = 0.
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On the other hand if equation (2.4) is transvected with Cak`m one easily obtains:

∇iRbjCak`mCak`m +
1

n− 1
∇iR

{
gajCbk`m

− gbjCak`m − gbkCja`m − gb`Cjkam − gbmCjk`a

}
Cak`m = 0.

(2.30)

Transvecting this last result with gij and making use of equation (2.28) one comes to
the following:

(2.31)
n− 3

2(n− 1)
∇bRCakm`C

akm` = 0.

Thus we obtain that the manifold is conformally flat or the manifold has constant
scalar curvature and employing (2.30) it is Ricci symmetric. In this way we have
proved that the following Theorem holds :

Theorem 2.3. Let M be an n dimensional conformally symmetric manifold. Then
it is Ricci symmetric or conformally flat.

Now recalling Remark 2.1 and Theorem 2.3, we have just proved that∇iRjk`
m = 0

or Cjk`
m = 0.

Remark 2.4. It is worth to notice that from Theorem 2.3 we recover a result of
Tanno ([20], Theorem 6) : any non conformally flat conformally symmetric manifold
has constant scalar curvature. This result was used in [9] for the proof of Theorem 1.4.
In the present paper it has been recovered in our main argument.

3 An alternative proof of Theorem 1.3 and gener-
alizations of Theorems 1.1, 1.3 and 1.4

In this section we provide an alternative proof of Theorem 1.3 given in [19] and
consider a possible generalization of Theorems 1.1, 1.3 and 1.4.

Theorem 1.3. Let M be an n(≥ 4) dimensional Riemannian manifold with Rieman-
nian connection ∇. Assume that M is conformally recurrent and has the harmonic
conformal curvature tensor. Then M is conformally symmetric or conformally flat.

Proof. It is well known ([1] eq. 3.7) that the second Bianchi identity for the conformal
curvature tensor may be written in the following form :

∇iCjk`
m +∇jCki`

m +∇kCij`
m

=
1

n− 3

[
δm
j ∇pCki`

p + δm
k ∇pCij`

p + δm
i ∇pCjk`

p

+ gk`∇pCji
mp + gi`∇pCkj

mp + gj`∇pCik
mp

]
.

(3.1)

Thus on a manifold with harmonic conformal curvature tensor [4], the second Bianchi
identity reduces to :

(3.2) ∇iCjk`
m +∇jCki`

m +∇kCij`
m = 0 .
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If the manifold is also conformally recurrent, i.e. ∇iCjk`
m = λiCjk`

m, the last equa-
tion takes the form :

(3.3) λiCjk`
m + λjCki`

m + λkCij`
m = 0 .

We note also that if the manifold has the harmonic conformal curvature tensor, i.e.
∇mCjk`

m = 0, then λmCjk`
m = 0. Now equation (3.3) is multiplied by λi to obtain

the following result :

(3.4) λiλiCjk`
m + λiλjCki`

m + λiλkCij`
m = 0 .

In the previous equation the second and the last terms vanish. In fact for example
one easily obtains λiλjCki`

m = gmpλjλ
iCki`p = gmpλjλ

iC`pki = 0. Then equation
(3.4) give the following result :

(3.5) λiλiCjk`
m = 0 .

We have thus obtained that the manifold is confromally flat. In the same manner
equation (3.3) is multiplied by Cjk`

m and the following is fulfilled :

(3.6) λiCjk`
mCjk`

m + λjCki`
mCjk`

m + λkCij`
mCjk`

m = 0 .

Thus following the same procedure employed previously we have that the relation :

(3.7) λiCjk`
mCjk`

m = 0 .

So we have λi = 0 and the manifold is conformally symmetric. ¤

It is worth to notice that the class of conformally symmetric spaces includes the
class of conformally flat spaces. The version of Theorem 1.3 proved in the present
paper is slightly different from [19].
Now we consider a possible generalization of Theorems 1.1, 1.3 and 1.4 in the direction
of quasi-conformal symmetric or quasi-conformal recurrent Riemannian manifold. In
order to do this, first we need the definition of the concircular curvature tensor (See
[17] and [21]), that is :

(3.8) C̃jk`
m = Rjk`

m +
R

n(n− 1)
(δm

j gk` − δm
k gj`).

Contracting m with j gives the so called Z tensor, i.e. Zk` = −C̃mk`
m, that is :

(3.9) Zk` = Rk` − R

n
gk`.

It may be noted from (3.8) that the vanishing of the concircular tensor implies the
manifold to be a space of constant curvature and from (3.9) that the vanishing of the
Z tensor implies the manifold to be an Einstein space. So the concircular tensor is a
measure of the deviation of a manifold from a space of constant curvature and the Z
tensor is a measure of the deviation from an Einstein space (See [14]).
In 1968 Yano and Sawaki [22] defined and studied a tensor Wjk`

m on a Riemannian
manifold of dimension n, which includes both the conformal curvature tensor Cjk`

m
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and the concircular curvature tensor C̃jk`
m as particular cases. This tensor is known

as quasi conformal curvature tensor and its components are given by :

(3.10) Wjk`
m = −(n− 2)bCjk`

m +
[
a + (n− 2)b

]
C̃jk`

m.

In the previous equation a 6= 0, b 6= 0 are constants and n > 3 since the conformal
curvature tensor vanishes identically for n = 3. A non flat manifold is said to be
quasi-conformally recurrent if ∇iWjk`

m = αiWjk`
m for a non null covector αi. It is

said to be quasi-conformally symmetric if ∇iWjk`
m = 0 and has the harmonic quasi

conformal curvature tensor if ∇mWjk`
m = 0. Z recurrency or Z symmetry are de-

fined in analogous ways. Clearly the class of quasi conformally recurrent Riemannian
manifolds includes all the class of quasi conformally symmetric and quasi conformally
flat manifolds. In [2] Amur and Maralabhavi proved that a quasi conformally flat
Riemannian manifold is either conformally flat or Einstein. A similar remark can be
proved for quasi conformally symmetric manifolds.

Remark 3.1. Let M be an n(≥ 4) dimensional quasi conformally symmetric Rie-
mannian manifold. Then it is either conformally symmetric or Ricci symmetric.

Proof. In fact the condition ∇iWjk`
m = 0 implies :

(3.11) (n− 2)b∇iCjk`
m =

[
a + (n− 2)b

]∇iC̃jk`
m.

Contracting m with j in the previous equation gives
[
a +(n− 2)b

]
= 0 or ∇iZk` = 0,

that is, by the equation (3.11) the manifold is conformally symmetric or Z symmetric.
Now Z symmetric implies ∇iRk` = 1

n (∇iR)gk` and transvecting with gik one gets
∇lR = 0 and thus ∇iRk` = 0 ¤

We note that the class of Z symmetric spaces includes the class of Einstein spaces.
The previous remark allows us to state a modified version of Theorem 1.4 whose proof
follows immediately from Remark 3.1 and Theorem 1.4 itself :

Theorem 3.2. Let M be an n(≥ 4) dimensional quasi-conformally symmetric man-
ifold. Then it is conformally flat or locally symmetric.

The statement of the previous theorem is due to the fact that local symmetry
implies Ricci symmetry. We can also state the following modified version of Theo-
rem 1.1.

Theorem 3.3. Let M be an n(≥ 4) dimensional Riemannian manifold of with Rie-
mannian connection ∇. Assume that M is quasi-conformally recurrent and has the
harmonic quasi conformal curvature tensor. Then M is conformally symmetric, con-
formally flat or generalized Ricci recurrent [6].

Proof. If ∇iWjk`
m = αiWjk`

m, then one has :
(3.12)
−(n−2)b∇iCjk`

m+
[
a+(n−2)b

]∇iC̃jk`
m = −(n−2)bαiCjk`

m+
[
a+(n−2)b

]
αiC̃jk`

m.

Contracting m with j in the previous equation gives :

(3.13)
[
a + (n− 2)b

]∇iZk` =
[
a + (n− 2)b

]
αiZk`.
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That is, the manifold is Z recurrent or
[
a + (n − 2)b

]
= 0. In this case we get from

(3.10) that :

(3.14) ∇mWjk`
m = −(n− 2)b∇mCjk`

m +
[
a + (n− 2)b

]∇mC̃jk`
m.

This fact implies that ∇mWjk`
m = −(n−2)b∇mCjk`

m and hence that ∇mCjk`
m = 0

because ∇mWjk`
m = 0. From (3.12) we have also in the same case

[
a+(n− 2)b

]
= 0

that :

(3.15) −(n− 2)b∇iCjk`
m = −(n− 2)bαiCjk`

m.

That is the manifold is conformally recurrent.
On the other hand, if the covariant derivative with respect to the index m is applied

on the definition of quasi conformal curvature tensor, one obtains straightforwardly

(3.16) ∇mWjk`
m = [a + b]∇mRjk`

m +
2a− b(n− 1)(n− 4)

2n(n− 1)

[
(∇jR)gkl− (∇kR)gjl

]
.

Now if ∇mWjk`
m = 0, transvecting the previous equation with gk` after some calcu-

lations it follows that

(3.17) (n− 2)
a + b(n− 2)

n
∇jR = 0.

This means that ∇jR = 0 if a + (n− 2)b 6=0 or a + (n− 2)b = 0. Inserting the latter
case in (3.16) we obtain the following

(3.18) ∇mRjk`
m =

1
2(n− 1)

[
(∇kR)gjl − (∇jR)gkl

]
.

From this, we recover obviously ∇mCm
jk` = 0. Now if the conditions ∇iW

m
jk` = αiW

m
jk`

and ∇mWm
jk` = 0 are taken in conjunction, we have two cases. One is obtained from

(3.12) that ∇iC
m
jkl = αiC

m
jkl with ∇mCm

jkl = 0 when a + b(n− 2) = 0. The other case
can be given by (3.13) that ∇iZkl = αiZkl with ∇jR = 0 when a + (n− 2)b 6=0.

In the first case we are in the hypothesis of Theorem 1.3. Accordingly, M is
conformally symmetric or conformally flat.

In the second case, we have a Z-recurrent manifold with ∇jR = 0 and thus
∇iRkl = αi(Rkl − R

n gkl), that is, a generalized Ricci recurrent manifold [6]. ¤

Combining the results of Theorems 3.3 and 1.5, we can state the following modified
version of Theorem 1.3 :

Theorem 3.4. Let M be an n(≥ 4) dimensional Reimannian manifold of with Rie-
mannian connection ∇. Assume that M is quasi-conformally recurrent and has the
harmonic quasi conformal curvature tensor. Then M is conformally flat, locally sym-
metric, or generalized Ricci recurrent.
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