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Abstract. In this paper the problem of compatibility between a nonlinear
connection and other geometric structures on Lie algebroids is studied.
The notion of dynamical covariant derivative is introduced and a metric
nonlinear connection is found in the more general case of Lie algebroids.
We prove that the canonical nonlinear connection induced by a regular
Lagrangian on a Lie algebroid is the unique connection which is metric
and compatible with the symplectic structure.
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1 Introduction

The notions of nonlinear connection and metric structure are important tools in the
differential geometry of the tangent bundle of a manifold. The metric compatibility
of a nonlinear connection generalize the compatibility between a Riemannian metric
and the linear connection and it is known as one of the Helmholtz conditions for the
inverse problem of Lagrangian Mechanics (see for instance [2, 3, 5, 8, 11, 13]).

In this paper we generalize the metric compatibility of a nonlinear connection at
the level of Lie algebroids. The notion of Lie algebroid and its prolongation over the
vector bundle projection generalize the concept of tangent bundle. Mackenzie [10]
has been achieved a unitary study of Lie algebroids and together with Higgins [6]
have introduced the notion of prolongation of a Lie algebroid over a smooth map.
Weinstein [22] shows that is possible to give a common description of the most inter-
esting classical mechanical systems. He developed a generalized theory of Lagrangian
Mechanics and obtained the equations of motions, using the Poisson structure [21] on
the dual of a Lie algebroid and the Legendre transformation associated with a regular
Lagrangian. In the last years the problems raised by Weinstein and related topics
have been investigated by many authors (see for instance [1, 7, 9, 12, 15, 16, 17, 19]).

In the present paper we study the problem of compatibility between a nonlinear
connection and some other geometric structures on Lie algebroid and its prolongation
over the vector bundle projection. The paper is organized as follows. The second
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section contains the preliminary results on Lie algebroids. In the section three, the
compatibility between a nonlinear connection and a pseudo-Riemannian metric is
studied. The notion of dynamical covariant derivative on the prolongation of Lie al-
gebroid over the vector bundle projection is introduced and its action on the Berwald
basis is given. We find the expression of the Jacobi endomorphism on Lie algebroids
and the relation with the curvature of the nonlinear connection. We prove that the
canonical nonlinear connection induced by a regular Lagrangian is the unique con-
nection which is metric and compatible with a symplectic structure. Also, using the
notions of v-covariant derivative, dynamical covariant derivative and Jacobi endomor-
phism, we obtain the Helmholtz conditions in the framework of a Lie algebroid.

2 Preliminaries on Lie algebroids

Let M be a real, C∞-differentiable, n-dimensional manifold and (TM, πM ,M) its
tangent bundle. A Lie algebroid over a manifold M is a triple (E, [·, ·]E , σ), where
(E, π, M) is a vector bundle of rank m over M, which satisfies the following conditions:
a) the C∞(M)-module of sections Γ(E) is equipped with a Lie algebra structure [·, ·]E .
b) σ : E → TM is a bundle map (called the anchor) which induces a Lie algebra
homomorphism (also denoted σ) from the Lie algebra of sections (Γ(E), [·, ·]E) to the
Lie algebra of vector fields (χ(M), [·, ·]) satisfying the Leibniz rule

[s1, fs2]E = f [s1, s2]E + (σ(s1)f)s2, ∀s1, s2 ∈ Γ(E), f ∈ C∞(M).

From the above definition it results:
1◦ [·, ·]E is a R-bilinear operation,
2◦ [·, ·]E is skew-symmetric, i.e. [s1, s2]E = −[s2, s1]E , ∀s1, s2 ∈ Γ(E),
3◦ [·, ·]E verifies the Jacobi identity

[s1, [s2, s3]E ]E + [s2, [s3, s1]E ]E + [s3, [s1, s2]E ]E = 0,

and σ being a Lie algebra homomorphism, means that σ[s1, s2]E = [σ(s1), σ(s2)]. For
ω ∈ ∧k(E∗) the exterior derivative dEω ∈ ∧k+1(E∗) is given by the formula

dEω(s1, ..., sk+1) =
k+1∑

i=1

(−1)i+1σ(si)ω(s1, ...,
ˆ
si, ..., sk+1) +

+
∑

1≤i<j≤k+1

(−1)i+jω([si,sj ]E , s1, ...,
ˆ
si, ...,

ˆ
sj , ...sk+1).

where si ∈ Γ(E), i = 1, k + 1, and it results that (dE)2 = 0. For ξ ∈ Γ(E) the
Lie derivative with respect to ξ is given by Lξ = iξ ◦ dE + dE ◦ iξ, where iξ is the
contraction with ξ.
If we take the local coordinates (xi) on an open U ⊂ M , a local basis {sα} of the
sections of the bundle π−1(U) → U generates local coordinates (xi, yα) on E. The
local functions σi

α(x), Lγ
αβ(x) on M given by

σ(sα) = σi
α

∂

∂xi
, [sα, sβ ]E = Lγ

αβsγ , i = 1, n, α, β, γ = 1,m,
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are called the structure functions of the Lie algebroid and satisfy the structure equa-
tions on Lie algebroid

σj
α

∂σi
β

∂xj
− σj

β

∂σi
α

∂xj
= σi

γLγ
αβ ,

∑

(α,β,γ)

(
σi

α

∂Lδ
βγ

∂xi
+ Lδ

αηLη
βγ

)
= 0,

2.1 The prolongation of the Lie algebroid over the vector bun-
dle projection

Let (E, π, M) be a vector bundle. For the projection π : E → M we can construct
the prolongation of E (see [6, 9, 12, 15]). The associated vector bundle is (T E, π2, E)
where

T E = ∪
w∈E

TwE, TwE = {(ux, vw) ∈ Ex×TwE | σ(ux) = Twπ(vw), π(w) = x ∈ M},

and the projection π2(ux, vw) = πE(vw) = w, where πE : TE → E is the tangent
projection. We also have the canonical projection π1 : T E → E given by π1(u, v) = u.
The projection onto the second factor σ1 : T E → TE, σ1(u, v) = v will be the anchor
of a new Lie algebroid over the manifold E. An element of T E is said to be vertical if
it is in the kernel of the projection π1. We will denote (V T E, π2|V TE

, E) the vertical
bundle of (T E, π2, E) and σ1 |V T E : V T E → V TE is an isomorphism. The local
basis of Γ(T E) is given by {Xα,Vα}, where [12]

Xα(u) =
(

sα(π(u)), σi
α

∂

∂xi

∣∣∣∣
u

)
, Vα(u) =

(
0,

∂

∂yα

∣∣∣∣
u

)
,

and (∂/∂xi, ∂/∂yα) is the local basis on TE. The structure functions of T E are given
by the following formulas

σ1(Xα) = σi
α

∂

∂xi
, σ1(Vα) =

∂

∂yα
,

[Xα,Xβ ]E = Lγ
αβXγ , [Xα,Vβ ]E = 0, [Vα,Vβ ]E = 0.

The local expression of the differential of a function L on E is dEL = σi
α

∂L
∂xiXα +

∂L
∂yαVα, where {Xα,Vα} denotes the corresponding dual basis of {Xα,Vα} and dExi =
σi

αXα, dEyα = Vα. The differential of sections of (T E)∗ is determined by

dEXα = −1
2
Lα

βγX β ∧ X γ , dEVα = 0.

The other canonical geometric objects (see [9]) are Euler section C = yαVα and the
vertical endomorphism or tangent structure J = Xα ⊗ Vα. A section S of T E is
called semispray (or second order differential equation -SODE) if J(S) = C. In local
coordinates a semispray has the expression S(x, y) = yαXα + Sα(x, y)Vα. If we have
the relation [C,S]E = S , then S is called spray and the functions Sα are homogeneous
functions of degree 2 in yα.

A nonlinear connection on T E is an almost product structure N on π2 : T E → E
(i.e. a bundle morphism N : T E → T E, such that N2 = id) smooth on T E\{0} such
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that V T E = ker(id + N). If N is a connection on T E then HT E = ker(id − N) is
the horizontal subbundle associated to N and T E = V T E ⊕HT E. The connection
N on T E induces two projectors h, v : T E → T E such that h(ρ) = ρh and v(ρ) = ρv

for every ρ ∈ Γ(T E), where h = 1
2 (id + N) and v = 1

2 (id−N). The sections

δα = (Xα)h = Xα −Nβ
αVβ ,

generate a local basis of HT E. The frame {δα,Vα} is a local basis of T E called
Berwald basis. The dual basis is {Xα, δVα} where δVα = Vα + Nα

β X β . The Lie
brackets of the Berwald basis {δα,Vα} are [15]

[δα, δβ ]E = Lγ
αβδγ +Rγ

αβVγ , [δα,Vβ ]E =
∂Nγ

α

∂yβ
Vγ , [Vα,Vβ ]E = 0,

where

(2.1) Rγ
αβ = δβ(Nγ

α)− δα(Nγ
β ) + Lε

αβNγ
ε .

The curvature of the connection N is given by Ω = −Nh where

Nh(z, w) = [hz, hw]E − h[hz, w]E − h[z, hw]E + h2[z, w]E ,

is the Nijenhuis tensor of h. In local coordinates we have

Ω = −1
2
Rγ

αβXα ∧ X β ⊗ Vγ ,

where Rγ
αβ are given by (2.1) and represent the local coordinates expression of the

curvature.

3 Dynamical covariant derivative and metric non-
linear connection

Definition 3.1. A map ∇ : T(T E\{0}) → T(T E\{0}) is said to be a tensor deriva-
tion on T E\{0} if the following conditions are satisfied:
i) ∇ is R-linear
ii) ∇ is type preserving, i.e. ∇(Tr

s(T E\{0}) ⊂ Tr
s(T E\{0}), for each (r, s) ∈ N× N.

iii) ∇ obeys the Leibnitz rule ∇(P ⊗S) = ∇P ⊗S + P ⊗∇S, for any tensors P, S on
T E\{0}.
iv) ∇ commutes with any contractions, where T••(T E\{0}) is the space of tensors on
T E\{0}.

For a semispray S we consider the R-linear map ∇0 : Γ(T E\{0}) → Γ(T E\{0})
given by

∇0ρ = h[S, hρ]E + v[S, vρ]E , ∀ρ ∈ Γ(T E\{0}).
It results that

∇0(fρ) = S(f)ρ + f∇0ρ, ∀f ∈ C∞(E), ρ ∈ Γ(T E\{0}).
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Any tensor derivation on T E\{0} is completely determined by its actions on smooth
functions and sections on T E\{0} (see [20] generalized Willmore’s theorem, p. 1217).
Therefore there exists a unique tensor derivation ∇ on T E\{0} such that

∇ |C∞(E)= S, ∇ |Γ(T E\{0})= ∇0.

We will call the tensor derivation ∇, the dynamical covariant derivative induced by
the semispray S and a nonlinear connection N .

Proposition 3.1. The following formulas hold

[S,Vβ ]E = −δβ −
(

Nα
β +

∂Sα

∂yβ

)
Vα

[S, δβ ]E =
(
Nα

β − Lα
βεy

ε
)
δα +Rγ

βVγ

where
Rγ

β = −σi
β

∂Sγ

∂xi
− S(Nγ

β ) + Nα
β Nγ

α + Nα
β

∂Sγ

∂yα
+ Nγ

ε Lε
αβyα.

The action of the dynamical covariant derivative on the Berwald basis is given by

∇Vβ = v[S,Vβ ]E = −
(

Nα
β +

∂Sα

∂yβ

)
Vα

∇δβ = h[S, δβ ]E =
(
Nα

β − Lα
βεy

ε
)
δα.

It is not difficult to extend the action of ∇ to the algebra of tensors by requiring for
∇ to preserve the tensor product. For a pseudo-Riemannian metric g on V T E (i.e.
a (2, 0)-type symmetric tensor g = gαβ(x, y)Vα ⊗ Vβ of rank m on V T E) we have

(∇g)(ρ1, ρ2) = S(g(ρ1, ρ2))− g(∇ρ1, ρ2)− g(ρ1,∇ρ2),

and in local coordinates we get

(3.1) gαβ/ := (∇g)(Vα,Vβ) = S(gαβ) + gγβ

(
Nγ

α +
∂Sγ

∂yα

)
+ gγα

(
Nγ

β +
∂Sγ

∂yβ

)
.

Definition 3.2. The nonlinear connection N is called metric or compatible with the
metric tensor g if 5g = 0, that is

S(g(ρ1, ρ2)) = g(∇ρ1, ρ2) + g(ρ1,∇ρ2).

If S be a semispray, N a nonlinear connection and ∇ the dynamical covariant
derivative induced by (S, N), then we set:

Proposition 3.2. The nonlinear connection Ñ with the coefficients given by

Ñα
β = Nα

β −
1
2
gαγgγβ/,

is a metric nonlinear connection.
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Proof. Since Nα
β are the coefficients of a nonlinear connection and gαγgγβ/, are the

components of a tensor of type (1,1) it results that Ñα
β are also the coefficients of

a nonlinear connection. We consider the dynamical covariant derivative induced by
(S, Ñ) and we have

(∇g)(Vα,Vβ) = S(gαβ) + gγβ

(
Ñγ

α +
∂Sγ

∂yα

)
+ gγα

(
Ñγ

β +
∂Sγ

∂yβ

)

= S(gαβ) + gγβ

(
Nγ

α +
∂Sγ

∂yα

)
+ gγα

(
Nγ

β +
∂Sγ

∂yβ

)
− gγβ

1
2
gγεgεα/

− gγα
1
2
gγεgεβ/ = gαβ/ −

1
2
gαβ/ −

1
2
gαβ/ = 0

that is the connection Ñ is metric. ¤

3.1 The case of SODE connection

A semispray (SODE) given by S = yαXα + SαVα determines an associated nonlinear
connection

N = −LSJ,

with local coefficients

(3.2) Nβ
α =

1
2

(
−∂Sβ

∂yα
+ yεLβ

αε

)
.

Proposition 3.3. The following equations hold

(3.3) [S,Vβ ]E = −δβ +
(
Nα

β − Lα
βεy

ε
)Vα,

(3.4) [S, δβ ]E =
(
Nα

β − Lα
βεy

ε
)
δα +Rα

βVα,

where

(3.5) Rα
β = −σi

β

∂Sα

∂xi
− S(Nα

β )−Nα
γ Nγ

β + (Lγ
εβNα

γ + Lα
γεN

γ
β )yε.

The dynamical covariant derivative induced by S and associated nonlinear con-
nection is characterized by

∇Vβ = v[S,Vβ ]E =
(
Nα

β − Lα
βεy

ε
)Vα = −1

2

(
∂Sα

∂yβ
+ Lα

βεy
ε

)
Vα,

∇δβ = h[S, δβ ]E =
(
Nα

β − Lα
βεy

ε
)
δα.

(3.6) gαβ/ := (∇g)(Vα,Vβ) = S(gαβ)− gγβNγ
α − gγαNγ

β +
(
gγβLγ

αε + gγαLγ
βε

)
yε,

which is equivalent to

(3.7) (∇g)(Vα,Vβ) = S(gαβ) +
1
2

∂Sγ

∂yα
gγβ +

1
2

∂Sγ

∂yβ
gγα +

1
2

(
gγβLγ

αε + gγαLγ
βε

)
yε.
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Definition 3.3. The Jacobi endomorphism is given by Φ = v[S, hρ]E .

Locally, from (3.4) we obtain that Φ = Rα
βVα ⊗ X β , where Rα

β is given by (3.5)
and represent the local coefficients of the Jacobi endomorphism.

Proposition 3.4. The following result holds

Φ = iSΩ + v[vS,hρ]E .

Proof. Indeed, Φ(ρ) = v[S, hρ]E = v[hS, hρ]E + v[vS, hρ]E and Ω(S, ρ) = v[hS, hρ]E ,
which yields Φ(ρ) = Ω(S, ρ) + v[vS,hρ]E . ¤

If S is a spray, then the coefficients Sα are 2-homogeneous with respect to the
variables yβ and it results

2Sα =
∂Sα

∂yβ
yβ = −2Nα

β yβ + Lα
βγyβyγ = −2Nα

β yβ .

S = hS = yαδα, vS = 0, Nα
β =

∂Nα
ε

∂yβ
yε + Lα

βεy
ε,

which yields Φ = iSΩ, and locally we get Rα
β = Rα

εβyε.

3.1.1 Lagrangian case

Let us consider a regular Lagrangian L on E, that is the matrix

gαβ =
∂2L

∂yα∂yβ
,

has constant rank m. The symplectic structure induced by the regular Lagrangian is
[12]

ωL =
∂2L

∂yα∂yβ
Vβ ∧ Xα +

1
2

(
∂2L

∂xi∂yβ
σi

α −
∂2L

∂xi∂yα
σi

β −
∂L

∂yγ
Lγ

αβ

)
Xα ∧ X β .

Let us consider the energy function given by

EL := yα ∂L

∂yα
− L,

then the symplectic equation

iSωL = −dEEL, S ∈ Γ(T E),

and the regularity condition of the Lagrangian determine the components of the semis-
pray

(3.8) Sε = gεβ

(
σi

β

∂L

∂xi
− σi

α

∂2L

∂xi∂yβ
yα − Lθ

βαyα ∂L

∂yθ

)
,

where gαβgβγ = δγ
α.

The connection N with the coefficients given by (3.2), determined by the semispray
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(3.8) will be called the canonical nonlinear connection induced by a regular Lagrangian
L. Its coefficients are given by
(3.9)

Nα
β =

1
2
gαε

[
S(gεβ) + σi

β

∂2L

∂xi∂yε
− σi

ε

∂2L

∂xi∂yβ
− Lγ

βε

∂L

∂yγ
+

(
gγεL

γ
βθ + gγβLγ

εθ

)
yθ

]

Theorem 3.5. The canonical nonlinear connection N induced by a regular Lagrangian
L is a metric nonlinear connection.

Proof. Introducing the expression of the semispray (3.8) into the equation (3.7) we
obtain

(∇g)(Vα,Vβ) = yεσi
ε

∂gαβ

∂xi
+ gεγ

(
σi

γ

∂L

∂xi
− σi

θ

∂2L

∂xi∂yγ
yθ − Lθ

γτyτ ∂L

∂yθ

)
∂gαβ

∂yε

+
1
2

(
gγβ

∂gγε

∂yα
+ gγα

∂gγε

∂yβ

)(
σi

ε

∂L

∂xi
− σi

θ

∂2L

∂xi∂yε
yθ − Lθ

ετyτ ∂L

∂yθ

)

+
1
2

(
σi

β

∂2L

∂xi∂yα
+ σi

α

∂2L

∂xi∂yβ

)
− σi

ε

∂gαβ

∂xi
yε

−1
2

(
σi

α

∂2L

∂xi∂yβ
+ σi

β

∂2L

∂xi∂yα

)
− 1

2
∂L

∂yε

(
Lε

βα + Lε
αβ

)

−1
2

(
gγβLγ

αε + gγαLγ
βε

)
yε +

1
2

(
gγβLγ

αε + gγαLγ
βε

)
yε.

By direct computation, using the equalities

gγβ
∂gγε

∂yα
= −gγε ∂gγβ

∂yα
= −gγε ∂gαβ

∂yγ
, Lθ

αβ = −Lθ
βα

it results (∇g)(Vα,Vβ) = 0, which ends the proof. ¤

Theorem 3.6. The canonical nonlinear connection induced by a regular Lagrangian
is a unique connection which is metric and compatible with the symplectic structure
ωL, that is

(3.10) ∇g = 0,

(3.11) ωL(hρ,hν) = 0, ∀ρ, ν ∈ Γ(T E\{0})

Proof. Using the equation Vα = δVα −Nα
β X β it results

ωL = gαβ(δVβ −Nβ
γ X γ) ∧ Xα +

1
2

(
∂2L

∂xi∂yβ
σi

α −
∂2L

∂xi∂yα
σi

β −
∂L

∂yε
Lε

αβ

)
X β ∧ Xα

= gαβδVβ∧Xα+
1
2

(
gαγNγ

β − gβγNβ
α +

∂2L

∂xi∂yβ
σi

α −
∂2L

∂xi∂yα
σi

β −
∂L

∂yε
Lε

αβ

)
X β∧Xα

= gαβδVβ ∧ Xα +
1
2

(
Nαβ −Nβα +

∂2L

∂xi∂yβ
σi

α −
∂2L

∂xi∂yα
σi

β −
∂L

∂yε
Lε

αβ

)
X β ∧ Xα,
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where Nαβ := gαγNγ
β . We have that ωL(hρ,hν) = 0 if and only if the second part of

the above relation vanishes, that is

N[αβ] =
1
2
(Nαβ −Nβα) =

1
2

(
∂2L

∂xi∂yα
σi

β −
∂2L

∂xi∂yβ
σi

α +
∂L

∂yε
Lε

αβ

)
.

It result that the skew symmetric part of Nαβ is uniquely determined by the condition
(3.11). The symmetric part of Nαβ is completely determined by the metric condition
(3.10). Indeed

S(gαβ) = gγβNγ
α + gγαNγ

β −
(
gγβLγ

αε + gγαLγ
βε

)
yε

= Nβα + Nαβ −
(
gγβLγ

αε + gγαLγ
βε

)
yε

= 2N(αβ) −
(
gγβLγ

αε + gγαLγ
βε

)
yε.

that is
2N(αβ) = S(gαβ) +

(
gγβLγ

αε + gγαLγ
βε

)
yε.

The equations (3.10) and (3.11) uniquely determine the coefficients of the nonlinear
connection

Nγ
β = gγαNαβ = gγα(N(αβ) + N[αβ])

=
1
2
gγα

[
S(gαβ) +

∂2L

∂xi∂yα
σi

β −
∂2L

∂xi∂yβ
σi

α −
∂L

∂yε
Lε

βα +
(
gγβLγ

αε + gγαLγ
βε

)
yε

]

Conversely, introducing (3.8) into (3.2) we have (3.9) which ends the proof. ¤

From [18, 4] we have:

Definition 3.4. A linear connection on Lie algebroid is a map D : Γ(E) × Γ(E) →
Γ(E) which satisfies the rules
i) Dρ+ωη = Dρη +Dωη,
ii) Dρ(η + ω) = Dρη +Dρω,
iii) Dfρη = fDρη,
iv) Dρ(fη) = (σ(ρ)f)η + fDρη,
for any function f ∈ C∞(M) and sections ρ, η, ω ∈ Γ(E).

For ρ, η ∈ Γ(E), the section Dρη ∈ Γ(E) is called the covariant derivative of the
section η with respect to the section ρ. Let N be a nonlinear connection, then a linear
connection D on Lie algebroid (E, [·, ·]E , σ) is called N−linear connection if [14]
i) D preserves by parallelism the horizontal distribution HT E.
ii) The tangent structure J is absolute parallel with respect to D, that is DJ = 0.
Consequently, the following properties hold:

(Dρη
h)v = 0, (Dρη

v)h = 0, Dρh = 0, Dρv = 0,

Dρ(Jηh) = J(Dρη
h), Dρ(Jηv) = J(Dρη

v).

If we denote Dh
ρη = Dρhη, Dv

ρη = Dρvη then the following decomposition is obtained

Dρ = Dh
ρ +Dv

ρ , ρ ∈ Γ(E)
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We remark that Dh and Dv are not covariant derivative, because

Dh
ρf = σ(ρh)f 6= σ(ρ)f, Dv

ρf = σ(ρv)f 6= σ(ρ)f

but, it still preserves many properties of D. Indeed, Dh and Dv satisfy the Leibniz
rule, and Dh and Dv will be called the h−covariant derivation and v− covariant
derivation, respectively.

Remark 3.7. The invariant form of Helmholtz conditions on Lie algebroids is given
by:

Dv
ρg(ν, θ) = Dv

θg(ν, ρ),
∇g = 0,
g(Φρ, ν) = g(Φν, ρ),

for ν, ρ, θ ∈ Γ(E), which in local coordinates yield

∂gαβ

∂yε
=

∂gαε

∂yβ
,

S(gαβ)− gγβNγ
α − gγαNγ

β = yε
(
gγβLγ

εα + gγαLγ
εβ

)
,

gαγ

(
σi

β

∂Sγ

∂xi
+ SNγ

β + Nε
βNγ

ε − (Lδ
εβNγ

δ + Lγ
δεN

δ
β)yε

)
=

gβγ

(
σi

α

∂Sγ

∂xi
+ SNγ

α + Nε
αNγ

ε − (Lδ
εαNγ

δ + Lγ
δεN

δ
α)yε

)
.

In the case of standard Lie algebroid (TM, [·, ·], id) we obtain the classical Helmholtz
conditions [11].
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