Metric nonlinear connections on Lie algebroids

Liviu Popescu

Abstract. In this paper the problem of compatibility between a nonlinear
connection and other geometric structures on Lie algebroids is studied.
The notion of dynamical covariant derivative is introduced and a metric
nonlinear connection is found in the more general case of Lie algebroids.
We prove that the canonical nonlinear connection induced by a regular
Lagrangian on a Lie algebroid is the unique connection which is metric
and compatible with the symplectic structure.
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1 Introduction

The notions of nonlinear connection and metric structure are important tools in the
differential geometry of the tangent bundle of a manifold. The metric compatibility
of a nonlinear connection generalize the compatibility between a Riemannian metric
and the linear connection and it is known as one of the Helmholtz conditions for the
inverse problem of Lagrangian Mechanics (see for instance [2, 3, 5, 8, 11, 13]).

In this paper we generalize the metric compatibility of a nonlinear connection at
the level of Lie algebroids. The notion of Lie algebroid and its prolongation over the
vector bundle projection generalize the concept of tangent bundle. Mackenzie [10]
has been achieved a unitary study of Lie algebroids and together with Higgins [6]
have introduced the notion of prolongation of a Lie algebroid over a smooth map.
Weinstein [22] shows that is possible to give a common description of the most inter-
esting classical mechanical systems. He developed a generalized theory of Lagrangian
Mechanics and obtained the equations of motions, using the Poisson structure [21] on
the dual of a Lie algebroid and the Legendre transformation associated with a regular
Lagrangian. In the last years the problems raised by Weinstein and related topics
have been investigated by many authors (see for instance [1, 7, 9, 12, 15, 16, 17, 19]).

In the present paper we study the problem of compatibility between a nonlinear
connection and some other geometric structures on Lie algebroid and its prolongation
over the vector bundle projection. The paper is organized as follows. The second
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section contains the preliminary results on Lie algebroids. In the section three, the
compatibility between a nonlinear connection and a pseudo-Riemannian metric is
studied. The notion of dynamical covariant derivative on the prolongation of Lie al-
gebroid over the vector bundle projection is introduced and its action on the Berwald
basis is given. We find the expression of the Jacobi endomorphism on Lie algebroids
and the relation with the curvature of the nonlinear connection. We prove that the
canonical nonlinear connection induced by a regular Lagrangian is the unique con-
nection which is metric and compatible with a symplectic structure. Also, using the
notions of v-covariant derivative, dynamical covariant derivative and Jacobi endomor-
phism, we obtain the Helmholtz conditions in the framework of a Lie algebroid.

2 Preliminaries on Lie algebroids

Let M be a real, C*-differentiable, n-dimensional manifold and (T'M,mys, M) its
tangent bundle. A Lie algebroid over a manifold M is a triple (E, [, |g, o), where
(E, 7, M) is a vector bundle of rank m over M, which satisfies the following conditions:
a) the C°°(M)-module of sections I'(E) is equipped with a Lie algebra structure [-, -] g.
b) 0 : E — TM is a bundle map (called the anchor) which induces a Lie algebra
homomorphism (also denoted o) from the Lie algebra of sections (I'(E), [+, -]g) to the
Lie algebra of vector fields (x(M), [-,-]) satisfying the Leibniz rule

[51, f32]E = f[Sl,SQ]E + (0'(51)f)32, VSl,SQ c F(E), f S COO(M)

From the above definition it results:

1° [-,-]g is a R-bilinear operation,

2° [, "] g is skew-symmetric, i.e. [s1,S2]p = —[s2,81]E, Vs1,82 € T'(E),
3° [, -] g verifies the Jacobi identity

[s1,[s2,83]E]lE + [S2, [s3, 51]E]E + [83, [s1, 52]E]lE = 0,

and o being a Lie algebra homomorphism, means that o[s1, s2]g = [0(s1),0(s2)]. For
w € N(E*) the eterior derivative dfw € N*"'(E*) is given by the formula

k+1

dfw(sy, ., spp1) = Z(—l)”lo(si)w(sl,...,si,...,skH)+
i=1

+ Z (—1)i+jw([8i’8j]E,81,...,Si,...,8j7...8k+1).
1<i<j<k+1

where s; € T'(E), i = 1,k+ 1, and it results that (d¥)? = 0. For ¢ € T'(E) the
Lie derivative with respect to € is given by L¢ = i¢ o dP + d¥ o ig, where i¢ is the
contraction with &.

If we take the local coordinates (z%) on an open U C M, a local basis {s,} of the
sections of the bundle 7=1(U) — U generates local coordinates (z¢,y*) on E. The
local functions o, (z), L 5(z) on M given by

7(50) = 0l

[SOMS,G]E = Lzﬁs’ya 1= 17’”‘7 0475,7 = 1am7
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are called the structure functions of the Lie algebroid and satisfy the structure equa-

tions on Lie algebroid

Oot 9ot ) COLY

; B _ i9a _ ¥ B I

Ué@ 8 o5 oy Lag Z (Jtzx oz’ +LayLs, | =0,
(a,8,7)

2.1 The prolongation of the Lie algebroid over the vector bun-
dle projection

Let (E,m, M) be a vector bundle. For the projection 7 : E — M we can construct
the prolongation of F (see [6, 9, 12, 15]). The associated vector bundle is (7 E, w3, E)
where

TE = U T,E, Ty,E={(ugy,vy) € ExxTwE | o(ug) =Tym(vy), 7(w)=2x€ M},
weE

and the projection mo(uy,vy) = TE(vy) = w, where 7 : TE — E is the tangent
projection. We also have the canonical projection my : 7E — E given by 71 (u,v) = u.
The projection onto the second factor o' : TE — TE, o'(u,v) = v will be the anchor
of a new Lie algebroid over the manifold E. An element of 7 F is said to be vertical if
it is in the kernel of the projection 7. We will denote (VT E, 7y, /) the vertical
bundle of (TE, 3, E) and o' |y7p : VIE — VTE is an isomorphism. The local
basis of I'(T E) is given by {X,, V. }, where [12]

and (9/0x%,0/0y®) is the local basis on TE. The structure functions of 7 E are given
by the following formulas

Xalt) = (salm(0). ohs

.0 0
1 1
o (XO&) - Ua 8%‘“ 8yo"

Ul(va) =

[Xom X,@]E = ng‘){'w [XQVV,B]E - 07 [VOM Vﬁ]E =0.

The local expression of the differential of a function L on E is d¥L = o gfi X+

gyf; Ve, where {X®, V} denotes the corresponding dual basis of {X,,, V,} and d€z¢ =

ol xe, dFy® = V2. The differential of sections of (7 E)* is determined by

dPxe = %Lgvxﬂ AXY, dPV=0.

The other canonical geometric objects (see [9]) are Euler section C' = y*V,, and the
vertical endomorphism or tangent structure J = X ® V,. A section S of TFE is
called semispray (or second order differential equation -SODE) if J(S) = C. In local
coordinates a semispray has the expression S(z,y) = y*X, + S*(z,y)Vs. If we have
the relation [C, S]g = S, then S is called spray and the functions S* are homogeneous
functions of degree 2 in y°.

A nonlinear connection on 7 E is an almost product structure N on 7y : 7E — E
(i.e. a bundle morphism N : TE — T E, such that N? = id) smooth on 7 E\{0} such
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that VT E = ker(id + N). If N is a connection on 7F then HT E = ker(id — N) is
the horizontal subbundle associated to N and TE = VT E & HTE. The connection
N on 7T E induces two projectors h,v : 7FE — T E such that h(p) = p" and v(p) = p"
for every p € T(TE), where h = 1(id+ N) and v = %(id — N). The sections

o = (Xa)" = X, — N2V,
generate a local basis of HTE. The frame {d,,V,} is a local basis of TFE called

Berwald basis. The dual basis is {X*,0V*} where JV* = V* + Ng‘Xﬁ. The Lie
brackets of the Berwald basis {04, V. } are [15]

ON)
[60”65]15 = Llﬁé’Y + Rlﬁv“/’ [60’ Vﬁ]E = W v [Va’ Vﬁ]E =0,
where
(2.1) Rop =08(NJ) — 0a(Ng) + Lo gNZ.
The curvature of the connection N is given by = —Ny, where

Ni(z,w) = [hz,hw]g — h[hz,w]g — h[z, hw]g + h?[z, w]E,

is the Nijenhuis tensor of h. In local coordinates we have
Q= Irr xepxtey
- 9 af v

where Rl,@ are given by (2.1) and represent the local coordinates expression of the
curvature.

3 Dynamical covariant derivative and metric non-
linear connection

Definition 3.1. A map V : (T E\{0}) — (7 E\{0}) is said to be a tensor deriva-
tion on 7 E\{0} if the following conditions are satisfied:

i) V is R-linear

ii) V is type preserving, i.e. V(T5(7E\{0}) C T7(7T E\{0}), for each (r,s) € N x N.
ili) V obeys the Leibnitz rule V(P ® S) = VP ® S+ P ® VS, for any tensors P, S on
TE\{0}.

iv) V commutes with any contractions, where T2(7 E\{0}) is the space of tensors on

TE\{0}.

For a semispray S we consider the R-linear map Vy : I'(7 E\{0}) — I'(T E\{0})
given by
Vop =[S, hplg +V[S,vpleg, VpeT(TE\{0}).

It results that

Vo(fp) =8(f)p+ fVop, VfeCT(E), peI(TE\{0}).
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Any tensor derivation on 7 E\{0} is completely determined by its actions on smooth
functions and sections on 7 E\{0} (see [20] generalized Willmore’s theorem, p. 1217).
Therefore there exists a unique tensor derivation V on 7 E\{0} such that

Vicer=S, VIrae\opn= Vo

We will call the tensor derivation V, the dynamical covariant derivative induced by
the semispray S and a nonlinear connection N.

Proposition 3.1. The following formulas hold

. 08~

[S,05]5 = (N§ — L§.y°) 6 + RV,

where 587 557
Ry = —0hg7 — S(NG) + NENG + Ng@ + N2 L 5y

The action of the dynamical covariant derivative on the Berwald basis is given by

.98

Vig =h[S, 5] = (]\75K — geys) Oq-

It is not difficult to extend the action of V to the algebra of tensors by requiring for
V to preserve the tensor product. For a pseudo-Riemannian metric g on VT FE (i.e.
a (2,0)-type symmetric tensor g = gas(z,y)V* ® VP of rank m on VT E) we have

(Vg)(p1, p2) = S(g(p1, p2)) — 9(Vp1, p2) = g(p1, V2),
and in local coordinates we get

Y oS~

oS
(B1)  gug) = (V) (Vas Vs) = S(gas) + 915 (N; + ay) t gra (Ng + aw) |

Definition 3.2. The nonlinear connection IV is called metric or compatible with the
metric tensor g if s7g = 0, that is

S(g(p1,p2)) = 9(Vp1,p2) +9(p1, Vp2).

If S be a semispray, N a nonlinear connection and V the dynamical covariant
derivative induced by (S, N), then we set:

Proposition 3.2. The nonlinear connection N with the coefficients given by

NOC « 1 (e}
Nﬁ = Ng - 59 7gw/a

is a metric nonlinear connection.
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Proof. Since N are the coefficients of a nonlinear connection and g*7g,5,, are the

components of a tensor of type (1,1) it results that N 5 are also the coefficients of
a nonlinear connection. We consider the dynamical covariant derivative induced by
(S, N) and we have

~ 057 ~, 08"
(Vg)(Vu,Vg) = S(gaﬁ) + 98 <N(;Y + aya> + Gya (Nﬂ + 8yﬁ>

057 oS7 1
y v —_— | e
S(gaﬁ) + g’YB (Na + aya> +g’YOt (Ng + 5‘y'6> g’Yﬂ 29 gEOz/

1., 1 1
Gra59" 98/ = Jap/ = 598/ = 598/ = 0

that is the connection N is metric. O

3.1 The case of SODE connection

A semispray (SODE) given by & = y*X,, + S*V,, determines an associated nonlinear
connection
N =—-LsJ,

with local coefficients

1/ 888
2 NP =2 |- L8 ).
(32 t=y (- o)

2

Proposition 3.3. The following equations hold

(3.3) (S, Vsl = —05 + (N§ — L3.y°) Va,

(3.4) [S,05]e = (N§ — L3.y°) 00 + R Va,

where

3.5 RS = i 05 S(NS) — N®N7Y + (L7, N® + LY N)y°
(3.5) ﬁ__Uﬁaxi_(ﬁ)_ 7ﬁ+(eﬁ v T Lo ﬂ)y'

The dynamical covariant derivative induced by .S and associated nonlinear con-
nection is characterized by

1 /08¢
VVB = V[S,VQ]E = (Ng — ngye) Va = *5 (ayﬁ + Lgsys) Va,

V65 = h[S, 055 = (NG — L5.y7) da.
(3:6) Gap/ = (Vg)(Va: V) = S(gap) — 918N3 — gyaNg + (gwﬁLle + gwaLZs) v

which is equivalent to

1087 1087 1 )
(3.7 (Vg)(Va:Vs) = S(gap) + 29y 9P + 29,7 T3 (ngLle + g’YaLg.s) Y-
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Definition 3.3. The Jacobi endomorphism is given by ® = v[S, hp|g.

Locally, from (3.4) we obtain that ® = RV, ® X# where R§ is given by (3.5)
and represent the local coefficients of the Jacobi endomorphism.

Proposition 3.4. The following result holds
O =isQ+ v[vS, hplg.

Proof. Indeed, ®(p) = v[S, hp|g = v[bS, hplg + v[vS, hp|g and Q(S, p) = v[hS, hp|g,
which yields ®(p) = Q(S, p) + v[vS, hp|g. O

If S is a spray, then the coefficients S are 2-homogeneous with respect to the
variables y? and it results

25% = 55y" = —2N§Y’ + Li,y7y" = —2Njgy’.

ONY
S=hS8 =y, vS§=0, Nj= ﬁys + L3.y°,

which yields ® = is(2, and locally we get R = RZzy°.

3.1.1 Lagrangian case
Let us consider a regular Lagrangian L on E, that is the matrix
_ 0*L
gaﬁ - ayaayﬂ )

has constant rank m. The symplectic structure induced by the regular Lagrangian is
[12]

0’°L . 0L . 0L
- r - v — 7 XN XP,
2 OyP Ta Oxi Oy 98 oy ‘“5)

0%L 1
_ B A X 4 =
aagp” YT <a

wr

Let us consider the energy function given by

oL
EL = ya@ — L,

then the symplectic equation
iswp, = —d¥Ep, SeT(TE),

and the regularity condition of the Lagrangian determine the components of the semis-
pray

oL 9L OL
e _ B ) Y o LH a ¥
(38) S g <aﬁ Ori Oa 8x’8yﬁy ﬁay ayg) )

where g,59°7 = 4.
The connection N with the coefficients given by (3.2), determined by the semispray
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(3.8) will be called the canonical nonlinear connection induced by a regular Lagrangian
L. Tts coefficients are given by
(3.9)

o 1 ; O°L ; 0°L oL 0
NBV = 5 |:S(gfﬁ) + Oﬁa i9y* — 0 a$i3y6 - Lgaaiyy + (g“/ELgO + ngLzo) ) :|

Theorem 3.5. The canonical nonlinear connection N induced by a regular Lagrangian
L is a metric nonlinear connection.

Proof. Introducing the expression of the semispray (3.8) into the equation (3.7) we
obtain

Dgap LJOL o PL , 0L\ 9gap
V) Va, = yo! + =y’ — LY,
(Vg) Ve, Vi) Voo 2 <078x’ 7 ooy Y ay oy°

dg7¢ dg7¢ ;0L , 9*L , , _OL
g’Yﬁ 8 @ g'ya 8?]5 9.0

O¢ ozt — 0g 6x28y5y ety ayg

1

o

]' i L iagoéﬁ e
T3 < ’ay O‘&N@gﬂ) "% g Y
1 0?L 10L
E (o452 ) "2y |

i

Z@yﬂ 78 Ox' Oy~

Ba + Las)

D) (g’YﬁLaE + g’YaLﬁs) Y +s 2 (QWﬁLlE + nggs) Y
By direct computation, using the equalities

99" _ 4998 _  4e99ap
D5 gy dy° oy

0
Laﬂ - L,Boc

it results (Vg)(Va, Vs) = 0, which ends the proof. O

Theorem 3.6. The canonical nonlinear connection induced by a reqular Lagrangian
is a unique connection which is metric and compatible with the symplectic structure
wr,, that is

(3.10) Vg =0,

(3.11) wi(hp,hv) =0, Vp,v € T(TE\{0})

Proof. Using the equation V* = §V* — N[C,"Xﬁ it results

1( 9L , &L , 9L

wr, = gap(6V’ — N“?XW) AXE+ 2 (&z:iayﬁ o™ Oz oy~ 78 ay* zﬁ> v

1 9L . 9?L . 0L

8ot s : ; ap | X7AX

= gugdVINX <go‘,yj\]'/’3y — gy IN5 + 8x’6y50°‘ - 83@@3}00[3 o oy° ocﬂ) XPNX
1 82L . 82L . oL

= GugOVP AX* + = ( Nog — Nao , o~ A b= gpeLas | X7 A X

JapdV T3 ( 0= Vet Baiggp e T Baigy= " T By aﬁ) 7
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where Nyg := gMNg. We have that wr,(hp,hr) = 0 if and only if the second part of
the above relation vanishes, that is

1 1 0’L 0’L oL
Niwg = =(Nug — Ngo) = = | =22t — L2 i 4 PZpe )
[aB] 2( B B ) 2 <axzaya 93 axlayﬁ To T ays 055)

It result that the skew symmetric part of N,g is uniquely determined by the condition
(3.11). The symmetric part of N,g is completely determined by the metric condition
(3.10). Indeed

S(gas) = G18N2 + 90N} — (92010 + Gral ) ¥°
= Nga + Nap — (gvﬁLls + ngge) v
= 2Niap) — (99853 + 70l ) ¥

that is
2]\f(ozﬁ) = S(gaﬁ) + (g’YﬁLZs + g’YQLgE) Y

The equations (3.10) and (3.11) uniquely determine the coefficients of the nonlinear
connection
Nj = ¢"Nag=9¢""(Nap) + Niag])

1 L ,  »®L , oL
= 597 S(gaﬁ) + 8xzaya 93— 6x78y5 Oq — Tys ,6304 + (g’YﬁL’ost + g’Y@Lgs) y5:|

Conversely, introducing (3.8) into (3.2) we have (3.9) which ends the proof. O
From [18, 4] we have:

Definition 3.4. A linear connection on Lie algebroid is a map D : I'(E) x I'(E) —
I'(E) which satisfies the rules

i) Dp+wn = Dpn + Do,

ii) Dp(n + w) = Dpn + Dpwa

iii) Dypn = fD,n,

iv) Dy(fn) = (a(p)f)n+ fD,n,

for any function f € C*°(M) and sections p,n,w € I'(E).

For p,n € T'(E), the section D,n € I'(E) is called the covariant derivative of the
section 7 with respect to the section p. Let N be a nonlinear connection, then a linear
connection D on Lie algebroid (E,[-,]g,0) is called N—linear connection if [14]

i) D preserves by parallelism the horizontal distribution H7 E.
ii) The tangent structure J is absolute parallel with respect to D, that is DJ = 0.
Consequently, the following properties hold:

(D) =0, (Dyn")"=0, D,h=0, D=0,
Do(J0") = J(Dpn™),  Dy(Jn") = J(Dpn¥).
If we denote D};n = Dyun, Dyn = Dyvn then the following decomposition is obtained

D, =D+ D}, pel(E)
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We remark that D® and DY are not covariant derivative, because
Dpf=o(p")Vf #0(p)f, Dyf=0(p")f #0p)f

but, it still preserves many properties of D. Indeed, D" and DV satisfy the Leibniz
rule, and D" and DY will be called the h—covariant derivation and v— covariant
derivation, respectively.

Remark 3.7. The invariant form of Helmholtz conditions on Lie algebroids is given
by:

Dyg(v,0) = Dyg(v, p),

Vg =0,

9(®p,v) = g(Pv, p),

forv,p,0 € T(E), which in local coordinates yield

09ap _ 0Yae
Oye oys’

5(9a5) = 9:9N3 = 92N} = ¥ (90L2 + 91aL2s)

za‘sv ¥ £ NTY ) ¥ ¥ 5\, €
Gary aﬂ—axi +$Nﬁ + NGN7 — (LEBN5 —|—L56Nﬁ)y =

7 oS 04 £ NTY S ¥ Y 5\, &
9B~ (Jaal‘i +8Na + NaNE - (LaaNé +L65Na)y ) .

In the case of standard Lie algebroid (T'M, [-, -], id) we obtain the classical Helmholtz
conditions [11].
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