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Abstract. Recently we have created a multitime maximum principle gath-
ering together some concepts in Mechanics, Field Theory, Differential Ge-
ometry, and Control Theory. The basic tools of our theory are variational
PDE systems, adjoint PDE systems, Hamiltonian PDE systems, duality,
multitime maximum principle, incavity on manifolds etc. Now we jus-
tify the multitime maximum principle for curvilinear integral cost using
the m-needle variations. Section 1 recalls the multitime control theory
and proves the equivalence between curvilinear integral costs and multi-
ple integral costs. Section 2 formulates variants of multitime maximum
principle using control Hamiltonian 1-forms produced by a curvilinear in-
tegral cost and a controlled m-flow evolution. Section 3 refers to original
proofs of the multitime maximum principle using simple and multiple mul-
titime m-needle control variations. The key is to use completely integrable
first order PDEs (controlled evolution and variational PDEs) and their ad-
joint PDEs. Section 4 formulates and proves sufficient conditions that the
multitime maximum principle be true.
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1 Multitime control theory

The multitime control theory is concerned with partial derivatives dynamical systems
and their optimization over multitime [15]-[30]. Such problems are well-known also
as the multidimensional control problems of Dieudonné-Rashevsky type [9], [10], [31],
[32], but both techniques and results in these papers are different from ours. We
confirm the expectations of Lev Pontryaguin, Lawrence Evans and Jacques-Louis
Lions regarding the analogy between optimal control of systems governed by first
order PDEs and optimal control of systems containing first order ODEs. The ideas
we use were stimulated by the original point of view of Lawrence C. Evans [4] on
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(single-time) Pontryaguin maximum principle [11] and by the papers [1]-[3], [5]-[10],
[31], [32].

The multidimensional optimal control arise in the description of torsion of pris-
matic bars in the elastic case as well as in the elastic-plastic case. Another instance
are optimization problems for convex bodies under geometrical restrictions, e.g., max-
imization of the area surface for given width and diameter.

Let (T, h) be an m-dimensional C∞ Riemannian manifold, (M, g) be an n-dimensional
C∞ Riemannian manifold and J1(T,M) the associated jet bundle of first order. Let
(U, η, M) be a control fiber bundle. The manifold M is called state manifold and the
components xi, i = 1, . . . , n of a point x ∈ M are called state variables. Then (xi, ua),

i = 1, . . . , n; a = 1, . . . , k are adapted coordinates in U , and (tα, xi, xi
α =

∂xi

∂tα
),

i = 1, . . . , n; α = 1, . . . ,m are natural coordinates in J1(T,M). The components ua

of the point u ∈ Ux = η−1(x) are called controls.

Let Xα : U → J1(T,M), Xα = Xi
α(x, u)

∂

∂xi
be a C∞ fibered mapping, over the

identity in the state manifold M , which produces a continuous control PDEs system
(controlled m-flow)

∂xi

∂tα
(t) = Xi

α(x(t), u(t)), i = 1, . . . , n; α = 1, . . . ,m,

where t = (t1, . . . , tm) is the multi-parameter of evolution (multitime). This PDEs
system has solutions if and only if the complete integrability conditions

(CIC)
∂Xi

α

∂xj
Xj

β +
∂Xi

α

∂ua

∂ua

∂tβ
=

∂Xi
β

∂xj
Xj

α +
∂Xi

β

∂ua

∂ua

∂tα

are satisfied. These determine the set of admissible controls

U = {u(·) : Rm
+ → U | u(·) is measurable and satisfies CIC}.

The evolution of the state manifold is totally characterized by the image set S =
Im(Xα) ⊂ J1(T, M) which is described by the control equations

xi = xi, xi
α = Xi

α(x, u), i = 1, . . . , n α = 1, . . . ,m.

Remark 1.1. A problem of controlled evolution can be thought as a controlled im-
mersion if m < n, controlled diffeomorphism if m = n or controlled submersion if
m > n. Particularly, if m = n, taking the trace after the indices i, α, we find a
divergence type evolution (conservation laws).

To simplify, we replace the manifolds M and T and the fiber Ux by their local
representatives Rn, Rm, U ⊂ Rk respectively. More precisely, for multitimes we use
the orthant Rm

+ . Having this in mind, for the multitimes s = (s1, ..., sm) and t =
(t1, ..., tm), we denote s ≤ t if and only if sα ≤ tα, α = 1, ..., m (product order).
Then the parallelepiped Ω0t0 , fixed by the diagonal opposite points 0(0, ..., 0) and
t0 = (t10, ..., t

m
0 ), is equivalent to the closed interval 0 ≤ t ≤ t0. Given u(·) ∈ U , the

state x(·) is the solution of the evolution system

(PDE)
∂xi

∂tα
(t) = Xi

α(x(t), u(t)), x(0) = x0, t ∈ Ω0t0 ⊂ Rm
+ .
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This multitime evolution system is used as a constraint when we want to optimize a
multitime cost functional. On the other hand, the cost functionals can be introduced
at least in two equivalent ways:

- either using a curvilinear integral,

P (u(·)) =
∫

Γ0t0

Xβ(x(t), u(t))dtβ + g(x(t0)),

where Γ0t0 is an arbitrary C1 curve joining the points 0 and t0, the running costs ω =
Xβ(x(t), u(t))dtβ is a closed (completely integrable) 1-form (autonomous Lagrangian
1-form), and g is the terminal cost;

- or using the multiple integral,

Q(u(·)) =
∫

Ω0t0

X(x(t), u(t))dt1...dtm + g(x(t0)),

where the running costs X(x(t), u(t)) is a continuous function (autonomous Lagrangian),
and g is the terminal cost.

Theorem 1.2. The controlled multiple integral

I(t0) =
∫

Ω0t0

X0(x(t), u(t))dt1...dtm,

with X0(x(t), u(t)) as continuous function, is equivalent to the controlled curvilinear
integral

J(t0) =
∫

Γ0t0

X0
β(x(t), u(t))dtβ ,

where ω = X0
β(x(t), u(t))dtβ is a closed (completely integrable) 1-form and the func-

tions X0
β have partial derivatives of the form

∂

∂tα
,

∂

∂tα∂tβ
(α < β), ... ,

∂m−1

∂t1... ˆ∂tα...∂tm
.

The hat symbol posed over ∂tα designates that ∂tα is omitted.

Proof. The multiple integral I(t0) suggests to introduce a new coordinate

x0(t) =
∫

Ω0,t

X0(x(t), u(t))dt1...dtm, t ∈ Ω0t0 , x0(t0) = I(t0).

Taking

X0
α(x(t), u(t)) =

∂x0

∂tα
(t),

we can write x0(t) as the curvilinear integral

x0(t) =
∫

γ0t

X0
α(x(s), u(s))dsα, x0(t0) = J(t0),
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where γ0t is an arbitrary C1 curve joining the points 0 and t in Ω0t0 . Also

∂m−1X0
α

∂t1... ˆ∂tα...∂tm
=

∂mx0

∂t1...∂tα...∂tm
.

Conversely, the curvilinear integral J(t0) suggests to define a new coordinate by

x0(t) =
∫

γ0t

X0
α(x(s), u(s))dsα, x0(t0) = J(t0),

where γ0t is an arbitrary C1 curve joining the points 0 and t in Ω0t0 , and ω =

X0
α(x(s), u(s))dsα is a completely integrable 1-form. Since X0

α =
∂x0

∂tα
, we can define

X0 =
∂m−1X0

α

∂t1... ˆ∂tα...∂tm
=

∂mx0

∂t1...∂tα...∂tm
.

Then the new coordinate can be written as

x0(t) =
∫

Ω0t

X0(x(t), u(t))dt1...dtm, t ∈ Ω0,t0 , x0(t0) = I(t0).

¤

In this paper, we shall develop the optimization problems using cost functionals as
path independent curvilinear integrals and constraints as m-flows, where the complete
integrability conditons are piecewise satisfied.

Remark 1.3. New aspects of control theory are developed in the papers [9], [10], [31]
and [32] using weak derivatives instead of usual partial derivatives.

Remark 1.4. We can extend the holonomic controlled evolution to a nonholonomic
controlled evolution, using the Pfaff system dxi = Xi

α(x, u)dtα. In the noholonomic
case, the dimension of evolution is smaller than m.

2 Maximum principle for multitime control theory
based on a curvilinear integral cost

A curvilinear integral cost and a multitime flow were introduced in the optimal control
theory by our papers [12]-[30].

Multitime optimal control problem. Find

max
u(·)

P (u(·)) =
∫

Γ0t0

Xβ(x(t), u(t))dtβ + g(x(t0))

subject to
∂xi

∂tα
(t) = Xi

α(t, x(t), u(t)), i = 1, ..., n, α = 1, ..., m,

u(t) ∈ U , t ∈ Ω0t0 , x(0) = x0, x(t0) = xt0 .

The multitime maximum principle (necessary condition) will assert the existence of a
costate vector function (p∗0, p

∗)(·) = (p∗0(·), p∗i(·)) which, together with the optimal
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m-sheet x∗(·), satisfies an appropriate PDEs system and a maximum condition. All
these conditions can be written using the appropriate control Hamiltonian 1-form

Hα(x, p0, p, u) = p0X
0
α(x, u) + piX

i
α(x, u).

Theorem 2.1. (multitime maximum principle) Suppose u∗(·) is optimal for
(P ), (PDE) and that x∗(·) is the corresponding optimal m-sheet. Then there exists
a function (p∗0, p

∗) = (p∗0, p∗i) : Ω0t0 → Rn+1 such that

(PDE)
∂x∗i

∂tα
(t) =

∂Hα

∂pi
(x∗(t), p∗0(t), p

∗(t), u∗(t)),

(ADJ)
∂p∗i

∂tα
(t) = −∂Hα

∂xi
(x∗(t), p∗0(t), p

∗(t), u∗(t))

and

(M) Hα(x∗(t), p∗0(t), p
∗(t), u∗(t)) = max

u∈Ux

Hα(x∗(t), p∗0(t), p
∗(t), u), t ∈ Ω0τ∗ .

Also, the functions t → Hα(x∗(t), p∗0(t), p
∗(t), u∗(t)) are constants.

(t0) p∗0(t0) = a0, p∗i(t0) =
∂g

∂xi
(x∗(t0))

are satisfied.

We call x∗(·) the state of the optimally controlled system and (p∗0, p
∗(·)) the costate

vector.

Remark 2.2. (PDE) means the identities

∂x∗i

∂tβ
(t) = Xi

β(x∗(t), u∗(t)), β = 1, . . . ,m; i = 1, . . . , n,

(controlled evolution PDEs).

Remark 2.3. (ADJ) means the identities

∂p∗i

∂tβ
(t) = −

(
p∗0(t)

∂X0
β

∂xi
+ p∗j(t)

∂Xj
β

∂xi

)
(x∗(t), u∗(t))

(adjoint PDEs).

Remark 2.4. The relations (M) represent the maximization principle and the rela-
tion (t0) means the terminal (transversality) condition.

Remark 2.5. The multitime maximum principle states necessary conditions that
must hold on an optimal m-sheet of evolution.
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Example. Consider the problem of a mine owner who must decide at what rate
to extract a complex ore from his mine. He owns rights to the ore from two-time date
0 = (0, 0) to two-time date T = (T, T ). A two-time date can be the pair (date, useful
component frequence). At two-time date 0 there is x0 = (xi

0) ore in the ground, and
the instantaneous stock of ore x(t) = (xi(t)) declines at the rate u(t) = (ui

α(t)) the

mine owner extracts it. The mine owner extracts ore at cost qi
ui

α(t)
2

xi(t) and sells ore at
a constant price p = (pi). He does not value the ore remaining in the ground at time
T (there is no ”scrap value”). He chooses the rate u(t) of extraction in two-time to
maximize profits over the period of ownership with no two-time discounting.

Solution (continuous two-time version). The manager want to maximizes
the profit (curvilinear integral)

P (u(·)) =
∫

γ0T

(
piu

i
α(t)− qi

ui
α(t)2

xi(t)

)
dtα

subject to the law of evolution
∂x

∂tγ
(t) = −uγ(t). Form the Hamiltonian 1-form

Hα = piu
i
α(t)− qi

ui
α(t)2

xi(t)
− λi(t)ui

α(t),

differentiate and write the equations

∂Hα

∂uβ
=

(
pi − 2qi

ui
α

xi
− λi

)
δβ
α = 0, no sum after the index i;

∂λi

∂tα
(t) = −∂Hα

∂xi
= −qi

(
ui

α(t)
xi(t)

)2

, no sum after the index i.

As the mine owner does not value the ore remaining at time T , we have λi(T ) = 0.
Using the above equations, it is easy to solve for the differential equations governing
u(t) and λi(t):

2qi
ui

α(t)
xi(t)

= pi − λi(t),
∂λi

∂tα
(t) = −qi

(
ui

α(t)
xi(t)

)2

no sum after i

and using the initial and turn-T conditions, the equations can be solved numerically.
Free multitime, fixed endpoint problem. Given a control u(·) ∈ U , the state

x(·) is the solution of the initial value problem

(PDE)
∂xi

∂tα
(t) = Xi

α(x(t), u(t)), x(0) = x0, t ∈ Ω0t0 ⊂ Rm
+ .

Suppose that a target point x1 is given. Then we consider the cost functional (path
independent curvilinear integral)

(P ) P (u(·)) =
∫

γ0τ

X0
β(x(t), u(t))dtβ ,
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where γ0τ is an arbitrary C1 curve joining the points 0 and τ in Ω0t0 , for τ = τ(u(·)) ≤
∞, τ = (τ1, ..., τm) as the first multitime the solution of (PDE) hits the target point
x1. We ask to find an optimal control u∗(·) such that

P (u∗(·)) = max
u(·)∈U

P (u(·)).

The control Hamiltonian 1-form is

Hα(x, p0, p, u) = p0X
0
α(x, u) + piX

i
α(x, u).

Theorem 2.6. (multitime maximum principle) Suppose u∗(·) is optimal for
(P ), (PDE) and that x∗(·) is the corresponding optimal m-sheet. Then there exists
a function (p∗0, p

∗) = (p∗0, p∗i) : Ω0τ∗ → Rn+1 such that

(PDE)
∂x∗i

∂tα
(t) =

∂Hα

∂pi
(x∗(t), p∗0(t), p

∗(t), u∗(t)),

(ADJ)
∂p∗i

∂tα
(t) = −∂Hα

∂xi
(x∗(t), p∗0(t), p

∗(t), u∗(t)),

and

(M) Hα(x∗(t), p∗0(t), p
∗(t), u∗(t)) = max

u∈Ux

Hα(x∗(t), p∗0(t), p
∗(t), u), t ∈ Ω0τ∗ .

Moreover,
Hα(x∗(t), p∗0(t), p

∗(t), u∗(t))|Ω0τ∗ = 0,

where τ∗ denotes the first multitime the m-sheet x∗(·) hits the target point x1.

We call x∗(·) the state of the optimally controlled system and (p∗0, p
∗(·)) the costate

matrix.

Remark 2.7. A more careful statement of the multitime maximum principle is: there
exist the constant p∗0 and the function (p∗i) : Ω0t∗ → Rn such that (PDE), (ADJ),
and (M) hold. The vector function p∗(·) is a Lagrange multiplier, which appears owing
to the constraint that the optimal m-sheet x∗(·) must satisfy (PDE).

Remark 2.8. If the number p∗0 is 0, then the control Hamiltonian 1-form does not
depend on the corresponding running costs X0

α and in this case the maximum principle
must be reformulated. Such a problem will be called abnormal problem.

Remark 2.9. The previous theory can be extended to the nonautonomous case

(P ) P (u(·)) =
∫

γ0τ

X0
β(t, x(t), u(t))dtβ

and

(PDE)
∂xi

∂tα
(t) = Xi

α(t, x(t), u(t)), t ∈ Rm
+ ,

using the idea of reducing to the previous case by introducing new variables xα =
tα, α = 1, ...,m.
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2.1 Maximum principle with transversality conditions

We look again at the dynamics

(PDE)
∂xi

∂tα
(t) = Xi

α(x(t), u(t)), t ∈ Rm
+ ,

when the initial point x0 belongs to the subset M0 ⊂ Rn and the terminal point x1 is
constrained to lie in the subset M1 ⊂ Rn. In other word, we must choose the starting
point x0 ∈ M0 in order to maximize

(P ) P (u(·)) =
∫

γ0τ

X0
β(x(t), u(t))dtβ ,

where γ0τ is an arbitrary C1 curve joining the points 0 and τ in Ω0t0 , for τ = τ(u(·))
as the first multitime we hit M1.

Assumption. The subsets M0 and M1 are smooth submanifolds of Rn. In this
context, we can use the tangent spaces Tx0M0 and Tx1M1.

Theorem 2.10. (more transversality conditions) If the functions u∗(·) and x∗(·)
solve the previous problem, with x0 = x∗(0), x1 = x(τ∗), then there exists the function
p∗(·) : Ω0τ∗ → Rn such that (PDE), (ADJ) and (M) hold for t ∈ Ω0τ∗ . Also,

(t0)
the vector p∗(τ∗) is orthogonal to Tx1M1,

the vector p∗(0) is orthogonal to Tx0M0.

Remark 2.11. Let Γ0t0 be an arbitrary C1 curve joining the diagonal points 0 and
t0. According the terminal/transversality condition, for t0 > 0 and

P (u(·)) =
∫

Γ0t0

X0
β(x(t), u(t))dtβ + g(x(t0)),

the condition (t0) means p∗i(t0) =
∂g

∂xi
(x∗(t0)).

Remark 2.12. Suppose M1 = {x | fk(x) = 0, k = 1, ..., `}. Since the normal
space (orthogonal complement of the tangent space Tx1M1) is generated by the vec-

tors
∂fk

∂xi
(x1), k = 1, ..., `, we must have p∗i(τ∗) = λk ∂fk

∂xi
(x1), for some parameters

(constants, Lagrange multipliers) λ1, ..., λ`.

2.2 Maximum principle with state constraints

Let us return to the problem

(PDE)
∂xi

∂tα
(t) = Xi

α(x(t), u(t)), x(0) = x0, t ∈ Ω0t0 ⊂ Rm
+ .

(P ) P (u(·)) =
∫

γ0τ

X0
β(x(t), u(t))dtβ ,
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for τ = τ(u(·)) ≤ ∞, τ = (τ1, ..., τm) as the first multitime with x(τ) = x1, and γ0τ

an arbitrary C1 curve joining the points 0 and τ in Ω0t0 . In this sense, we have a
fixed endpoint problem.

State constraints. Suppose our multitime dynamics remains in the submanifold
N = {x ∈ Rn | f(x) ≤ 0}, where f : Rn → R is a differentiable function. The
functions f and Xi

α define new functions

cα(x, u) =
∂f

∂xi
(x)Xi

α(x, u).

If x(t) ∈ ∂N for t ∈ Ωs0s1 , then cα(x(t), u(t)) = 0.

Theorem 2.13. (maximum principle for state constraints) Suppose u∗(·), x∗(·)
solve the previous control theory problem, and that x∗(t) ∈ ∂N for t ∈ Ωs0s1 . Then
there exist the costate vector function p∗(·) : Ωs0s1 → Rn and there exist λ∗γ

β(·) :
Ωs0s1 → R such that

(PDE)
∂x∗i

∂tα
(t) =

∂Hα

∂pi
(x∗(t), p∗0(t), p

∗(t), u∗(t)),

(ADJ
′
)

∂p∗i

∂tβ
(t) = −∂Hβ

∂xi
(x∗(t), p∗(t), u∗(t)) + λ∗γ

β(t)
∂cγ

∂xi
(x∗(t), u∗(t))

(M
′
) Hβ(x∗(t), p∗(t), u∗(t)) = max

u∈Ux

{Hβ(x∗(t), p∗(t), u) | cα(x∗(t), u) = 0}

hold, for multitimes t ∈ Ωs0s1 .

Remark 2.14. Let q1, ..., qs be differentiable functions on U which determine the
subset

A = {u ∈ U | q1(u) ≤ 0, ..., qs(u) ≤ 0}
in the control set (the condition m ≤ s is necessary). In this case, instead of the
relation (M ′) appear (M ′′):

∂Hβ

∂u
(x∗(t), p∗(t), u∗(t)) = λ∗γ

β(t)
∂cγ

∂u
(x∗(t), u∗(t)) + µ∗r

β(t)
∂qr

∂u
(u∗(t)).

The functions λ∗γ
β(·) are those appearing in (ADJ ′). If x∗(t) lies in the interior of

N , for say the multitimes t ∈ Ω0s0 , then the ordinary multitime maximum principle
holds.

Remark 2.15. (Jump conditions) Let s0 be a multitime that p∗ hits the boundary
∂N . Then p∗(s0 − 0) = p∗(s0 + 0). This means that there is no jump in p∗ when we
hit ∂N . However,

p∗(s1 + 0) = p∗(s1 − 0)− λ∗β
β(s1)

∂f

∂x
(x∗(s1)),

i.e., there is possibly a jump in p∗ when we leave ∂N . Of course, these statements
are true when the gluing (contact) sheets, i.e., the unconstrained evolution sheet and
the evolution boundary ∂N have the same dimension.
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3 Proofs of the multitime maximum
principle

The proofs of multitime maximum principle relies either on control variations similar
to those in variational calculus (for interior solutions, see also [15]-[30]) or on control
m-needle variations. These give rise to variations of a reference m-sheet. In spite of
the fact that these variations are not equivalent, they assert similar statements.

Here we use the m-needle variations. To explain their meaning, we consider a can-
didate optimal control u∗(·), the corresponding optimal m-sheet x∗(·), and a multitime
point s of approximate continuity for the functions Xα(x∗(·), u∗(·)) and u(·) ∈ U . An
m-needle variation is a family of controls uε(·) obtained replacing u∗(·) with u(·) on
the set Ω0s \ Ω0s−ε. Any m-needle variation gives rise to a gradient variation yα of

an m-sheet x(t) satisfying the variational PDE
∂yi

α

∂tβ
(t) = yj

α(t)
∂Xi

β

∂xj
(x(t), u(t)), in

the classical sense, only after the multitime s. Of course, the last PDEs satisfies the
complete integrability conditions.

3.1 Simple controls variations

The response x(·) to a given control u(·) is the unique solution of the completely
integrable PDEs system

(PDE)
∂xi

∂tα
(t) = Xi

α(x(t), u(t)), x(0) = x0, t ∈ Ω0t0 ⊂ Rm
+ .

Let us find how the m-needle changes in the control affect the response. In this
sense, we fix the multitime s = (s1, ..., sm), sα > 0, α = 1, ..., m, and a control
v(·) ∈ U . We select ε = (ε1, ..., εm), εα > 0 with the property 0 < sα − εα < sα and
define the modified control

uε(t) =
{

v(t) if t ∈ Ω0s \ Ω0s−ε

u∗(t) otherwise,

which is called a simple m-needle variation of u∗(·). We denote by xε(·) the corre-
sponding response of our system

(22)
∂xi

ε

∂tα
(t) = Xi

α(xε(t), uε(t)), xε(0) = x0, t ∈ Ω0t0 ⊂ Rm
+ .

Let us try to understand how the choices of s and v(·) cause xε(·) to differ from x(·),
for small ||ε|| > 0.

Lemma 3.1. (changing initial conditions) If xε(·) is a solution of the initial value
problem

∂xi
ε

∂tα
(t) = Xi

α(xε(t), u(t)), xε(0) = x0 + εαyα0 + o(ε), t ∈ Rm
+ ,

then xε(t) = x(t)+ εαyα(t)+o(ε) as ε → 0, uniformly for t in compact subsets of Rm
+ ,

where yα = (yi
α) =

(
∂xi

ε

∂εα
|ε=0

)
is the solution of the initial value variational problem

∂yi
α

∂tβ
(t) = yj

α(t)
∂Xi

β

∂xj
(x(t), u(t)), yα(0) = yα0, t ∈ Rm

+ .
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Coming back to the dynamics (22) and simple control m-needle variation, we find

Lemma 3.2. (dynamics and simple control variations) If uε(·) is a simple
variation of the control u∗(·), then

xε(t) = x(t) + εαyα(t) + o(ε) as ε → 0

uniformly for t in compact subsets of Rm
+ , where yα(t) = 0, t ∈ Ω0s and

(23)
∂yi

α

∂tβ
(t) = yj

α(t)
∂Xi

β

∂xj
(x(t), u∗(t)), yα(s) = yαs, t ∈ Rm

+ \ Ω0s,

for
yαs = Xα(x(s), v(s))−Xα(x(s), u∗(s)).

Proof. For simplicity, let us drop the superscript ∗. First we remark that xε(t) = x(t)
for t ∈ Ω0s−ε and hence yα(t) = 0 for t ∈ Ω0s−ε. For the multitime t ∈ Ω0s \ Ω0s−ε,
we can use the curvilinear integral

xε(t)− x(t) =
∫

Γs−εt

(Xα(x(s), v(s))−Xα(x(s), u(s)))dsα = o(ε),

where Γs−εt is a C∞ curve joining the points s− ε and t. Hence we can put yα(t) = 0
for t ∈ Ω0s \ Ω0s−ε.

We set t = s. Since the curvilinear integral is independent of the path, we select
Γ as being the straight line joining the points s− ε and s, i.e.,

Γ : tα = sα − εα + εατ, α = 1, ..., m, τ ∈ [0, 1].

Consequently,

xε(s)− x(s) = (Xα(x(s), v(s))−Xα(x(s), u(s)))εα + o(ε).

On the multitime box Rm
+ \Ω0s, the functions x(.) and xε(.) are solutions for the same

PDEs, but with different initial conditions: x(0) = x0 and xε(s) = x(s)+εαyαs +o(ε),
for yαs defined by (23). The Lemma of changing initial conditions shows that

xε(t) = x(t) + εαyα(t) + o(ε)

for yα(·) solving (23) and for t ∈ Rm
+ \ Ω0s. ¤

3.2 Free endpoint problem, no running cost

Statement. Let us consider again the multitime dynamics

(PDE)
∂xi

∂tα
(t) = Xi

α(x(t), u(t)), x(0) = x0, t ∈ Ω0t0 ⊂ Rm
+

together the terminal cost functional

(P ) P (u(·)) = g(x(t0)),
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which must be maximized with respect to the control. We denote by u∗(·) respectively
x∗(·) the optimal control and the optimal m-sheet of this problem. Since the running
cost is zero, the control Hamiltonian 1-form is

Hα(x, p, u) = piX
i
α(x, u).

It remains to find a vector function p∗ = (p∗i) : Ω0t0 → Rn such that

(ADJ)
∂p∗i

∂tα
(t) = −∂Hα

∂xi
(x∗(t), p∗(t), u∗(t)), t ∈ Ω0t0 ,

and

(M) Hα(x∗(t), p∗(t), u∗(t)) = max
u∈U

Hα(x∗(t), p∗(t), u).

For simplicity, let us drop the superscript ∗. Also, we take into account the control
variation uε(.).

The costate. We define the costate p : Ω0t0 → Rn, p = (pi), as the unique
solution of the terminal value problem

(24)
∂pi

∂tβ
(t) = −pj(t)

∂Xj
β

∂xi
(x(t), u(t)), t ∈ Ω0t0 , pi(t0) =

∂g

∂xi
(x(t0)).

The solutions of the Cauchy problems (23)+(24) determine an 1-form of components
piy

i
β . The PDEs (24) are called adjoint equations since we can verify by computation

that the components (scalar products) piy
i
β are first integrals of the PDEs system

(23)+(24). The costate will be used to calculate the variation of the terminal cost.

Lemma 3.3. (variation of terminal cost) The partial variations of the terminal
cost are

∂

∂εβ
P (uε(·))|ε=0 = pi(s)

(
Xi

β(x(s), v(s))−Xi
β(x(s), u(s))

)
.

Proof. Since P (uε(·)) = g(x(t0) + εβyβ(t0) + o(ε)), where y(·) satisfies the previous
Lemmas, we find

∂

∂εβ
P (uε(·))|ε=0 =

∂g

∂xi
(x(t0))yi

β(t0).

Since the components piy
i
β are first integrals of the PDEs system (23)+(24), we obtain

∂g

∂xi
(x(t0))yi

β(t0) = pi(t0)yi
β(t0) = pi(s)yi

β(s), ∀s ∈ Ω0t0 .

Finally, the functions yβ(s) = Xβ(x(s), v(s))−Xβ(x(s), u(s)) give the desired formula.
¤

We restore the superscript ∗ and we formulate the next

Theorem 3.4. (multitime maximum principle) There exists a function p∗ :
Ω0t0 → Rn satisfying the adjoint dynamics (ADJ), the maximization principle (M)
and the terminal (transversality) condition (t0).
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Proof. The adjoint dynamics and the terminal condition appear in the Cauchy prob-
lem (24). To prove (M), we fix s ∈ intΩ0t0 and v(·) ∈ U , as above. Since the function
ε → P (uε(·)), ε ∈ Ω0t0 , has a maximum at ε = 0, we must have

0 ≥ ∂P

∂εβ
(uε(·))|ε=0 = p∗i(s)

(
Xi

β(x∗(s), v(s))−Xi
β(x∗(s), u∗(s))

)
.

Consequently
Hβ(x∗(s), p∗(s), v(s)) = p∗i(s)X

i
β(x∗(s), v(s))

≤ p∗i(s)X
i
β(x∗(s), u∗(s)) = Hβ(x∗(s), p∗(s), u∗(s)),

for each s ∈ intΩ0t0 and v(·) ∈ U . Since the function v(·) is arbitrary, so it is the
value v(s) and therefore

Hα(x∗(t), p∗(t), u∗(t)) = max
u∈U

Hα(x∗(t), p∗(t), u).

¤

3.3 Free endpoint problem with running costs

Let us consider that the cost functional include a running cost, i.e.,

(P ) P (u(·)) =
∫

Γ0t0

X0
β(x(t), u(t))dtβ + g(x(t0)),

where Γ0t0 is an arbitrary C1 curve joining the points 0 and t0, the running cost dx0 =
X0

β(x(t), u(t))dtβ is a closed (completely integrable) 1-form, and g is the terminal cost.
In this case the control Hamiltonian 1-from must have the form

Hα(x, p0, p, u) = p0X
0
α(x, u) + piX

i
α(x, u),

under the condition that we can built a costate function p∗(·) = (p∗0(·), p∗i(·)) satis-
fying (ADJ), (M) and (t0).

Adding a new variable. Introducing a new variable x0, we convert the theory
to the previous case.

Let x0 : Ω0t0 → R be the solution of initial problem

(25)
∂x0

∂tα
(t) = X0

α(x(t), u(t)), x0(0) = 0, t ∈ Ω0t0 ,

where x(·) = (xi(·)) is the solution of (PDE). Introduce

x = (x1, ..., xn), x = (x0, x), x0 = (0, x0), x(·) = (x0(·), x(·)),

and
Xα(x, u) = (X0

α(x, u), Xα(x, u)), g(x) = g(x) + a0x
0.

Then (PDE) and (25) give the dynamics

(PDE)
∂x

∂tα
(t) = Xα(x(t), u(t)), x(0) = x0, t ∈ Ω0t0 .
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Consequently, the actual control problem transforms into a new control problem with
no running cost and the terminal cost

(P ) P (u(·)) = g(x(t0)).

We apply the previous theorem of multitime maximum principle to obtain p∗ : Ω0t0 →
Rn+1, p∗ = (p∗i) satisfying (Mα) for the control Hamiltonian 1-form

Hα(x, p, u) = piX
i

α(x, u).

The adjoint equations (ADJ) hold for the terminal transversality condition

(t0) p∗j(t0) =
∂g

∂xj
(x(t0)), j = 0, 1, 2, ..., n.

Since Xα do not depend upon the variable x0, the 0-th equation in the adjoint equa-

tions (ADJ) is
∂p0

∂tβ
= 0. On the other hand, the relation

∂g

∂x0
= a0 implies p0 = a0.

Consequently Hβ(x, p, u) and p∗(·) = (p∗i(·)) satisfy (ADJ) and (M).

3.4 Multitime multiple control variations

To formulate and prove the multitime maximum principle for the next fixed endpoint
problem, we need to introduce a multiple variation of the control.

Let us find how multiple changes in the control affect the response. We fix the
multitimes sA = (s1

A, ..., sm
A ), A = 1, ..., N , with 0 < s1 < ... < sN , the control

parameters vA(·) ∈ U and strictly positive numbers λA, A = 1, 2, ..., N . Select ε > 0
so small that the domains Ω0sA \Ω0sA−λAε do not overlap. Define the modified control

uε(t) =
{

vA(t) if t ∈ Ω0sA
\ Ω0,sA−λAε, A = 1, ..., N

u∗(t) otherwise,

which is called a multiple m-needle variation of the control u∗(·). We denote xε(·) the
corresponding response of the Cauchy problem

(26)
∂xi

ε

∂tα
(t) = Xi

α(xε(t), uε(t)), xε(0) = x0, t ∈ Rm
+ .

Let us try to understand how the choices of sA and vA(·) cause xε(·) to differ from
x(·), for small ε > 0. Firstly, we set yα(t) = Yα(t, s)yαs, t ∈ Ωs∞, for the solution of
the Cauchy variational problem (linear PDE system)

∂yi
α

∂tβ
(t) = yj

α(t)
∂Xi

β

∂xj
(x(t), u(t)), yα(s) = yαs, t ∈ Ωs∞,

where the points yαs ∈ Rn are given and Yα(t, s) is the transition matrix.
We define

yαsA
= Xα(x(sA), vA(s))−Xα(x(sA), u(sA)), A = 1, 2, ..., N.

and we replace the Lemma of dynamics and simple control variations with
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Lemma 3.5. (dynamics and multiple control variations) If uε(.) is a multiple
variation of the control u(·), then

xε(t) = x(t) + εαyα(t) + o(ε) as ε → 0

uniformly for t in compact subsets of Rm
+ , where





yα(t) = 0 t ∈ Ω0s1

yα(t) =
∑P

A=1 λAYα(t, sA)yαsA
t ∈ Ω0sA+1 \ Ω0sA

, P = 1, 2, ..., N − 1
yα(t) =

∑N
A=1 λAYα(t, sA)yαsA

t ∈ ΩsN∞.

Definition 3.1. (cones of variations) Let 0 < s1 ≤ s2 ≤ ... ≤ sN < t and
yαsA

∈ Rn, A = 1, ..., N . For each α, the set

Kα(t) = {
N∑

A=1

λAYα(t, sA)yαsA
|N = 1, 2, ...; λA > 0}.

is called the cone of variations at multitime t.

We remark that each Kα(t) is a convex cone in Rn, consisting in all changes in
the state x(t) (up to order ε) we can make by multiple variations of the control u(·)
(see the previous Lemma). To study the geometry of Kα(t), we need the following
topological Lemma:

Lemma 3.6. (zeroes of a vector field) Let S be a closed, bounded, convex subset of
Rn and p ∈ IntS. If Y : S → Rn is a continuous vector field satisfying ||Y (x)−x|| <
||x− p||, ∀x ∈ ∂S, then there exists a point x ∈ S such that Y (x) = p.

Proof. For the general case, we assume after a translation that p = 0, and 0 ∈ IntS.
We map S onto B(0, 1) by a radial dilation, and map Y by rigid motion. This process
convert the general case to the next case.

Suppose that S is the unit ball B(0, 1) and p = 0. The inequality in hypothesis is
equivalent to (Y (x), x) > 0, ∀x ∈ ∂B(0, 1). Consequently, for small t, the continuous
mapping Z(x) = x− tY (x) maps B(0, 1) into itself. According Brouwer Fixed Point
Theorem, the mapping Z has a fixed point, let say Z(x∗) = x∗, and hence Y (x∗) = 0.
¤

3.5 Fixed endpoint problem

The fixed endpoint problem is characterized by the constraint x(τ) = x1, where
τ = τ(u(·)) is the first multitime that x(·) hits the target point x1. In this context,
the cost functional is

P (u(·)) =
∫

γ0τ

X0
β(x(t), u(t))dtβ .

Adding a new variable. We define again x0 : Ω0t0 → R as the solution of initial
problem

∂x0

∂tα
(t) = X0

α(x(t), u(t)), x0(0) = 0, t ∈ Ω0τ ,
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and reintroduce

x = (x1, ..., xn), x = (x0, x), x0 = (0, x0), x(·) = (x0(·), x(·)),

Xα(x, u) = (X0
α(x, u), Xα(x, u)), g(x) = a0x

0.

The problem is replaced to the controlled dynamics

(PDE)
∂x

∂tα
(t) = Xα(x(t), u(t)), x(0) = x0, t ∈ Ω0τ .

and maximizing

(P ), P (u(·)) = g(x(τ)) = a0x
0(τ).

τ being the first multitime that x(τ) = x1. More precisely, the last n components of
x(τ) are prescribed, and we want to maximize the first component x0.

Now we suppose that u∗(·) is an optimal control for this problem, corresponding
to the optimal m-sheet x∗(·). Let us construct the associate costate p∗(·), satisfying
the maximization principle (M). To simplify the notations, we drop the superscript
∗.

Cones of variations. We use the previous theory, replacing the n variables with
n + 1 variables, and the nm variables with (n + 1)m variables, i.e., overlining the
mathematical objects. Also, we denote yα(t) = Y

β

α(t, s)yβs for the solution of the
Cauchy problem

∂yi
α

∂tβ
(t) = yj

α(t)
∂X

i

β

∂xj
(x(t), u(t)), yα(s) = yαs, t ∈ Ωτ∞ \ Ω0s,

where the points yαs ∈ Rn+1 are given and Y
β

α(t, s) =
(
Y

β

αi(t, s)
)

is the fundamental
(transition) operator. In this way, for 0 < s1 ≤ s2 ≤ ... ≤ sN < τ , the cones of
variations are

Kα(τ) = {
N∑

A=1

λAY
β

α(τ, sA)yβsA
|N = 1, 2, ...; λA > 0},

where
yβsA

= Xβ(x(sA), uA)−Xβ(x(sA), u(sA)), uA ∈ Ux.

Let us show that each cone Kα does not occupy all the space Rn+1, and conse-
quently it stays aside of a hyperplane.

Lemma 3.7. (geometry of one cone of variations) The (n + 1)-dimensional
versor eα0 = (1, 0, ..., 0) is outside IntKα.

Proof. Step 1. Suppose eα0 ∈ IntKα. Then there exist n + 1 linearly independent
vectors zα0, zα1, ..., zαn ∈ Kα such that eα0 = λAzαA with positive constants λA and
zαA = Y

β

α(τ, sA)yβsA
for suitable multitimes 0 < s0 < s1 < ... < sn < τ and vectors

yβsA
= Xβ(x(sA), uA)−Xβ(x(sA), u(sA)), A = 0, 1, 2, ..., n.
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Step 2. Since for each Kα we must follow the same rules, we drop the index α
and we write x = λAzA. For small η > 0, we introduce the closed and convex set
S = {x = λAzA|0 ≤ λA ≤ η}. Since the vectors z0, z1, ..., zn are linearly independent,
the interior of S is nonvoid.

Now, for small ||ε|| > 0, we define

Zε : S → Rn+1, Zε(x) = xε(τ)− x(τ), x = λAzA,

where xε(·) solves (27) for the multiple control variation uε(·). If µ, η, ε > 0 are small
enough, then we conjecture Zε(x) = p = µe0 = (µ, 0, ..., 0). This is true since

||Zε(x)− x|| = ||xε(τ)− x(τ)− x|| = o(||x||), as x → 0, x ∈ S

||Zε(x)− x|| = ||xε(τ)− x(τ)− x|| < ||x− p||, ∀x ∈ ∂S.

Step 3. Consequently we can build a control uε(·), having a multiple variation
with the associated response xε(·) = (x0

ε(·), xε(·)) satisfying xε(τ) = x1 and x0
ε(τ) >

x0(τ). This is in contradiction to the optimality of u(·) since the last inequality says
that we can increase the cost. ¤

Existence of the costate. We restore the superscript ∗ and we formulate

Theorem 3.8. (multitime maximum principle) Suppose the problem is not ab-
normal. Then there exists a function p∗ : Ω0τ∗ → Rn satisfying the adjoint dynamics
(ADJ) and the maximization principle (M).

Proof. Step 1. The geometry of each cone of variations shows the existence of a
nonzero vector w of components (wj) ∈ Rn+1, j = 0, 1, ..., n such that wjz

j
α ≤

0, ∀z = (zj
α) ∈ Kα(t), and wje

j
α0 = w0 ≥ 0.

Let p∗(·) be the solution of (ADJ), with the terminal condition p∗(τ) = w. Then
p∗0 = w0 ≥ 0.

We fix the multitime 0 ≤ s < τ , the control u(·) ∈ U , and we set

yαs = Xα(x∗(s), u(s))−Xα(x∗(s), u∗(s)).

Solving

∂yi
α

∂tβ
(t) = yj

α(t)
∂X

i

β

∂xj
(x(t), u(t)), yα(s) = yαs, t ∈ Ωτ∞ \ Ω0s,

we can write (see Lemma of variation of cost)

0 ≥ wjy
j
β(τ) = p∗j(τ)yj

β(τ) = p∗j(s)y
j
β(s).

Consequently
p∗i(s)(X

i

β(x∗(s), u(s))−X
i

β(x∗(s), u∗(s))) ≤ 0

or
Hβ(x∗(s), p∗(s), u(s)) ≤ Hβ(x∗(s), p∗(s), u∗(s)).

Step 2. If the number w0 is zero, then we have an abnormal problem and the
multitime maximum principle must be reformulated.
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If w0 > 0, then the maximization formulas reduces to

Hβ(x∗(s), p∗(s), u) ≤ Hβ(x∗(s), p∗(s), u∗(s)).

But this is the maximization principle (M). ¤

Missing discussions: measurability concerns, how we proceed when some mul-
titimes sA are equal, how we prove that the functions

t → Hβ(x∗(t), p∗(t), u(t))

are constants in free endpoint problems, and respectively

Hβ(x∗(t), p∗(t), u(t)) = 0

in fixed endpoint problems?

4 Sufficiency of the multitime maximum
principle

Let us consider the controlled functional

F (x(·), u(·)) =
∫

Γ0t0

X0
β(t, x(t), xα(t), u(t))dtβ .

Definition 4.1. A point (x∗(·), u∗(·)) is called critical point of the functional F (x(·), u(·))
if

∂X0
β

∂xi
(t, x∗(t), x∗α(t), u∗(t))−Dγ

(
∂X0

β

∂xi
γ

)
(t, x∗(t), x∗α(t), u∗(t)) = 0

∂X0
β

∂ua
(t, x∗(t), x∗α(t), u∗(t)) = 0.

Definition 4.2. Let (x∗(·), u∗(·)) be a critical point of the functional F (x(·), u(·)).
If there exists a vector function η(t, x(t), x∗(t), xα(t), x∗α(t), u(t), u∗(t)) such that

η(t, x(t), x∗(t), xα(t), x∗α(t), u(t), u∗(t))|x(t)=x∗(t) = 0

and a vector function ξ(t, x(t), x∗(t), xα(t), x∗α(t), u(t), u∗(t)) with the property

F (x(·), u(·))− F (x∗(·), u∗(·)) ≤
∫

Γ0t0

(
ηi(t, x(t), x∗(t), xα(t), x∗α(t), u(t), u∗(t))

∂X0
β

∂xi
(t, x∗(t), x∗α(t), u∗(t))

+Dγηi(t, x(t), x∗(t), xα(t), x∗α(t), u(t), u∗(t))
∂X0

β

∂xi
γ

(t, x∗(t), x∗α(t), u∗(t))

+ ξa(t, x(t), x∗(t), xα(t), x∗α(t), u(t), u∗(t))
∂X0

β

∂ua
(t, x∗(t), x∗α(t), u∗(t))

)
dtβ ,

then the functional is called incave at x, u on Ω0t0 with respect to η and ξ.
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Theorem 4.1. The functional F (x(·), u(·)) is incave if and only if each critical point
(x∗(·), u∗(·)) is a global maximum point.

Now we come back to our original control problem P , PDE with the control
Hamiltonian 1-form

Hβ(t, x(t), u(t), p(t)) = X0
β(t, x(t), u(t)) + pi(t)xi

β(t).

The functional can be written

P (x(·), u(·)) =
∫

Γ0t0

(
Hβ(t, x(t), xα(t), u(t))− pi(t)xi

β(t)
)
dtβ .

If u∗(·) is a C1 optimal control, and x∗(·) is the optimal evolution, then

∂Hβ

∂xi
(t, x∗(t), u∗(t)) +

∂pi

∂tβ
(t) = 0,

∂H

∂ua
(t, x∗(t), u∗(t)) = 0,

i.e., (x∗(·), u∗(·)) is a critical point of the functional p(x(·), u(·)). The point (x∗(·), u∗(·))
is a global maximum point if and only if the functional P (x(·), u(·)) is incave.

Theorem 4.2. The problem P , PDE has a solution (x∗(·), u∗(·)) if and only if the
functional P (x(·), u(·)) is incave.

If we add some concavity restrictions to the components of the control tensor and
the constrained set, then we can prove the sufficiency of the conditions of multitime
maximum principle.

Definition 4.3. A function f : Rn → R is called concave if its Hessian matrix (fxixj )
is negative definite at each point x∗, i.e., the associated quadratic form fxixj (x∗)(x∗i−
xi)(x∗j − xj) is negative, for an arbitrary point x∗.

A concave function satisfies the inequality f(x∗)− f(x) ≥ fxi(x∗)(x∗i − xi).

Theorem 4.3. If the triplet (x∗, p∗, u∗) satisfies the conditions of multitime maximum
principle and each component of the control tensor evaluated at p = p∗ is (strictly)
concave in the pair (x∗, u∗), then (x∗, p∗, u∗) is the (unique) solution of the control
problem.

Proof. Let us have in mind that we must maximize the functional

P (u(·)) =
∫

Γ0t0

X0
β(t, x(t), u(t))dtβ

subject to the evolution system. We fix a pair (x∗, u∗), where u∗ is a candidate
optimal m-sheet of the controls and x∗ is a candidate optimal m-sheet of the states.
Calling P ∗ the values of the functionals for (x∗, u∗), let us prove that

P ∗ − P =
∫

Γ0t0

(X∗0
β −X0

β)dtβ ≥ 0,



Multitime maximum principle for curvilinear integral cost 147

where the strict inequality holds under strict concavity. Denoting H∗
α = Hα(t, x∗, p∗, u∗)

and Hα = Hα(t, x, p∗, u), we find

P ∗ − P =
∫

Γ0t0

(X∗0
β −X0

β)dtβ =
∫

Γ0t0

(
(H∗

β − p∗i
∂x∗i

∂tβ
)− (Hβ − p∗i

∂xi

∂tβ
)
)

dtβ .

Integrating by parts, we obtain

P ∗ − P =
∫

Γ0t0

(
(H∗

β + x∗i
∂p∗i
∂tβ

)− (Hβ + xi ∂p∗i
∂tβ

)
)

dtβ

− (
p∗i (t0)x

∗i(t0)− p∗i (0)x∗i(0)
)

+
(
p∗i (t0)x

i(t0)− p∗i (0)xi(0)
)
.

Taking into account that any admissible m-sheet has the same initial and terminal
conditions as the optimal m-sheet, we derive

P ∗ − P =
∫

Γ0t0

(
(H∗

β −Hβ) +
∂p∗i
∂tβ

(x∗i − xi)
)

dtβ .

The definition of concavity implies
∫

Γ0t0

(
(H∗

β −Hβ) +
∂p∗i
∂tβ

(x∗i − xi)
)

dtβ

≥
∫

Γ0t0

(
(x∗i − xi)

∂H∗
β

∂xi
+ (u∗a − ua)

∂H∗
β

∂ua
+

∂p∗i
∂tβ

(x∗i − xi)
)

dtβ

=
∫

Γ0t0

(
(x∗i − xi)(

∂H∗
β

∂xi
+

∂p∗i
∂tβ

) + (u∗a − ua)
∂H∗

β

∂ua

)
dtβ .

This last equality follows from that all ” ∗ ” variables satisfy the conditions of the
multitime maximum principle. In this way, P ∗ − P ≥ 0. ¤

Remark 4.4. One can ensure the sufficiency of the multitime maximum principle
from more primitive assumptions on the functions X0

α and Xi
α. For example, if X0

α

are concave in (x, u) and Xi
α are concave (convex) in (x, u), and p∗i ≥ 0(≤ 0), then

Hβ evaluated at p∗i are concave in the pair (x, u).
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[17] C. Udrişte, Lagrangians constructed from Hamiltonian systems, Mathematics a
Computers in Business and Economics, pp. 30-33, Proc. of the 9th WSEAS
Int. Conf. on Mathematics a Computers in Business and Economics(MCBE-08),
Bucharest, Romania, June 24-26, 2008.
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[24] C. Udrişte, L. Matei, Lagrange-Hamilton Theories (in Romanian), Monographs
and Textbooks 8, Geometry Balkan Press, Bucharest, 2008.
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