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Abstract. Let M be a smooth manifold with a Finsler metric F and
g̃ be the naturally induced Riemann metric on the slit tangent bundle
M̃ . The Weitzenböck formulas of the horizontal Laplacian 4h and the
vertical Laplacian 4v are obtained in terms of the Cartan connection of
(M, F ). The relationship between the Hodge-Laplace operator 4 of g̃
and the operators 4h,4v, 4mix are investigated. As application, the
relationship between the eigenvalues of 4 and 4h,4v are established,
and a Bochner-type vanishing theorem of horizontal differential form on
M̃ is obtained.
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1 Introduction

Let M be a real manifold of dimension m, we denote by TM its tangent bundle, and
π : TM → M the canonical projection, the cotangent bundle of M is denoted by
T ∗M . We assume that M is endowed with a Finsler metric F in the sense of [1], see
also [3] and [7]. It is known that there is not a canonical way to define Laplacian on
(M, F ), we refer to [2] for more details. Usually Laplacians on Finsler manifolds are
constructed either on the base manifold M or the slit tangent bundle M̃ = TM−{o},
where o denotes the zero section of TM . In [8], Munteanu obtained the Weitzenböck
formulas of horizontal and vertical Laplacians for 1-forms on a Riemann vector bundle
p : E → M with compact fiber spaces F = p−1(x) for x ∈ M . Very recently, this
idea was developed in [10] to investigate vanishing theorem of holomorphic forms
on Kähler Finsler manifolds. Note that since most curvature components of Finsler
metrics depend not only on base point x ∈ M but also on direction y ∈ TxM [9], and
a Finsler metric F on M naturally induces a Riemann metric g̃ on M̃ , it is natural
to define a Laplacian on the tangent bundle TM of a Finsler manifold (M, F ). The
purpose of this paper is to introduce the horizontal and vertical Laplacians of a Finsler
metric on the slit tangent bundle M̃ and relate it to the Hodge-Laplace operator 4
of the Riemann metric g̃ on M̃ . It is known that 4 is not a type preserving operator
when acting on differential forms of type (p, q) on M̃ , i.e., those forms which are
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horizontal type of p and vertical type of q on M̃ . Nevertheless, there are three
components of 4, i.e., the horizonal Laplacian 4h, the vertical Laplacian 4v and
the mixed part 4mix, which are type preserving [8]. Our results shows that both
the local expressions of 4h and 4v depend on the choice of the Finsler connection
associated to (M, F ). Moreover, the horizontal Laplacian 4h depends only on the
horizontal curvature components of F , the vertical Laplacian 4v depends only on
the vertical curvature components of F , the mixed Laplacian 4mix depends only on
the Riemann curvature of F and is independent of the choice of Finsler connections
associated to (M,F ). We obtain the Weitzenböck formula of 4h and 4v in terms
of the Cartan connection of (M,F ), and obtain a Bochner-type vanishing theorem of
horizontal differential forms which are compactly supported in M̃ .

2 Preliminaries

In this section, we shall recall some basic facts of Finsler manifold. We refer to [1] for
more details. Let F be a Finsler metric on a real manifold M of dimension m. Denote
by V the vertical vector bundle of M , then there is a Riemann metric g on V which
is induced by F , and a unique good vertical connection ∇ : X (V) → X (T ∗M̃ ⊗ V)
called the Cartan connection associated to (M, F ). Note that associated to ∇, there
are horizontal bundle H and the horizontal map Θ : V → H. Using Θ one can
transfers the natural Riemann metric g on V to H, and get a Riemann metric g̃
on the whole bundle TM̃ , and consequently a linear connection, still denoted by ∇,
on X (TM̃) and X (T ∗M̃). Note that one can also consider the Berwald connection
associated to (M, F ), and it was shown in [5] that the Berwald connection and the
Cartan connection play a different role when one considers the properties of adapted
coordinates system related to them.

Locally let (xi) = (x1, · · · , xm) be the local coordinates on M and (xi, yi) =
(x1, · · · , xm, y1, · · · , ym) be the naturally induced coordinates on TM . Denote by
{δi, ∂̇i} the local frame for TM̃ and {dxi, δyi} the dual frame for T ∗M̃ , here

δi =
∂

∂xi
− Γ j

;i

∂

∂yj
, ∂̇i =

∂

∂yi
, δyi = dyi + Γ i

;jdxj ,

and Γ j
;i is the nonlinear connection coefficients associated to the Cartan connection

∇. It is known that the Cartan connection ∇ satisfy

∇δk
∂̇j = Γ i

j;k∂̇i, ∇∂̇k
∂̇j = Ci

jk∂̇i, ∇δk
δj = Γ i

j;kδi, ∇∂̇k
δj = Ci

jkδi,(2.1)

∇δk
dxi = −Γ i

j;kdxj , ∇δk
δyi = −Γ i

j;kδyj ,(2.2)

∇∂̇k
dxi = −Ci

jkdxj , ∇∂̇k
δyi = −Ci

jkδyj ,(2.3)

where in the above equations, Γ i
j;k and Ci

jk are the horizontal and vertical connection
coefficients of the Cartan connection. That is,

Γ i
j;k =

1
2
ghi[δj(ghk) + δk(gjh)− δh(gjk)], Ci

jk =
1
2
ghi∂̇j(ghk),(2.4)

with ghk = 1
2 ∂̇h∂̇k(F 2). It is clear that

(2.5) Γ i
j;k = Γ i

k;j , Ci
jk = Ci

kj .
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Note that {dxi, δyi} is a local frame for T ∗M̃ , it follows that the differential forms
on M̃ can be represented in terms of {dxi, δyi}. In [8], a differential form ϕ of type
(p, q) on M̃ is expressed in terms of {dxi, δyi} as follows:

(2.6) ϕ =
1

p!q!
ϕIpJqdxIp ∧ δyJq

where Ip = i1 · · · ip, Jq = j1 · · · jq, dxIp = dxi1 ∧· · ·∧dxip , δyJq = δyj1 ∧· · ·∧δyjq , and
ϕIpJq

are anti-symmetric in their indexes in Ip and Jq, respectively. In the following,
we denote by ∧p,q

c (M̃) the space of differential forms on M̃ which are of type (p, q) and
the coefficients ϕIpJq

are compactly supported in M̃ . Note that there is a naturally
point-wise inner product 〈·, ·〉 defined in ∧p,q

c (M̃) for every (x, y) ∈ M̃ . More precisely,
for ϕ, ψ ∈ ∧p,q

c (M̃),

〈ϕ,ψ〉 =
1

p!q!
ϕi1···ipj1···jq

ψr1···rps1···sq
gi1r1 · · · giprpgj1s1 · · · gjqsq ,

where the above equation is evaluated at (x, y) ∈ M̃ . The point-wise inner product
〈·, ·〉 gives rise to a global inner product (·, ·) defined in ∧p,q

c (M̃). That is,

(2.7) (ϕ,ψ) =
∫

M̃

〈ϕ,ψ〉dV

whenever the integral of (2.7) exists. Here dV = det(gij)dx1∧· · ·∧dxn∧dy1∧· · ·∧dyn

is the natural volume form of the Riemann metric g̃ on M̃ . Note that

(2.8) df = δi(f)dxi + ∂̇i(f)δyi

for f ∈ C∞(M̃) and

(2.9) d(δyi) = −1
2
Ri

jkdxj ∧ dxk −Gi
jkdxj ∧ δyk,

where Ri
jk = δk(Γ i

;j) − δj(Γ i
;k) and Gi

jk = ∂̇j(Γ i
;k). Thus for ϕ ∈ ∧p,q

c (M̃) we
have dϕ = dhϕ + dvϕ + dmixϕ, where dhϕ ∈ ∧p+1,q

c (M̃), dvϕ ∈ ∧p,q+1
c (M̃) and

dmixϕ ∈ ∧p+2,q−1
c (M̃). Let d∗h, d∗v and d∗mix be the formal adjoints of dh, dv and

dmix, respectively with respect to the global inner product (2.7), i.e.,

(dhϕ,ψ) = (ϕ, d∗hψ), (dvϕ,ψ) = (ϕ, d∗vψ), (dmixϕ,ψ) = (ϕ, d∗mixψ).(2.10)

Let i be the substitution operator and e be the wedge product operator. The
operators i and e satisfy

(2.11) i(δj)dxk = δk
j , i(δj)δyk = 0, i(∂̇j)dxk = 0, i(∂̇j)δyk = δk

j ,

(2.12) e(dxi)ϕ = dxi ∧ ϕ, e(δyi)ϕ = δyi ∧ ϕ

for ϕ ∈ ∧p,q
c (M̃), and are anti-commutative, i.e.,

i(X)i(Y )ϕ = −i(Y )i(X)ϕ, e(φ)e(ω)ϕ = −e(ω)e(φ)ϕ(2.13)

for X, Y ∈ X (TM̃) and φ, ω ∈ X (T ∗M̃). In the calculation of dh, dv, dmix and their
formal adjoint d∗h, d∗v, d∗mix in terms of the Cartan connection ∇, equalities (2.2)-(2.3)
and (2.11)-(2.13) will be used repeatedly without explicit statement.
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3 Levi-Civita connection of g̃

Lemma 3.1. Let D be the Levi-Civita connection of the Riemann metric g̃ on M̃ .
Then in terms of the local frame {δi, ∂̇i} and its dual frame {dxi, δyi}, we have

Dδk
δj = Γ i

j;kδi −
(
Ci

jk +
1
2
Ri

jk

)
∂̇i,(3.1)

Dδk
∂̇j =

(
Ci

jk +
1
2
gliRs

lkgsj

)
δi + Γ i

j;k∂̇i,(3.2)

D∂̇j
δk =

(
Ci

jk +
1
2
gliRs

lkgsj

)
δi − Li

jk∂̇i,(3.3)

D∂̇k
∂̇j = Li

jkδi + Ci
jk∂̇i,(3.4)

Dδk
dxi = −Γ i

j;kdxj −
(
Ci

jk +
1
2
gliRs

lkgsj

)
δyj ,(3.5)

Dδk
δyi =

(
Ci

jk +
1
2
Ri

jk

)
dxj − Γ i

j;kδyj ,(3.6)

D∂̇k
dxi = −

(
Ci

jk +
1
2
gliRs

ljgsk

)
dxj − Li

jkδyj ,(3.7)

D∂̇k
δyi = Li

jkdxj − Ci
jkδyj .(3.8)

Proof. We only need to prove (3.1)-(3.4) since one can obtain (3.5)-(3.8) by the fol-
lowing formula

DXω(Y ) = X(ω(Y ))− ω(DXY ), ∀X, Y ∈ X (TM̃), ω ∈ X (T ∗M̃).

As well known, the Levi-Civita connection D of g̃ is characterized by the following
Koszul formula

2g̃(DXY, Z) = Xg̃(Y, Z)+Y g̃(Z, X)−Zg̃(X, Y )+g̃([X, Y ], Z)−g̃([Y, Z], X)+g̃([Z,X], Y ).

Using the facts that

g̃(δi, δj) = gij , g̃(∂̇i, ∂̇j) = gij , g̃(δi, ∂̇j) = 0,

we have

Dδk
δj = Γ i

j;kδi −
(
Ci

jk +
1
2
Ri

jk

)
∂̇i,(3.9)

Dδk
∂̇j =

(
Ci

jk +
1
2
gliRs

lkgsj

)
δi +

1
2
gli

[
δk(gjl) + gtlG

t
kj − gtjG

t
kl

]
∂̇i,(3.10)

D∂̇k
∂̇j = −1

2
gli

[
δl(gkj)− gskGs

jl − gsjG
s
kl

]
δi + Ci

jk∂̇i.(3.11)

Since gtlG
t
kj − gtjG

t
kl = δj(glk)− δl(gjk), it follows that

(3.12)
1
2
gli

[
δk(gjl) + gtlG

t
kj − gtjG

t
kl

]
=

1
2
gli

[
δk(gjl) + δj(glk)− δl(gjk)

]
= Γ i

j;k.

Next, if we denote by gjl;k := δk(gjl)− gtlG
t
jk − gjtG

t
lk and Li

jk := Gi
jk − Γ i

j;k. Then
it is easy to check that

(3.13) gjl;k = gjk;l, Li
jk = Li

kj ,
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consequently we have

(3.14) Li
jk = −1

2
gligjl;k = −1

2
gli

[
δl(gkj)− gskGs

jl − gsjG
s
kl

]
.

This completes (3.2) and (3.4). By the torsion-freeness of D, we get (3.3). ¤

4 Laplacians in terms of Cartan connection

Let d be the exterior differential operator on M̃ and d∗ be the formal adjoint of d
with respect to the global inner product (·, ·) defined by (2.7). In this section we
shall first give a representation of d and d∗ in terms of the horizontal and vertical
covariant derivatives of the Cartan connection ∇. Then we shall derive the horizontal
Laplacian 4h and the vertical Laplacian 4v in terms of ∇, respectively.

Lemma 4.1. Let (M,F ) be a real Finsler manifold with the Cartan connection ∇.
Then

(4.1)
d =e(dxs)∇δs − Lt

rse(dxr)e(δys)i(∂̇t)

+ e(δys)∇∂̇s
− Ct

rse(dxr)e(δys)i(δt)− 1
2
Rt

rse(dxr)e(dxs)i(∂̇t).

Proof. It is easy to check that (4.1) holds for every ϕ ∈ ∧p,q
c (M̃). ¤

Lemma 4.2. Let Lk
ji = Gk

ji − Γ k
j;i. Then gkiLh

ji = ghiLk
ji.

Proof. In deed, it follows from (3.13) and (3.14) that

ghiLk
ji = −1

2
ghiglkgjl;i = −1

2
ghlgikgji;l = −1

2
gkiglhgjl;i = gkiLh

ji.

¤

Lemma 4.3. Let (M,F ) be a real Finsler manifold with the Cartan connection ∇.
Let ∇ also denote the induced linear connection on TM̃ and T ∗M̃ , respectively. Then
for every ϕ ∈ ∧p,q

c (M̃),

∇δs i(δk)ϕ = i(δk)∇δsϕ + Γ l
k;si(δl)ϕ,(4.2)

∇δs i(∂̇h)ϕ = i(∂̇h)∇δsϕ + Γ l
h;si(∂̇l)ϕ,(4.3)

∇∂̇s
i(δk)ϕ = i(δk)∇∂̇s

ϕ + Cl
ksi(δl)ϕ,(4.4)

∇∂̇s
i(∂̇h)ϕ = i(∂̇h)∇∂̇s

ϕ + Cl
hsi(∂̇l)ϕ,(4.5)

∇δse(dxk)ϕ = e(dxk)∇δsϕ− Γ k
l;se(dxl)ϕ,(4.6)

∇δse(δyk)ϕ = e(δyk)∇δsϕ− Γ k
l;se(δyl)ϕ,(4.7)

∇∂̇s
e(dxk)ϕ = e(dxk)∇∂̇s

ϕ− Ck
lse(dxl)ϕ,(4.8)

∇∂̇s
e(δyk)ϕ = e(δyk)∇∂̇s

ϕ− Ck
lse(δyl)ϕ.(4.9)

Proof. This is a direct calculation by using (2.2)-(2.3) and (2.11)-(2.13). ¤
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Lemma 4.4. Let (M,F ) be a real Finsler manifold with the Cartan connection ∇,
and d∗ be the formal adjoint of the exterior differential operator d on M̃ with respect
to the inner product (·, ·) defined by (2.7). Then

(4.10)

d∗ =− gkii(δk)∇δi
+ gkiLh

jie(δyj)i(δk)i(∂̇h) + gkiLh
iki(δh)

− gkii(∂̇k)∇∂̇i
− gki

(
Ch

ki +
1
2
Rh

ki

)
i(∂̇h) + gkiCh

jie(dxj)i(δk)i(∂̇h)

− 1
2
gkiglhRs

ligsje(δyj)i(δk)i(δh).

Proof. In terms of the local frame {dxi, δyi} for T ∗M̃ , the dual operator d∗ of d can
be expressed in terms of the Levi-Civita connection D of g̃ in an invariant form:

(4.11) d∗ϕ = −gkii(δk)Dδi
ϕ− gkii(∂̇k)D∂̇i

ϕ, ϕ ∈ ∧p,q
c (M̃).

Using this and (3.5)-(3.8) and Lemma 4.2, one gets (4.10). ¤

Theorem 4.5. Let (M, F ) be a real Finsler manifold with the Cartan connection ∇.
Let ϕ be a differential form of type (p, q) which is compactly supported in M̃ . Then

4hϕ = −gki∇δi∇δk
ϕ− gkie(dxs)i(δk)(∇δs∇δi −∇δi∇δs)ϕ + gkiGh

ik∇δh
ϕ

+gki
(
Lh

ji|s + Lh
js|i + Lt

jiL
h
st − Lt

jsL
h
it

)
e(dxs)e(δyj)i(δk)i(∂̇h)ϕ

+gkiLh
ik|se(dxs)i(δh)ϕ + gki

(
Lt

ks|i − Lh
isL

t
hk − Lh

ikLt
hs

)
e(δys)i(∂̇t)ϕ

−gkiLh
jiL

t
kse(δyj)e(δys)i(∂̇h)i(∂̇t)ϕ.

Proof. By (4.1) and (4.10), we get

dh = e(dxs)∇δs − Lt
rse(dxr)e(δys)i(∂̇t),

d∗h = −gkii(δk)∇δi + gkiLh
jie(δyj)i(δk)i(∂̇h) + gkiLh

iki(δh).

Thus

dh ◦ d∗h = −e(dxs)∇δsg
kii(δk)∇δi + e(dxs)∇δsg

kiLh
jie(δyj)i(δk)i(∂̇h)

+e(dxs)∇δsg
kiLh

iki(δh) + gkiLt
rse(dxr)e(δys)i(∂̇t)i(δk)∇δi

−gkiLh
jiL

t
rse(dxr)e(δys)i(∂̇t)e(δyj)i(δk)i(∂̇h)

−gkiLh
ikLt

rse(dxr)e(δys)i(∂̇t)i(δh).

Since the Cartan connection ∇ is horizontal metrical, it follows that

(4.12) gki
|s = δs(gki) + gtiΓ k

t;s + gktΓ i
t;s = 0,

where | denotes the horizontal covariant derivative of ∇. Using Lemma 4.3 and (4.12),
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we obtain

dh ◦ d∗h = gktΓ i
t;se(dxs)i(δk)∇δi − gkie(dxs)i(δk)∇δs∇δi

+gkiPh
ji|se(dxs)e(δyj)i(δk)i(∂̇h) + gkiLh

jie(dxs)e(δyj)i(δk)i(∂̇h)∇δs

+gkiLh
ik|se(dxs)i(δh) + gkiLh

ike(dxs)i(δh)∇δs

−gkiLt
rse(dxr)e(δys)i(δk)i(∂̇t)∇δi

− gkiLh
jiL

j
rse(dxr)e(δys)i(δk)i(∂̇h)

−gkiLh
jiL

t
rse(dxr)e(δys)e(δyj)i(δk)i(∂̇t)i(∂̇h)

+gkiLh
ikLt

rse(dxr)e(δys)i(δh)i(∂̇t).

On the other hand, it is easy to check that

d∗h ◦ dh = gkiΓ s
k;i∇δs − gkiΓ s

l;ie(dxl)i(δk)∇δs − gki∇δi∇δk
+ gkie(dxs)i(δk)∇δi∇δs

+gkiLt
ks|ie(δys)i(∂̇t) + gkiLt

rs|ie(dxr)e(δys)i(δk)i(∂̇t)

+gkiLt
kse(δys)i(∂̇t)∇δi + gkiLt

rse(dxr)e(δys)i(δk)i(∂̇t)∇δi

−gkiLh
jie(δyj)i(∂̇h)∇δk

− gkiLh
jie(dxs)e(δyj)i(δk)i(∂̇h)∇δs

+gkiLh
jiL

t
khe(δyj)i(∂̇t)− gkiLh

jiL
t
kse(δyj)e(δys)i(∂̇h)i(∂̇t)

+gkiLh
jiL

t
rhe(dxr)e(δyj)i(δk)i(∂̇t)

+gkiLh
jiL

t
rse(dxr)e(δyj)e(δys)i(δk)i(∂̇h)i(∂̇t)

+gkiLh
ik∇δh

− gkiLh
ike(dxs)i(δh)∇δs

−gkiLh
ikLt

hse(δys)i(∂̇t)− gkiLh
ikLt

rse(dxr)e(δys)i(δh)i(∂̇t),

where Lt
rs|i denote the horizontal covariant derivative of Lt

rs with respect to ∇. Now
sum dh ◦ d∗h and d∗h ◦ dh together and rearrange the resulted terms and indexes, we
obtain the expression of 4h in Theorem 4.5. ¤

Remark 4.6. The horizontal Laplacian for functions f ∈ C∞(M̃) was first derived
in [4], and the horizontal and vertical Laplacians for 1-forms on the total space E of
Riemann vector bundle p : E → M was first derived in [8] under the assumption that
the fiber space F = p−1(x), x ∈ M , is compact.

Note that if F is a Landsberg metric then Li
jk = 0. Thus we have

Corollary 4.7. Let (M, F ) be a Landsberg manifold with the Cartan connection ∇,
and ϕ be a differential form of type (p, q) which is compactly supported in M̃ . Then

4hϕ = −gki∇δi∇δk
ϕ− gkie(dxs)i(δk)(∇δs∇δi −∇δi∇δs)ϕ + gkiGh

ik∇δh
ϕ.

Corollary 4.8. Let (M, F ) be a real Finsler manifold with the Cartan connection ∇,
and ϕ be a horizontal differential form of type p which is compactly supported in M̃ .
Then

4hϕ = −gki∇δi∇δk
ϕ− gkie(dxs)i(δk)(∇δs∇δi −∇δi∇δs)ϕ

+gkiGh
ik∇δh

ϕ + gkiLh
ik|se(dxs)i(δh)ϕ.
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Theorem 4.9. Let (M, F ) be a real Finsler manifold with the Cartan connection ∇,
and ϕ be a differential form of type (p, q) which is compactly supported in M̃ . Then

4vϕ = −gki∇∂̇i
∇∂̇k

ϕ− gkie(δys)i(∂̇k)
(
∇∂̇s

∇∂̇i
−∇∂̇i

∇∂̇s

)
ϕ− 1

2
gkiRh

ki∇∂̇h
ϕ

−gki
(
Ch

ki +
1
2
Rh

ki

)
‖s

e(δys)i(∂̇h)ϕ

−ghi
[
2Ck

ji‖s − (Ct
jiC

k
ts − Ct

jsC
k
ti)

]
e(dxj)e(δys)i(δk)i(∂̇h)ϕ

−gki
[
Ca

sk‖i +
1
2
Rh

kiC
a
sh + (Ch

kiC
a
sh − Ch

siC
a
kh)

]
e(dxs)i(δa)ϕ

−gkiCt
jiC

h
ste(dxj)e(dxs)i(δk)i(δh)ϕ.

Proof. By Lemma 4.1 and Lemma 4.4, we have

(4.13) dv = e(δys)∇∂̇s
− Ca

ste(dxs)e(δyt)i(δa)

and

(4.14) d∗v = −gkii(∂̇k)∇∂̇i
− gki

(
Ch

ki +
1
2
Rh

ki

)
i(∂̇h) + gkiCh

jie(dxj)i(δk)i(∂̇h).

Since ∇ is v-metrical, it follows that the vertical covariant derivatives of gki vanish
identically, i.e.,

gki
‖s = ∂̇s(gki) + gtiCk

ts + gktCi
ts ≡ 0.

Using this fact and the properties of the operators i and e, we obtain

dv ◦ d∗v = gtiCk
ste(δys)i(∂̇k)∇∂̇i

− gkie(δys)i(∂̇k)∇∂̇s
∇∂̇i

−gki
(
Ch

ki +
1
2
Rh

ki

)
‖s

e(δys)i(∂̇h)− gki
(
Ch

ki +
1
2
Rh

ki

)
e(δys)i(∂̇h)∇∂̇s

+
[
− gkiCh

ji‖s + gtiCk
js

(
Ch

ti +
1
2
Rh

ti

)
− gkiCt

jsC
h
ti

]
e(dxj)e(δys)i(δk)i(∂̇h)

−gkiCh
jie(dxj)e(δys)i(δk)i(∂̇h)∇∂̇s

+ ghiCk
jse(dxj)e(δys)i(δk)i(∂̇h)∇∂̇i

−gkiCa
stC

h
jie(dxs)e(dxj)e(δyt)i(δa)i(δk)i(∂̇h).

By similar calculations, we have

d∗v ◦ dv = −1
2
gkiRh

ki∇∂̇h
− gki∇∂̇i

∇∂̇k
+ gkie(δys)i(∂̇k)∇∂̇i

∇∂̇s

−gktCi
ste(δys)i(∂̇k)∇∂̇i

+ gki
(
Ch

ki +
1
2
Rh

ki

)
e(δys)i(∂̇h)∇∂̇s

+
(
gatCi

st − gkiCa
sk

)
e(dxs)i(δa)∇∂̇i

+
[
− gkiCa

sk‖i + gkiCh
siC

a
kh − gki

(
Ch

ki +
1
2
Rh

ki

)
Ca

sh

]
e(dxs)i(δa)

+
[
− ghiCk

js‖i − gti
(
Ch

ti +
1
2
Rh

ti

)
Ck

js + gtiCh
jiC

k
ts

]
e(dxj)e(δys)i(δk)i(∂̇h)

−gkiCt
jiC

h
ste(dxj)e(dxs)i(δk)i(δh)− ghiCk

jse(dxj)e(δys)i(δk)i(∂̇h)∇∂̇i

+gkiCh
jie(dxj)e(δys)i(δk)i(∂̇h)∇∂̇s

+ gkiCh
jiC

a
ste(dxj)e(dxs)e(δyt)i(δk)i(δa)i(∂̇h).
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Note that gkiCh
ji = ghiCk

ji and gki
‖s = 0, thus

gkiCh
ji‖s + gkiCt

jsC
h
ti + ghiCk

js‖i − gtiCh
jiC

k
ts

= ghi
(
Ck

ji‖s + Ck
js‖i

)
− ghi

(
Ct

jiC
k
ts − Ct

jsC
k
ti

)
.

Now it is easy to check that Ck
ji‖s = Ck

js‖i. Thus sum dv ◦d∗v and d∗v ◦dv together and
rearrange the resulted terms, we obtain 4v in Theorem 4.9. ¤

Corollary 4.10. Let ∇ be the Cartan connection associated to a real Finsler manifold
(M, F ), and ϕ be a horizontal differential form of type p which is compactly supported
in M̃ . Then

4vϕ = −gki∇∂̇i
∇∂̇k

ϕ− 1
2
gkiRh

ki∇∂̇h
ϕ

−gki
(
Ca

sk‖i − Ch
siC

a
kh + Ch

kiC
a
sh +

1
2
Rh

kiC
a
sh

)
e(dxs)i(δa)ϕ

−gkiCt
jiC

h
ste(dxj)e(dxs)i(δk)i(δh)ϕ.

5 The mixed-type operator

In this section, we shall derive the local expression of4mix = dmix◦d∗mix+d∗mix◦dmix.

Theorem 5.1. Let ϕ be a differential form of type (p, q) which is compactly supported
in M̃ . Then

(5.1)

4mixϕ =
1
4
gkiglhRj

acR
s
ligsje(dxa)e(dxc)i(δk)i(δh)ϕ

+
1
2
gkiglhRt

hkRs
ligsje(δyj)i(∂̇t)ϕ

+ gkiglhRt
hcR

s
ligsje(dxc)e(δyj)i(δk)i(∂̇t)ϕ.

Proof. On the one hand,

dmix ◦ d∗mix =
1
4
gkiglhRj

acR
s
ligsje(dxa)e(dxc)i(δk)i(δh)

−1
4
gkiglhRt

acR
s
ligsje(dxa)e(dxc)e(δyj)i(δk)i(δh)i(∂̇t).

On the other hand,

d∗mix ◦ dmix =
1
4
gkiglhRt

acR
s
ligsje(δyj)i(δk)i(δh)e(dxa)e(dxc)i(∂̇t).

Using the relationship i(δh)e(dxa) = δa
h − e(dxa)i(δh) repeatedly, we get

i(δk)i(δh)e(dxa)e(dxc) = δa
hδc

k − δa
he(dxc)i(δk)− δa

kδc
h + δa

ke(dxc)i(δh) + δc
he(dxa)i(δk)

−δc
ke(dxa)i(δh) + e(dxa)e(dxc)i(δk)i(δh).
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Thus

d∗mix ◦ dmix =
1
4
gkiglh(Rt

hk −Rt
kh)Rs

ligsje(δyj)i(∂̇t)

+
1
4
gkiglhRt

hcR
s
ligsje(dxc)e(δyj)i(δk)i(∂̇t)

−1
4
gkiglhRt

kcR
s
ligsje(dxc)e(δyj)i(δh)i(∂̇t)

−1
4
gkiglhRt

ahRs
ligsje(dxa)e(δyj)i(δk)i(∂̇t)

+
1
4
gkiglhRt

akRs
ligsje(dxa)e(δyj)i(δh)i(∂̇t)

+
1
4
gkiglhRt

acR
s
ligsje(dxa)e(dxc)e(δyj)i(δk)i(δh)i(∂̇t).

Sum dmix ◦d∗mix and d∗mix ◦dmix together, and use the fact Ri
jk = −Ri

kj , we get (5.1).
¤

Remark 5.2. It follows from Theorem 4.5 and Theorem 4.9 that the local expressions
of 4h and 4v depend on the choice of Finsler connection associated to (M, F ), while
the expression of 4mix is independent of the choice of Finsler connections associated
to (M,F ).

Corollary 5.3. Let ϕ be a horizontal form of type p which is compactly supported in
M̃ . Then

4mixϕ =
1
4
gkiglhRj

acR
s
ligsje(dxa)e(dxc)i(δk)i(δh)ϕ.

Especially, for every horizontal 1-form ϕ = ϕidxi which is compactly supported in M̃ ,
we have 4mixϕ ≡ 0.

6 Some properties of the type preserving operators

Let 4 be the Hodge-Laplace operator of g̃ on M̃ . It is clear that 4,4h,4v,4mix

satisfy

(4ϕ,ψ) = (4hϕ,ψ) + (4vϕ,ψ) + (4mixϕ,ψ),(6.1)

which implies that 4ϕ = 0 if and only if

(6.2) 4hϕ = 0,4vϕ = 0,4mixϕ = 0, ∀ϕ ∈ ∧p,q
c (M̃).

This is essentially arisen from the type-preserving property of 4h,4v and 4mix.
Especially if f ∈ C∞c (M̃), then

0 ≤ (df, df) = (4f, f) = (4hf, f) + (4vf, f),(6.3)

which implies that 4f = 0 if and only if 4hf = 0 and 4vf = 0.
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Proposition 6.1. Let λ, λh and λv be constants such that

4f = λf, 4hf = λhf, 4vf = λvf,

Then λ ≥ 0, λh ≥ 0, λv ≥ 0 and

λ = λh + λv.(6.4)

Proof. It is clear. ¤

Theorem 6.2. Let f be a scalar field on M̃ which is not constant and satisfies
4hf = λhf,4vf = λvf with λh, λv being a constant such that λ2

h + λ2
v 6= 0. Then

the constant λ =: λh + λv must be positive.

Proof. It is easy to check that

1
2
4hf2 = f4hf − gij(∇δi

f)(∇δj
f),

1
2
4vf2 = f4vf − gij(∇∂̇i

f)(∇∂̇j
f).

Since f is compactly supported in M̃ , thus

(6.5) 0 =
∫

M̃

1
2
4f2dV =

∫

M̃

[
f4f − gij(∇δif)(∇δj f)− gij(∇∂̇i

f)(∇∂̇j
f)

]
dV.

Substituting the identity 4f = 4hf +4vf in (6.5), we get
∫

M̃

[
λf2 − gij(∇δif)(∇δj f)− gij(∇∂̇i

f)(∇∂̇j
f)

]
dV = 0.

If on the contrary λ < 0, then the above equality implies that ∇δif = ∇∂̇i
f ≡ 0, that

is, f is a constant. This is a contradiction to the assumption. ¤

Theorem 6.3. There exists no horizontal 1-form ϕ = ϕidxi with compact support in
M̃ which satisfies relations

(6.6) gki
(
ϕl|k|i −Gh

kiϕl|h
)

+ gki
(
ϕl‖k‖i +

1
2
Rh

kiϕl‖h
)

= Ttlϕ
t

and

(6.7) Ttlϕ
tϕl ≥ 0

unless we have

(6.8) ϕl|k = 0, ϕl‖k = 0

and then automatically Ttlϕ
tϕl = 0.

Proof. Denote ‖ϕ‖2 := gltϕlϕt and ϕl := gltϕt. Then it is easy to check that

4h‖ϕ‖2 = −2gki
(
ϕl|k|i −Gh

kiϕl|h
)
ϕl − 2gkigltϕl|iϕt|k,

4v‖ϕ‖2 = −2gki
(
ϕl‖k‖i +

1
2
Rh

kiϕl‖h
)
ϕl − 2gkigltϕl‖kϕt‖i.

Thus if condition (6.6) and (6.7) are satisfied, we have

−1
2
4‖ϕ‖2 = Ttlϕ

tϕl + gkiglt(ϕl|iϕt|k + ϕl‖kϕt‖i) ≥ 0,

from which we get (6.8). ¤
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Remark 6.4. Note that a function f ∈ C∞(M̃) which is both horizontal and vertical
parallel with respect to the Cartan connection ∇ is necessary a constant. It follows
from Theorem 6.3 that the only exceptions are vector fields which are both horizontal
and vertical parallel, and there are no such vector fields other than zero if the quadratic
form Ttlϕ

tϕl is positive definite.
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[8] O. Munteanu, Weitzenböck formulas for horizontal and vertical Laplacians, Hous-

ton J. Math., 29, 4 (2003), 889-900.
[9] B. Najafi and A. Tayebi, Finsler metrics of constant scalar curvature and pro-

jective invariants, Balkan J. Geom. Appl., 15, 2(2010), 82-91.
[10] C. Zhong, A vanishing theorem on Kaehler Finsler manifolds, Diff. Geom. Appl.,

27 (2009), 551-565.

Author’s address:

Chunping Zhong
School of Mathematical Sciences,
Xiamen University,
Xiamen 361005, P.R. China,
E-mail: zcp@xmu.edu.cn


