Laplacians on the tangent bundle of Finsler manifold

Chunping Zhong

Abstract. Let M be a smooth manifold with a Finsler metric F and
g be the naturally induced Riemann metric on the slit tangent bundle
M. The Weitzenbock formulas of the horizontal Laplacian Aj and the
vertical Laplacian /\, are obtained in terms of the Cartan connection of
(M, F). The relationship between the Hodge-Laplace operator A of g
and the operators Ay, A,, Anmiz are investigated. As application, the
relationship between the eigenvalues of A and Ay, A, are established,
and a Bochner-type vanishing theorem of horizontal differential form on
M is obtained.
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1 Introduction

Let M be a real manifold of dimension m, we denote by T'M its tangent bundle, and
w : TM — M the canonical projection, the cotangent bundle of M is denoted by
T*M. We assume that M is endowed with a Finsler metric F' in the sense of [1], see
also [3] and [7]. It is known that there is not a canonical way to define Laplacian on
(M, F), we refer to [2] for more details. Usually Laplacians on Finsler manifolds are
constructed either on the base manifold M or the slit tangent bundle M = TM — {o},
where o denotes the zero section of TM. In [8], Munteanu obtained the Weitzenbock
formulas of horizontal and vertical Laplacians for 1-forms on a Riemann vector bundle
p: E — M with compact fiber spaces F = p~!(z) for x € M. Very recently, this
idea was developed in [10] to investigate vanishing theorem of holomorphic forms
on Kahler Finsler manifolds. Note that since most curvature components of Finsler
metrics depend not only on base point € M but also on direction y € T, M [9], and
a Finsler metric F' on M naturally induces a Riemann metric g on M, it is natural
to define a Laplacian on the tangent bundle TM of a Finsler manifold (M, F'). The
purpose of this paper is to introduce the horizontal and vertical Laplacians of a Finsler
metric on the slit tangent bundle M and relate it to the Hodge-Laplace operator A
of the Riemann metric § on M. It is known that A is not a type preserving operator
when acting on differential forms of type (p,q) on M, i.e., those forms which are
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horizontal type of p and vertical type of ¢ on M. Nevertheless, there are three
components of A, i.e., the horizonal Laplacian A}, the vertical Laplacian A, and
the mixed part A, which are type preserving [8]. Our results shows that both
the local expressions of A; and A, depend on the choice of the Finsler connection
associated to (M, F). Moreover, the horizontal Laplacian A, depends only on the
horizontal curvature components of F', the vertical Laplacian A\, depends only on
the vertical curvature components of F', the mixed Laplacian A\,,;, depends only on
the Riemann curvature of F' and is independent of the choice of Finsler connections
associated to (M, F). We obtain the Weitzenbock formula of Ay and A, in terms
of the Cartan connection of (M, F'), and obtain a Bochner-type vanishing theorem of
horizontal differential forms which are compactly supported in M.

2 Preliminaries

In this section, we shall recall some basic facts of Finsler manifold. We refer to [1] for
more details. Let F' be a Finsler metric on a real manifold M of dimension m. Denote
by V the vertical vector bundle of M, then there is a Riemann metric g on ¥V which
is induced by F, and a unique good vertical connection V : X (V) — X(T*M ® V)
called the Cartan connection associated to (M, F'). Note that associated to V, there
are horizontal bundle H and the horizontal map © : V — H. Using © one can
transfers the natural Riemann metric ¢ on V to H, and get a Riemann metric g
on the whole bundle 7'M, and consequently a linear connection, still denoted by V,
on X(TM) and X(T*M). Note that one can also consider the Berwald connection
associated to (M, F), and it was shown in [5] that the Berwald connection and the
Cartan connection play a different role when one considers the properties of adapted
coordinates system related to them.

Locally let (z) = (z!,---,2™) be the local coordinates on M and (z%,y") =
(xt,--- 2™yt - ,y™) be the naturally induced coordinates on TM. Denote by
{6:,8;} the local frame for TM and {dz?,dy’} the dual frame for T* M, here

A~ Y S
~ Ort toyit Tt oyt

1

0 oy' =dy' + I';da?,

and FJZ is the nonlinear connection coefficients associated to the Cartan connection
V. It is known that the Cartan connection V satisfy

(21) V5,0, = T),.0i, V.05 =Cidi, Ve85 =T}40i, Vy 6 = Chdi,
(2.2) Vs, dx' = —Fj?;kdxj, Vs, 0y' = — ;;kéyj,
(2.3) Va-kdxi = —Cjdal, Vakéyi =—Cj0y,

where in the above equations, I ;  and C} & are the horizontal and vertical connection
coefficients of the Cartan connection. That is,

. 1 .. . 1 ,..
(24) = 50" 105 (gnk) + 0k(g5n) = Onlgsn)), iy = 59" 05(gne),
with gpr = %3ha.k (FQ) It is clear that

(2.5) Iy =T}, Ch=Ciy
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Note that {dz’,dy'} is a local frame for T*M, it follows that the differential forms
on M can be represented in terms of {dz’,dy'}. In [8], a differential form ¢ of type
(p,q) on M is expressed in terms of {dz?, dy'} as follows:

1
(2'6) Y= ZTq'SOIpJquCI" A (5qu

where I, =iy iy, Jg = j1- " jg, dxlr = dz' A- - Ndate, yTa = §yIt A+ Adyle, and
®1,J, are anti- symmetric in their indexes in I, and J,, respectively. In the following,

we denote by A29(M) the space of differential forms on M which are of type (p, ¢) and
the coefficients ¢, ;, are compactly supported in M. Note that there is a naturally

point-wise inner product (-, -) defined in AZ4(M) for every (x,y) € M. More precisely,
for ¢, € ALI(M),

1

4171 ipTp ,J181 Jas
T ...gplng ...g‘]‘]7
pq

(@, ) =

'907/1 Zp]l ]qw’ll ‘TpS1-: g

where the above equation is evaluated at (x,y) € M. The point-wise inner product
(+,-) gives rise to a global inner product (-,-) defined in A2?(M). That is,

(2.7) (0r9) = / (p)av

whenever the integral of (2.7) exists. Here dV = det(g;j)dz A---Adz" Ady' A---Ady™
is the natural volume form of the Riemann metric g on M. Note that

(2.8) df = &;(f)da’ + 0;(f)dy"
for f € C°°(M) and

. 1 . o
(2.9) d(oy') = _iR;kde A da® — Gl dx? N Sy*,

where Ry = 0x(I;) — 0;(I5,) and G, = GJ(F’,C) Thus for ¢ € API(M) we
have do = dpp + dyp + dpmistp, Where dyp € APTLI(M), dye € AP9TY(M) and
Amizp € NEY29-L(M). Let di,d: and d¥,, be the formal adjoints of d,,d, and
dpmiz, respectively with respect to the global inner product (2.7), i.e

(210) (dh%#}) = (‘P? ;;d))v (dvsﬁa'l/}) = (Qovd:d])v (dMlT¢7w) - ((p,djanl/J)

Let i be the substitution operator and e be the wedge product operator. The
operators i and e satisfy

(2.11) i(6;)dz* = 6%, i(6;)0y" =0, i(9;)da"™ =0, i(9;)6y* = o¥,

(2.12) e(dz")p =dx' Ao, e(6y')p =y A
for ¢ € /\f’q(M), and are anti-commutative, i.e.,

(2.13) I(X)i(Y)e = —i(V)i(X)p, e(p)e(w)p = —e(w)e(g)y

for X,Y € X(TM) and ¢,w € X(T*M) In the calculation of dj, d,, dmiz and their
formal adjoint dj,d}, d ... in terms of the Cartan connection V, equalities (2.2)-(2.3)

h?Yvy Ymax

and (2.11)-(2.13) will be used repeatedly without explicit statement.
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3 Levi-Civita connection of g

Lemma 3.1. Let D be the Levi-Civita connection of the Riemann metric g on M.
Then in terms of the local frame {5;,0;} and its dual frame {dz*,5y'}, we have

(3.1) Ds,6; = Fj;kéi—(O;k+%R§k)6i,

(3.2) Ds,d; = (C’;k+%g”Rfkgsj>5i+Ff;k3'i,
(3.3) Dy 6. = (C’;k—l-%g”Rfkgsj)éi—L;k@'i
(3.4) Dy 8 = Lidi+Cidi,

(3.5) Dy dri = —F;;kdacj—( ;k+%glinkgsj)5yj7
(3.6) Dy 0y’ = (J’ik—i—%R;k)d:cj—Fj;kéyj,

(3.7) Dakdxi = —(C;k+%glinjgsk)dxj—L;kéyj,
(3.8) Dy 8y' = Liydz’ —Choy.

Proof. We only need to prove (3.1)-(3.4) since one can obtain (3.5)-(3.8) by the fol-
lowing formula

Dxw(Y) = X(w(Y)) —w(DxY), VX,Y € X(TM),we X(T*M).

As well known, the Levi-Civita connection D of g is characterized by the following
Koszul formula

Using the facts that

3(5:.0;) = gi. 9(03,0;) = gi5,  §(8:,0;) =0,

we have
i i Lo \:
(39) Dsd; = Liydi— (Ch+ 5R5)
3 1 1 li ps 1 li t t A
(3.10) Ds,0; = (Ojk + 59 legsj)éi =+ 59 [5k(gjl) + gthkj - gtijl]aia
3 1 i s s i A
(3.11) Dy 05 = *591 [5l(gkj) — 95k G — gstkz] 0; + C1,0i.

Since guGj; — 9t;Gly = 0;(gik) — 01(gjx), it follows that

1 . 1 . )
(3.12) 5911 {%(gjl) + 9uGl; — gtjGZl} = 5912 [5k(gjz) +60;(gik) — & (gjk):| =T7,.

Next, if we denote by g;i.x := 0k(g1) — gthzk — g;:Gl). and L;k = G;k — Fj;k. Then
it is easy to check that

(3.13) gitk = Gikas L = Li;,
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consequently we have

% 1 % 1 % s s
(3.14) Ly, = —591 gitk = —591 [51(%3‘) — 9skG5 — Qstkz]
This completes (3.2) and (3.4). By the torsion-freeness of D, we get (3.3). O

4 Laplacians in terms of Cartan connection

Let d be the exterior differential operator on M and d* be the formal adjoint of d
with respect to the global inner product (-,-) defined by (2.7). In this section we
shall first give a representation of d and d* in terms of the horizontal and vertical
covariant derivatives of the Cartan connection V. Then we shall derive the horizontal
Laplacian A, and the vertical Laplacian A\, in terms of V, respectively.

Lemma 4.1. Let (M, F) be a real Finsler manifold with the Cartan connection V.
Then

d =e(dz*)Vs, — Lt e(dz")e(6y*)i(dy)

(41) t S\3 1 t r S\3( A
+e(8y")V, — Clyelds”)e(8y")i(d) — & BLe(de” e(dr")i(d,).

Proof. Tt is easy to check that (4.1) holds for every o € AR9(M). O
Lemma 4.2. Let LY, = G% —I'f,. Then g¥' L% = g" L%,
Proof. In deed, it follows from (3.13) and (3.14) that

; 1 1 1 ,
Mk = 2gmglkg]l .= 5ghzgzkgﬂl _ 2gkzglhgjl;i — gFiLh,.

O

Lemma 4.3. Let (M, F) be a real Finsler manifold with the Cartan connection V.
Let 'V also denote the induced linear connection on TM and T* M, respectively. Then
for every v € NDU(M),

(4.2) Ve.i(r)e = i(0k) Vs, + I1.,i(0)e,

(4.3) Vs in)e = 1(0n)Vs.p + I i),
(4.4) Vs il0)e = 1(6:)Vs, ¢ + Cisi(d)e,

(4.5) Vo i@n)e = i(0n)Vy e+ Chii(d)e,
(4.6) Vs.e(da®)p = e(da")Vs o — I}e(dz)p,
(4.7) Vs.e(0y ) = e(6y*)Vs, o — Ie(y')e,
(4.8) Vése(dxk)cp = e(dmk)v(9 ® Clkse(dxl)ap,
(4.9) Vs.e(6y*)p = e(0y*)Vy o —Cle(dy')e

Proof. This is a direct calculation by using (2.2)-(2.3) and (2.11)-(2.13). O
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Lemma 4.4. Let (M, F) be a real Finsler manifold with the Cartan connection V,
and d* be the formal adjoint of the exterior differential operator d on M with respect
to the inner product (-,-) defined by (2.7). Then

d* = — g"i(6k) Vs, + ¢* L};e(5y”)i(5)i(0n) + g L1}i(0n)
(4.10) — g"i(0k)V, — g (Cz?i + iRl}cbi)l(ah) + g™ Cle(da? )i(6x)i(On)
- §gki9lhRfigsje(5yj)i(5k)i(5h)~

Proof. In terms of the local frame {dz?, dy’} for T*M, the dual operator d* of d can
be expressed in terms of the Levi-Civita connection D of § in an invariant form:

(4.11) d* o = —g"i(0k) Ds,0 — g*"i(0k) Dy . 0 € AZI(M).

Using this and (3.5)-(3.8) and Lemma 4.2, one gets (4.10). O

Theorem 4.5. Let (M, F) be a real Finsler manifold with the Cartan connection V.
Let ¢ be a differential form of type (p,q) which is compactly supported in M. Then

DApp = _gkivg,vékw_gkie(dﬁ)i(ak)(vg Vs, — V6, Vs,)e + g™ Gl Vs, ¢
(L]z|s +Lgs\l +L;7,L2Lt LESL’Z) (d.]? )e(dy )1( k)l(ah)(p

+9" Ll e(d)i(0n)p + ¢ (Lhuy — LiLhy — LliLh, ) e(0y")i(@)¢
—gM LY L e(6y))e (6" )i(Dn)i(D0) .

Proof. By (4.1) and (4.10), we get

dn = e(dz®)Vs, — Lt e(dz")e(dy*)i(d,),

di, = —g"i(5k)Vs, + 9" L};e(5y7)i(0x)i(0n) + " Liji(6n).-
Thus
dpod;, = —e(dz*)Vs,g"i(0x)Vs, + e(da®)Vs, g™ Le(6y7)i(6k)i(On)
+e(dz®) Vs, g Liji(0n) + g™ Ly e(dz")e(0y" )i(0n)i(d) Vs,
‘“LZLf«s (da")e(Sy*)i(Dr)e(dy )i(6k)i(On)
—g"' L} Ll e(da")e(dy")i(D:)i(dn)-

Since the Cartan connection V is horizontal metrical, it follows that

(4.12) g¥ = 0.(g") + g I+ gM T =0,

|s

where | denotes the horizontal covariant derivative of V. Using Lemma 4.3 and (4.12),
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we obtain

dyod; = g¢"I} e(dx®)i(0x)Vs, — g"'e(dz®)i(0k) Vs, Vs,
+g" Pl je(da®)e(5y”)i(0 )(8h)+g’“'L’?e(dxs)e(W>i<<5k)i(8'h)Vas
+9" Ly, e(dz®)i(0n) + g™ Lije(da®)i(0n) Vs,
—g" L e(dz")e(5y")i(6k)i(0y) Vs, — g" Ll Ll e(da”)e(5y*)i(6k)i(Oh)
’“L?sz«s (da")e(5y*)e(dy?)i(x)i(D,)i(On)
)e(5y*)i(6,)i(Dy).

—l—glﬂL (dl‘r
On the other hand, it is easy to check that

djyod, = g"I}Vs, — 9" I}e(dat)i(6x)Vs, — 9"V, Vs, + g*e(dx®)i(0k) V5, Vs,
+9" Li,e(6y°)i(0) + ¢ Ly e(da”)e(8y*)i(81)i(,)
+g"LE, ( y*)i(0)Vs, + 9" Lt e(dx")e(dy")i(5 )'(30
—g" Lie(dy)i( 3h)V6k — g Lj;e(dz®)e(dy’)i(0x)i(0n) Vs
’”LhL ne(8y))i(0r) — g LY, Li e (6y7)e(8y”)i(0n)i(0 )
+gM L Ly e(dz”)e(dy?)i(6r)i(D,)
+gM L LY e(da”)e(8y’ )e(dy*)i(6r)i(0n)i(0)
+9"' L Vs, — 9" Lie(d =) Vs,
—g" LY L e (6y°)i(0;) — g" LY L} e(d")e(5y*)i(5n)i(y),
where L}, denote the horizontal covariant derivative of L;, with respect to V. Now

sum dp, o dj and dj o dj together and rearrange the resulted terms and indexes, we
obtain the expression of Ay in Theorem 4.5. (]

Remark 4.6. The horizontal Laplacian for functions f € C'™ (M) was first derived
in [4], and the horizontal and vertical Laplacians for 1-forms on the total space E of
Riemann vector bundle p : E — M was first derived in [8] under the assumption that
the fiber space F = p~1(x),x € M, is compact.

Note that if F' is a Landsberg metric then L; & = 0. Thus we have

Corollary 4.7. Let (M, F) be a Landsberg manifold with the Cartan connection V,
and ¢ be a differential form of type (p,q) which is compactly supported in M. Then

Dnp = —g""V5, Vs — g"e(dz*)i(0r)(V5, Vs, — V5, Vs, + 4" Gl Vs, 0.
Corollary 4.8. Let (M, F) be a real Finsler manifold with the Cartan connection V,

and ¢ be a horizontal differential form of type p which is compactly supported in M.
Then

Anp = —g"V5, Vs, 0 — g*e(da®)i(6x)(Vs, Vs, — Vs, Vs, )p
+g" Gl Vs, 0+ g Ll e(dz®)i(dn) .
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Theorem 4.9. Let (M, F) be a real Finsler manifold with the Cartan connection V,
and ¢ be a differential form of type (p,q) which is compactly supported in M. Then

N . . . 1 /L
Dop = =g""V5 Vg0 = g"e(dy")i(0k) (V&,Va’i - Va'iva's)SO — 50" RV 5,0
; 1 .
_ ki h ~ ph S\
0 (Cli+ 5Rl), e(Eu)in)e
—g" |:2C_;Ci‘ls - (C]t‘icfs — Cjt»sCfi)}e(dmj)e(éys)i(ék)i(éh)<p

M [y + G RECS, + (CLC — Chep)|e(dr)i(G,)g
—g"'C};Clie(da? )e(da®)i(8x)i(0n) .

Proof. By Lemma 4.1 and Lemma 4.4, we have

(1.13) dy = o0y )V 5, — Clhe(da®)e(dy")i(5a)

and

(14)  dy = —g"i(30V, o (Ol + SR )i + ¢ Che(dai(30)i(n).

Since V is v-metrical, it follows that the vertical covariant derivatives of g** vanish
identically, i.e., _ ] A ‘ ‘
9" = 0s(g"") + 9" Cl + g Cl = 0.
Using this fact and the properties of the operators i and e, we obtain
dyody = g"Cle(6y*)i(D)Vy, — g"e(6y*)i()Vy, V5,
4 1 . : 1 o
—gk (C,}jl + iRZi) Hse(dys)l(ah) —gF (C,}jl + iRZi)e(éy )i(On) Vg,

| = g Chy + "L (Ol 4 SR — 9 CHLCE ] e(da?)e(0yi(00)i(Dn)

—gF Clie(da? )e(dy*)i(0r)i(0n) V5, + g™ Chie(da?)e(Sy™)i(6k)i(Dn) Vs,
—gMC% Ot e(da®)e(da’ e (5y")i(da)i(0k)i(On)-
By similar calculations, we have
1 .. . . .
dyod, = —g" RV, — 9"V Vi, +g"e(dy")i(0n)V;, Vs,
. o i 1 Sney s
6" Cle(0y" i)V, + " (Chi + 5 Rl )e(6y")i(n) Vs,
+(g“t0§t - gkiCSk)e(dws)i(%)Vai
ki va ki ~h a ki h 1 h a S\
JF[* 9" Chi + 97 CiCen — 9 (Cki + §Rm) sh}e(d‘r )i(da)
[ = gk — " (Cli+ SRI) Ol + 9" OO | e(da?)e(3y)i(01)i(Dh)
—gkinngte(dxj)e(dws)i(ék)i(éh) — ghiC’fse(dxj)e(éys)i(ék)i(éh)véi
+gMClie(da?)e(dy*)i(0r)i(0n) V5, + gF CLC%e(da? )e(da®)e(dy")i(dk)i(da)i(On).
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Note that gkiC’Jhi = ghinl- and gkius = 0, thus

gH s + 9" CLCl 4+ gy — 9 CFLCE,

J

Now it is easy to check that C]’?Z.Hs = C]’.“s”i. Thus sum d, od;, and d}, od, together and

rearrange the resulted terms, we obtain A, in Theorem 4.9. ([l

Corollary 4.10. Let V be the Cartan connection associated to a real Finsler manifold
(MLF), and @ be a horizontal differential form of type p which is compactly supported
in M. Then

. 1,
Do = —g""Vy V0= 50" RV, 0

) 1 .
—gkz( Sk|li — CliCl, + CriCs, + §R1}cbic?h)e(d$s)1(5a)<ﬁ
—g"Ct,Cle(dx?)e(dz®)i(6k)i(0n) -

5 The mixed-type operator
In this section, we shall derive the local expression of A,y = dpmiz0d,;+ 5 0dmis

Theorem 5.1. Let ¢ be a differential form of type (p, q) which is compactly supported
in M. Then

1. 4 L
Amiatp =19 9" Rl Rigsie(dn®)e(da)i(0x)i(0n)¢

1 . . . . .
(5.1) + 599" Ri Riig550(3y7)i(00)
+ g g™ R}, R} g.ie(da)e(Sy” )i(61)i(0r) .

Proof. On the one hand,

Iia © By = 1076 Bl Rigoje(da)e(dr)i(5:)i(5)
1 .. T oy
— Mg R R gsselda®e(da)e 5y )0,)i(51)i(d).
On the other hand,

1 .. . . a e A
d:m’m Odmil‘ = ngzglhRZchsigsje(éyJ)1(616)1(5h)e(d'73 )e(dl‘ )1(815)

Using the relationship i(dy)e(dz®) = § — e(dz®)i(dy,) repeatedly, we get

1(60)i(0n)e(dz®)e(dz®) = 526 — 6%e(dz®)i(dy) — 6205 + 6%e(dz®)i(dn) + 6L e(dz®)i(dy)
—5¢e(dz™)i(0)) + e(dz®)e(dz)i(d;)i(dh).
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Thus
* 1 7 s i\ (A
iz © Amiz = lgk glh(RZk - RZh)Rzigsjewy])l(at)
1 . ) . . Lo
+Zg'“glhRZCR?igsje(df)e(@J)1(5k)1(<9t)
_1 ki lth RS' e(d c 5 s 5)i a
49 g kc lzgsje< xz )e( Y )1( h)l( t)
1 ., .
—Zg’“glhRﬁhRfigsje(dwa)ewyj)1(5k)1(5t)
1. .
+19'“9”1RZkaigsje(dwa)ewy])1(5h)1(5t)

1 . iNe . o/ &
+nglglthchigsje(daz“)e(dmc)e(éy])1(6k)1(6h)1(6t).

Sum dpiz 0 dy;, and dj,;, © dpmiz together, and use the fact RY; = —Rj,;, we get (5.1).
|

Remark 5.2. [t follows from Theorem 4.5 and Theorem 4.9 that the local expressions
of Ay and A, depend on the choice of Finsler connection associated to (M, F'), while
the expression of Az is independent of the choice of Finsler connections associated
to (M, F).

Corollary 5.3. Let ¢ be a horizontal form of type p which is compactly supported in
M. Then

[ o
Azt = 70"'g" Ry Rigs5e(da)e(dr®)i(0k)i(0n) -

Especially, for every horizontal 1-form ¢ = @;dx’ which is compactly supported in M,
we have Az = 0.

6 Some properties of the type preserving operators

Let A be the Hodge-Laplace operator of g on M. Tt is clear that A, Ap, Ny, Dnis
satisfy

(6.1) (D, ¥) = (B, ¥) + (Do, ) + (Dmiatp, V),
which implies that Ay = 0 if and only if

(6.2) App = 0,000 =0, Aniap = 0, Vo € API(M).

This is essentially arisen from the type-preserving property of Ay, A, and A
Especially if f € C°(M), then

which implies that Af = 0 if and only if A, f =0 and A, f = 0.
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Proposition 6.1. Let A\, A\, and A\, be constants such that
Af =X, Anf=Af, Dof =X,
Then A >0, > 0,\, >0 and
(6.4) A=A+ Ay
Proof. 1t is clear. O

Theorem 6.2. Let f be a scalar field on M which is not constant and satisfies
Anf = Af, Do f = Ao f with A, Ny, being a constant such that N2 + A2 # 0. Then
the constant A =: A\, + A, must be positive.

Proof. Tt is easy to check that
SO0 = IS =g Ts D)(Vs, ), 500 = [uf = 4975, (V5 )
Since f is compactly supported in M, thus
©5) 0= [ sarav= [ (75867 (Va0)(Vs ) =g (9 1Ty, 0)]aV
Substituting the identity Af = Apf + Ao f in (6.5), we get
| =6 (90)(P0, 1) = 49 (V5 DT, D]V =0

If on the contrary A < 0, then the above equality implies that Vs, f = Véif =0, that
is, f is a constant. This is a contradiction to the assumption. O

Theorem 6.3. There exists no horizontal 1-form o = ;dx® with compact support in
M which satisfies relations

(6.6) gk (%\kﬁ - GZM”h) + gk (<P1|\k\|z‘ + §Rgi90l\|h> = TtlQOt
and
(6.7) Tup'e! >0

unless we have

(6.8) ik =0, @y =0

and then automatically Ty o'p! = 0.

Proof. Denote ||¢||? := gt w10 and ¢! := g'*p;. Then it is easy to check that
Anllel? = —2¢" (‘Pl\kﬁ - Gﬁﬁﬂuh)@l — 20" " 0150011,

, 1 :
Nollgl> = —2¢M (<Pz|\k\|i + §RZi<P1|\h)<Pl — 20" g o)

Thus if condition (6.6) and (6.7) are satisfied, we have
1 i
=5 ANl = Tug'e' + g% 9" (pripur + oypperyi) > 0,
from which we get (6.8). O
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Remark 6.4. Note that a function f € C'* (M) which is both horizontal and vertical
parallel with respect to the Cartan connection V is necessary a constant. It follows
from Theorem 6.3 that the only exceptions are vector fields which are both horizontal
and vertical parallel, and there are no such vector fields other than zero if the quadratic
form Typte! is positive definite.
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