Tangent structures and analytical mechanics

Maldo Rahula

Abstract. We establish a link between the sector-forms of White [10] and
the exterior forms of Cartan. We show that the Hamiltonian system on
T2?M reduces to Lagrange’s equations on the osculating bundle OscM.
The structures T%M and Osc* M are presented explicitly.
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1. Tangent bundles and osculators

The tangent functor T iterated k times associates to a smooth manifold M its k-fold
tangent bundle T*M (the kth level of M) and associates to a smooth map ¢ : M; —
M the graded morphism Tkgo : TEM, — T*kM,, the kth derivative of . The level
T*M has a multiple vector bundle structure with k projections onto T*~1 M

ps =T+ Smy : TEM — TF M, s=1,2,...,k,

where 7, is the natural projection TSM — T*~1 M.
Local coordinates in neighbourhoods

T°U CT°M, s =1,2,...,k, where T°7'U = 7,(T*U),

are determined automatically by those in the neighbourhood U C M, the quantities
(u') being regarded either as coordinate functions on U or as the coordinate compo-
nents of the point u € U:

U: (uh), i=1,2,...,n=dim M,
TU: (u',u}), with u* =u'om, uj =du’,
o KRS VA
T°U:  (u',uy, uy, uly), 4 . ' 4 . 4
with u! = u'ommg, ul =dulomy, ub=d(u'om), uiy=d*ul,
etc.

We set up the following convention: to introduce coordinates on TFU we take the
coordinates on T*~'U and repeat them with an additional index k — so that a tan-
gent vector is preceded by its point of origin. This indexing is convenient since
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the symbols with index s thereby become coordinates in the fibre of the projection
Ps, S=1,2,... k.

Thus, for example, under the projections p, : T3U — T2U, s = 1,2,3, the coor-
dinates with index 1,2 and 3 are each suppressed in turn:

PR R A S S S S
(u', ul, us, ujg, ug, Uls, Uss, Uloz)

1 p2 | NP3
(Ui,Ué,Ug”’UéS) (uivui7ué7aui3) (ui,u’i,ué,,u’ﬁ).
The level T*M is a smooth manifold of dimension 2*n and admits an important
subspace of dimension (k + 1)n called the osculating bundle of M of order k — 1
and denoted Osc*~1M. The bundle Osc¥~ 1M is determined by the equality of the
projections
pL=p2=...= Pk,

meaning that an element of T%M belongs to the bundle Osc*~!M precisely when
all its k projections into T*~1M coincide. In this case all coordinates with the same
number of lower indices coincide. For example, the first bundle OscM is determined in
T?U C T?M by the equations u} = u}, the second bundle Osc2M in T3U C T3M by
ul = ub = ul, uly = uly = ubs, etc. The coordinates in Osc*~*M will be denoted by
the derivatives of the coordinate functions on U, that is to say (u, du®, d*u’, . .. 7d”cui).

The immersion ¢ : OscM < T?M and its derivative T( are determined in coor-
dinates by matrix formulae:

u’ ui_ ué du’
ul _ du' U3 | A
u'é © C - duz ) Uég © TC - d2ui )
uiy d*u? ulgg d3u?
0 0 0 0 0 0 0
C(@uZ T O(dut)’ 8(d2u1)) (8u1 T oul o ouh’ Bu’m)

The fibres of the bundle OscM are the integral manifolds of the distribution

0 0 0
o} + 07,07 ith 0 +07 = — ’ 2L
( 2 + 17 >7 wi 2 + K3 auqi +8ué7 2 au112

The functions (uf — u%) vanish on OscM.

Historically, osculating bundles were introduced under various names long be-
fore the bundles T*M. The systematic study begun 60 years ago by V.Vagner [9]
culminated in recent times with Miron-Atanasiu theory [2]. Meanwhile the theme
of levels T*M remained unjustly neglected for the obvious reason that the multi-
ple fibre bundle structure demands a whole new understanding and new approach:
see [5],[7]. Attempts such as [10] and the so-called synthetic formulation of T*M [3]
made progress in that direction.

While an infinitesimal displacement of the point v € M is determined by a tangent
vector u; to M, an infinitesimal displacement of the element (u,u;) € TM is deter-
mined by the quantities (ug,u12), representing a tangent vector to TM, etc. This
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interpretation of the elements of T% M allows us to develop the theory of higher order
motion. Clearly the future belongs to these bundles.

White considers on the level 7% M or on a k-multiple vector bundle certain sector-
forms which are functions simultaneously linear in all the fibres of k projections:
see [10]. In particular the sector-forms on T2U and T3U can be written as

® = pjuiud + piuly,

U = ojpuiudul + Q/Jiljuliu%i% + w?juéujl?) + 1/)13]'“%“]12 + Pt
with coefficients in U. For example, in each term of ¥ we see the index 1 (or 2 or
3) appear exactly once. This means that the function ¥ is linear on the fibres of p;
(and po and ps3).

Any scalar function can be lifted from the level T*~1M to the level T*M by k
different projections p, : T*M — T*~1M. For example, for the sector form ® above
there are three possibilities of lifting to T3M:

Do py = piubul + piuby, o py = piuiul + piuty, P ops = puiul + piuls .

Proposition. Every Cartan k-form can be regarded as a sector-form in the sense
of White, a scalar function on T*M that is constant on the fibres of OscF—1M.
Proof. The sector form ® is constant on OscM if and only if its derivatives vanish on
OscM. Thus

P = @iju’iug +out, =
(0 +01)® = pijusy + pjin] = (i + @ji)ul — pij(ug — u),
%0 =p; = pu)=0, v =0.
By definition ¢ is an antisymmetric bilinear form and can therefore be expressed in
the coordinates (u’,du’) as a 2-form ® = ¢;;)du’ A du’. Thus the sector-form @ is
constant on OscM if and only if it is a Cartan 2-form.
In the case k = 3 the fibres Osc?M of dimension 3n are the integral manifolds of

the distribution
(00 + 07 + 07, 07 + 0.7 + 0., 0;%).

For the sector-form ¥ (see above) we have
U= lbijk“iuéug + 7/’3;‘“3“%3 + 1”%’“%“%3 + 1/’%“:@“%2 + iulys =
(O} + 07 + OV = ijrudul+ Yjinulul + Yirivus + bhudg + Phuls +Phul,y
(07 +0/° +01*)¥ = 1/’gl'iu]1+ %Q‘iué + z/}fzu?), ;
;B = 4.
The derivatives vanish on the fibres Osc?M when the following conditions hold:
_ 1 2 3 _ _
©jr) = 0, ij + 7/%‘;‘ + wij =0, ¢;=0.

These conditions are necessary and sufficient for the sector-form ¥ to be constant
on on Osc?M, but not for ¥ to be a Cartan 3-form. However, every 3-form ¥ =
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Qijrdu’ A du? A du® can be regarded as a homogeneous sector-form that is constant
on Osc?M.
The argument extends likewise to the cases k > 3. |

White’s theory of sector-forms is much more extensive than that of Cartan exterior
forms. In particular, exterior differentiation is an operation on the set of sector-forms
that are constant on the osculating bundles.

There is, however, one inconvenience: sector-forms are represented in natural
coordinates in terms which are not invariant. To get rid of this one can use affine
connexions and adapted coordinates. In 72U, for example, the ‘bad’ coordinates ui,
can be replaced by adapted coordinates Uty = 1"; LW ub 4+ uly using the coefficients
F; i of the affine connection. The sector-form ® is represented by two invariant terms:

Q= (pij — <PkF§j)UZiU§ + ¢ Uf, .

In the parentheses we recognize the prototype of the covariant derivative. In fact, for
the 1-form © = 6,u} the ordinary differential can be written

o . 00;
de = Hi,juzlu; + Qiu’m, Qi,j = @ s

or d© = Vjeiuiug + 6;U, with the covariant derivative Vil =0;; — HkI‘fj.
The connexions play an important role here. The local forms appear in the unified

and intrinsic structures
A, ®A, on TM, ABAL Ay ® A1y on T?M,  ete.

The theory extends by iteration to the levels T*M: see [1], [8].

2. Hamilton, Lagrange, Legendre

The essential importance of the levels TM and T?M for analytical mechanics was
first emphasized by Godbillon [4].

Specifically, Hamiltonian geometry is built on the levels TM and T?M. Associated
to a function H = H(u,u;) (called the Hamiltonian) is the vector field X on TM
where
oH . OH

X =%H, 0 — SH,0', Hi=22 mH, =22
i i ! out Y oud

for which the flow a; = exptX is determined by the system of differential equations
(Hamiltonian system)

Uy Y =

y = —, U .
= —Hyi e’ b dt

{ui:Hi L du? o Ldub

Under the correspondence

(ui,ui,ué,uiz) ~ (uz’u117uz7u7i)
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we see this as a section of the bundle 7y : T?M — TM, of dimension 2n. The function
H and the symplectic form Q = du® A du} [6] are invariant with respect to the vector
field X:

XH=0, LxQ=0.

Theorem. The Hamiltonian system reduces to Lagrange’s equations on the os-
culating bundle OscM .

Proof. The passage from the Hamiltonian H = H(u,u;) to the Lagrangian L =
L(u,us2) ought to be realized through the equation (Legendre transformation)

H(u,uy) — Subub + Lu,ug) = 0.

However, this equation, which should hold identically on T2M, is contradictory:

d(H—gugu;JrL)zo = Hyi + Ly =0, Hyi = ub, Ly = ul.

On the other hand, on OscM where ui = u} = 1, the passage H ~ L is well
determined. On OscM the Hamiltonian system can be written in Lagrangian form:

d <8L) oL 0

dt \ 9t out
The Lagrangian system determines a section of the bundle OscM — T M, of the same
dimension 2n as the Hamiltonian system on T2M. ]

The Hamiltonian geometry on the levels T M and the Lagrangian geometry on
the osculating bundles Osc*~1M for k > 2 are structured according to an iterative
scheme.
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