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Abstract. Let I ⊆ R be an open interval, f : I → R a strictly positive
function and denote by E2 the Euclidean plane. We classify all surfaces
in the warped product manifold I ×f E2 for which the unit normal makes
a constant angle with the direction tangent to I. Interesting results may
be obtained for constant angle surfaces in the hyperbolic space H3.
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1 Introduction

In the last few years, the study of the geometry of surfaces in 3-dimensional spaces, in
particular of product type M2×R was developed by a large number of mathematicians.
In particular, in [8], [9] and [10] the authors have studied constant angle surfaces in
S2×R and H2×R, namely those surfaces for which the unit normal makes a constant
angle with the tangent direction to R. In [12] a classification of surfaces in the
3-dimensional Heisenberg group making a constant angle with the fibers of the Hopf-
fibration was obtained. In all these spaces, the angle which is required to be constant is
one of the fundamental invariants appearing in the existence and uniqueness theorem
for isometric immersions, cfr. [7]. In another recent paper [6] it is proven that if the
ambient space is the Euclidean 3-space, the study of surfaces making a constant angle
with a fixed direction has some important applications to physics, namely in special
equilibrium configurations of nematic and smectic C liquid crystals. In [15] constant
angle surfaces in 3-dimensional Minkowski space were studied. Geometric properties
(e.g. minimality) are obtained investigating the so called contact angle in different
ambient spaces such as spheres or the Heisenberg group (see [16], [17]).

On the other hand, several authors have studied surfaces in warped products
I ×f M , where I is an interval, M is a surface and f a function on I. For instance in
[13] totally umbilical surface are considered. In a sequence of papers [1], [2], [3], [4]
the authors study constant mean curvature surfaces. In the present paper, constant
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angle surfaces in warped products of an open interval with the Euclidean plane, are
classified. Special examples, such as flat or minimal surfaces in this family are given.
Finally, we discuss constant angle surfaces in the hyperbolic space H3.

2 Preliminaries

The following notion of warped product or, more generally, warped bundle was intro-
duced by Bishop and O’Neill in [5] in order to construct a large variety of manifolds
of negative curvature. Let B and F be two Riemannian manifolds with Riemannian
metrics gB and gF respectively. Let f > 0 be a smooth positive function on B and
denote by B×F the product manifold. The warped product of B and F with warping
function f is the Riemannian manifold

B ×f F =
(
B × F, gB + f2 gF

)
.

Let f : I ⊆ R → R be a smooth strictly positive function on an open interval
I and consider the warped product of I and the Euclidean plane E2 with warping
function f

(M̃, g̃) = I ×f E2 =
(
I × R2, dt2 + f(t)2(dx2 + dy2)

)

where t is the coordinate on I and x and y are coordinates on E2.
Denote by ∇̃ the Levi-Civita connection of (M̃, g̃). Denote by U , V and W lifts

of vector fields tangent to E2. One has

∇̃UV = DUV − f ′

f
g̃(U, V ) ∂t(2.1.a)

∇̃U∂t = ∇̃∂tU =
f ′

f
U(2.1.b)

∇̃∂t∂t = 0(2.1.c)

where D is the covariant derivative on E2, see for example [19]. Remark that we have
identified U and V with their projections onto E2. From these equations, it follows
immediately that the curvature tensor R̃, defined as R̃(U, V ) = [∇̃U , ∇̃V ]− ∇̃[U,V ] is
given by

R̃(U, ∂t)V =
f ′′

f
g̃(U, V ) ∂t(2.2.a)

R̃(U, V )∂t = 0(2.2.b)

R̃(U, ∂t)∂t = −f ′′

f
U(2.2.c)

R̃(U, V )W = − (f ′)2

f2

(
g̃(V, W )U − g̃(U,W )V

)
.(2.2.d)

Let ι : M → M̃ be an immersion of a surface M in M̃ and let g be the pulled back
metric of g̃ on M . We will not write down ι, unless it is absolutely necessary to avoid
confusion. Let ξ be a unit normal vector field on M and denote by A the associated
shape operator. The formulas of Gauss and Weingarten state respectively that
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(G) ∇̃XY = ∇XY + h(X, Y ) (W) ∇̃Xξ = −AX

for every X and Y tangent to M . Here, ∇ is the Levi-Civita connection of M and h
is the second fundamental form. We have g̃(h(X, Y ), ξ) = g(X,AY ) for all X and Y
tangent to M . One can decompose ∂t as

(2.3) ∂t = T + cos θ ξ,

where θ ∈ [0, π) is the angle between ∂t and the normal ξ and T is the projection of
∂t on the tangent plane of M . We have cos θ = g̃(∂t, ξ) and, since ∂t has unit length,
|T | = sin θ.

If one denotes by R the curvature tensor on M , then it follows from (2.2), (G), (W)
and (2.3) that the equations of Gauss and Codazzi can be written respectively as

(EG)

R(X, Y )Z = g(AY, Z)AX − g(AX,Z)AY

− ((log f)′ ◦ ι)2 (g(Y, Z)X − g(X, Z)Y )
− ((log f)′′ ◦ ι)

(
g(Y, T )g(Z, T )X − g(X,T )g(Z, T )Y

−g(Y, T )g(X,Z)T + g(X, T )g(Y, Z)T
)

(EC) (∇XA)Y − (∇Y A)X = cos θ ((log f)′′ ◦ ι) (g(Y, T )X − g(X,T )Y )

for X, Y and Z tangent to M .

Proposition 2.1. Let X be tangent to M , then

∇XT = cos θ AX + ((log f)′ ◦ ι) (X − g(X, T )T ) ,(2.4)
X(cos θ) = −g(X, AT )− cos θ ((log f)′ ◦ ι) g(X, T ).(2.5)

Proof. If X is tangent to M , then g̃(X, ∂t) = g(X,T ). One can express ∇̃X∂t in two
ways:

∇̃X∂t = ((log f)′ ◦ ι) (X − g(X, T )∂t), by use of (2.1.b) and (2.1.c),
∇̃X∂t = ∇XT + h(X, T ) + X(cos θ)ξ− cos θAX, by use of (G), (W) and (2.3).

Comparing the tangent and the normal parts, one gets the conclusion. ¤

From (2.5) we obtain immediately the following.

Proposition 2.2. If θ is a constant angle, then T is a principal direction and the
corresponding eigenvalue of the shape operator is − cos θ ((log f)′ ◦ ι).

From now on, we will assume that θ is constant. In this case we say that ι : M →
M̃ is a constant angle surface.

We may assume that θ ∈ [0, π/2]. If θ = 0, then ι(M) ⊆ {t0} × E2. If θ 6= 0, then
T 6= 0 and we can consider e1 = T/|T | = T/ sin θ. Let e2 be a unit tangent vector,
orthogonal to e1. Then e2 is also a principal direction, thus there exists a function
λ ∈ C∞(M) such that Ae2 = λe2. Combining with (2.4), this yields the following.

Proposition 2.3. Let M be a constant angle surface in M̃ , with θ 6= 0. Then there
exists an orthonormal frame field {e1, e2} on M such that the shape operator with
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respect to this frame takes the form

(2.6) A =

( − cos θ ((log f)′ ◦ ι) 0

0 λ

)

for some λ ∈ C∞(M) and the Levi-Civita connection is given by

(2.7)
∇e1e1 = 0, ∇e2e1 =

1
sin θ

(λ cos θ + ((log f)′ ◦ ι)) e2,

∇e1e2 = 0, ∇e2e2 = − 1
sin θ

(λ cos θ + ((log f)′ ◦ ι)) e1.

3 The classification theorem

In this section we classify the constant angle surfaces in (M̃, g̃) = I ×f E2.

The first impulse to solve the problem would be to parametrize the surface as a
graph (t(x, y), x, y) in E3. It follows that t is a solution of a classical first order PDE
t2x + t2y = tan θf2(t(x, y)) if θ 6= 0 known as eikonal equation. This technique was used
by Cermelli and Di Scala in [6]. The methods of the classical theory of first order
PDE can be used to study constant angle surfaces, yet explicit embedding equations
are not obtained. Consequently, we will discuss another approach in order to classify
our surfaces.

We only have to consider the case θ 6= 0. In that case, we consider the orthonormal
frame field {e1, e2} as above. Then from (2.7) we obtain that [e1, e2] is proportional
to e2. Therefore we can choose coordinates (u, v) such that ∂u = e1 and ∂v = βe2 for
some function β. Then it is clear that g takes the form

(3.1) g = du2 + β2(u, v) dv2.

The Levi-Civita connection is determined by

(3.2) ∇∂u∂u = 0, ∇∂u∂v = ∇∂v∂u =
βu

β
∂v, ∇∂v∂v = −ββu∂u +

βv

β
∂v

and β satisfies

(3.3) βu =
β

sin θ
(λ cos θ + ((log f)′ ◦ ι)) .

If we put
ι(u, v) = (t(u, v), x(u, v), y(u, v))

then
tu = g̃(ιu, ∂t) = g̃(e1, ∂t) = g̃(T/ sin θ, T + cos θξ) = sin θ

and
tv = g̃(ιv, ∂t) = g̃(βe2, ∂t) = g̃(βe2, T + cos θξ) = 0

such that, after a translation in the u coordinate,

(3.4) t(u, v) = u sin θ.
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Theorem 3.1. An isometric immersion ι : M → I ×f E2 defines a surface with
constant angle θ ∈ [0, π/2] if and only if, up to rigid motions of I ×f E2, one of the
following holds locally.

(i) There exist local coordinates (u, v) on M , with respect to which the immersion ι is
given by

(3.5) ι(u, v) =

(
u sin θ, cot θ

(∫ u sin θ dτ

f(τ)

)
cos v −

∫ v

α(τ) sin τdτ,

cot θ

(∫ u sin θ dτ

f(τ)

)
sin v +

∫ v

α(τ) cos τdτ

)

for some smooth function α.

(ii) ι(M) is an open part of the cylinder

(3.6) x− cot θ

∫ t dτ

f(τ)
= 0.

This surface is totally umbilical with mean curvature H = − cos θf ′(u sin θ)/f(u sin θ).
(iii) ι(M) is an open part of the surface t = t0 for some real number t0, and θ = 0.

Proof. Let us first check that the surfaces described in the theorem are constant angle
surfaces.

For case (i), a basis for the tangent plane to the surface is given by

ιu =
(

sin θ,
cos θ cos v

f(u sin θ)
,

cos θ sin v

f(u sin θ)

)

ιv =

(
cot θ

(∫ u sin θ dτ

f(τ)

)
+ α(v)

)
(0,− sin v, cos v) .

Notice that if a = (a1, a2, a3) and b = (b1, b2, b3) are vectors in T(t,x,y)(I ×f E2), then
the vector defined by

a×f b =
(
f2(t)(a2b3 − a3b2), a3b1 − a1b3, a1b2 − a2b1

)

is orthogonal to both a and b. Hence

ξ =
ιu ×f ιv
|ιu ×f ιv| =

(
cos θ, − sin θ cos v

f(u sin θ)
, − sin θ sin v

f(u sin θ)

)

is a unit normal on the surface. We immediately deduce that g̃(ξ, ∂t) = cos θ.
For case (ii), one can use the parametrization

ι(u, v) =
(

u, cot θ

∫ u dτ

f(τ)
, v

)
.

Then ξ = (cos θ,− sin θ/f(u), 0) is a unit normal and g̃(ξ, ∂t) = cos θ.
Case (iii) is obvious.
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Conversely, let ι : M → I ×f E2 be a constant angle surface with constant angle
θ. As mentioned before, we may assume that θ ∈ [0, π/2]. If θ = 0 then ι(M) is
of type (iii) described in the theorem. If θ = π/2, the vector field ∂t is everywhere
tangent to ι(M). This implies that ι(M) is an open part of a cylinder with rulings in
the direction of ∂t or, equivalently that there exist local coordinates (u, v) on M such
that ι(u, v) = (u, γ1(v), γ2(v)) for some smooth functions γ1 and γ2. If ι parametrizes
a plane, this is case (ii) of the theorem with θ = π/2. If ι does not describe a plane,
this is case (i) of the theorem with θ = π/2.

From now on, assume that θ ∈ (0, π/2). If we choose local coordinates on M as
above, we can write ι(u, v) = (u sin θ, x(u, v), y(u, v)). Using (3.1) we obtain

f2(u sin θ)
(
x2

u + y2
u

)
= cos2 θ(3.7.a)

xuxv + yuyv = 0(3.7.b)

f2(u sin θ)
(
x2

v + y2
v

)
= β2.(3.7.c)

Define

(3.8) σ(u) = log f(u sin θ) = ((log f) ◦ ι)(u, v).

Then a straightforward computation, using (2.1), (3.7) and (3.8) yields

∇̃ιuιu = ιuu + 2σ′ιu −
(

sin θ +
1

sin θ

)
σ′∂t(3.9.a)

∇̃ιuιv = ιuv + σ′ιv(3.9.b)

∇̃ιv ιv = ιvv − 1
sin θ

β2σ′∂t.(3.9.c)

On the other hand, we can express these covariant derivatives by using the formula
of Gauss (G). By using (2.3), (2.6), (3.2) and (3.8) we obtain

∇̃ιuιu = σ′ιu − 1
sin θ

σ′∂t,(3.10.a)

∇̃ιuιv =
βu

β
ιv,(3.10.b)

∇̃ιv ιv = − (
ββu + tan θλβ2

)
ιu +

βv

β
ιv +

1
cos θ

λβ2∂t.(3.10.c)

We will now compare successively (3.9) to (3.10).
From (3.9.a) and (3.10.a) we obtain

ιuu + σ′ιu − sin θσ′∂t = 0.

This equation is satisfied for the t-component. For the x- and the y-component we
obtain respectively xuu+σ′xu = 0 and yuu+σ′yu = 0, such that xu(u, v) = e−σ(u)c1(v)
and yu(u, v) = e−σ(u)c2(v) for some functions c1 and c2. From (3.7.a) we obtain
c2
1(v) + c2

2(v) = cos2 θ. If we put p1(v) = c1(v)/ cos θ and p2(v) = c2(v)/ cos θ, then

(3.11) ιu(u, v) =
(
sin θ, cos θe−σ(u)p1(v), cos θe−σ(u)p2(v)

)
, p2

1(v) + p2
2(v) = 1.
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From (3.9.b) and (3.10.b), we obtain

ιuv +
(

σ′ − βu

β

)
ιv = 0.

This equation is again satisfied for the t-component. Integrating, we obtain

(3.12) ιv(u, v) = e−σ(u)β(u, v) (0, q1(v), q2(v)) , q2
1(v) + q2

2(v) = 1.

Remark that the compatibility condition for (3.11) and (3.12) is

(3.13) (p′1, p
′
2) =

1
cos θ

(βu − σ′β) (q1, q2) .

Finally, from (3.9.c) and (3.10.c), we obtain

(3.14) ιvv +
(
ββu + tan θλβ2

)
ιu − βv

β
ιv − β2

(
σ′

sin θ
+

λ

cos θ

)
∂t = 0.

If we substitute (3.11) and (3.12) into (3.14), the resulting equations for the x- and
the y-component yield

(3.15) (q′1, q
′
2) = −(βu cos θ + λβ sin θ) (p1, p2) .

At this point we can distinct two cases: (p1(v), p2(v)) is constant or not.

Case 1: (p1(v), p2(v)) is constant.
Then from (3.13) we obtain that βu = σ′β, and hence β(u, v) = ψ(v)f(u sin θ).

After a change in the v-coordinate, we can assume that ψ(v) = 1, such that β(u, v) =
f(u sin θ). From (3.3) we then obtain that λ = − cos θf ′(u sin θ)/f(u sin θ). From
Proposition 2.3 it follows that M is totally umbilical.

From (3.15) then follows that (q1, q2) is constant. Integrating (3.11) and using
(3.12) gives us

(3.16) ι(u, v) =
(

u sin θ, p1 cos θ

(∫ u

e−σ(µ)dµ

)
+ q1v + a1,

p2 cos θ

(∫ u

e−σ(µ)dµ

)
+ q2v + a2

)

for some constants a1 and a2, which can be taken zero after a translation in x and y.
Moreover, since g̃(ιu, ιv) = 0, we have p1q1 +p2q2 = 0. Hence, after a rotation around
the t-axis, which is an isometry of I ×f E2, we may assume that (p1, p2) = (1, 0) and
(q1, q2) = (0, 1). Hence we obtain after a substitution τ = µ sin θ

ι(u, v) =

(
u sin θ, cot θ

∫ u sin θ dτ

f(τ)
, v

)

which corresponds to case (ii) of the theorem.
Case 2: (p1(v), p2(v)) is not constant. Then from (3.11) we can assume that, after a
change of the v-coordinate,

(3.17) (p1(v), p2(v)) = (cos v, sin v).
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Then (3.13) implies that

(3.18) βu − σ′β = ± cos θ

and by changing the sign of u, we can assume the right hand side to be cos θ. Inte-
grating (3.18) gives

(3.19) β(u, v)e−σ(u) − cos θ

∫ u

e−σ(µ)dµ = α(v)

for some function α(v). Furthermore (3.13) shows that

(q1(v), q2(v)) = (− sin v, cos v).

Hence (3.11) and (3.12) reduce to

ιu(u, v) =
(
sin θ, cos θe−σ(u) cos v, cos θe−σ(u) sin v

)
(3.20)

ιv(u, v) = e−σ(u)β(u, v) (0,− sin v, cos v) .(3.21)

Integrating (3.20) gives

(3.22) ι(u, v) =
(

u sin θ, cos θ

(∫ u

e−σ(µ)dµ

)
cos v + γ1(v),

cos θ

(∫ u

e−σ(µ)dµ

)
sin v + γ2(v)

)

for some smooth functions γ1 and γ2. If we take the derivative with respect to v in
(3.22) and compare it to (3.21) we get, using (3.19)

(γ′1(v), γ′2(v)) = α(v)(− sin v, cos v).

After integration, we obtain case (i) of the theorem. ¤

Remark 3.2. In case (i), the function λ is given by

(3.23) λ(u, v) =
1

β(u, v)
sin θ − f ′(u sin θ)

f(u sin θ)
cos θ.

This follows from (3.3) and (3.15).

Remark 3.3. Notice that if we take the Euclidean metric on R3, i.e. the warping
function is 1, we retrieve the statements of Theorem 7 in [18].

4 Rotational surfaces of constant angle

In this section, we classify constant angle surfaces in I ×f E2, which are invariant
under rotations with respect to the t-axis.

Let us first remark that any rotation

Rφ : I ×f E2 → I ×f E2 : (t, x, y) 7→ (t, x cosφ− y sin φ, x sin φ + y cos φ)
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is an isometry. Let γ be a curve in the plane containing the t- and the x-axis. Assume
that γ(u) = (a(u), b(u), 0) is an arc length parametrization, i.e., that

(4.1) (a′(u))2 + f2(a(u))(b′(u))2 = 1.

We want to investigate under which conditions the surface

ι(u, v) = (a(u), b(u) cos v, b(u) sin v)

is a constant angle surface in I ×f E2.
The unit normal vector field is given by

ξ(u, v) =
(

b′(u)f(a(u)), −a′(u) cos v

f(a(u))
, −a′(u) sin v

f(a(u))

)
.

Hence, the surface determines a constant angle surface with constant angle θ if and
only if

(4.2) b′(u)f(a(u)) = cos θ.

Combining (4.1) and (4.2) yields

(4.3) (a′(u))2 = sin2 θ.

There are now two cases to consider.

The case sin θ = 0 is obvious and it corresponds to case (iii) of the Theorem 3.1.
So assume sin θ 6= 0. Then we see from (4.3) that a(u) = ±u sin θ + c for some real
constant c. After a change of the arc length parameter u of γ, we may assume that

(4.4) a(u) = u sin θ.

If θ = π/2, then b = b0 is constant and we obtain the circular cylinder ι(u, v) =
(u, b0 cos v, b0 sin v). In the sequel we will take θ ∈ (0, π/2).

It then follows from (4.2) that

b(u) =
∫ u cos θ

f(µ sin θ)
dµ = cot θ

∫ u sin θ dτ

f(τ)
.

We conclude that the rotational surface immersion becomes

(4.5) ι(u, v) =

(
u sin θ,

(
cot θ

∫ u sin θ dτ

f(τ)

)
cos v,

(
cot θ

∫ u sin θ dτ

f(τ)

)
sin v

)

which corresponds, up to a translation in the x-direction, to a special situation of case
(i) of Theorem 3.1, namely when α(v) = 0.

5 Examples

5.1 Flat constant angle surfaces.
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A surface of type (iii) of Theorem 3.1 is a trivial example of a flat surface with constant
angle θ = 0. In order to give an example of flat constant angle surface with θ 6= 0
consider a surface of type (ii) in Theorem 3.1. Using (EG) and (2.6), we obtain

K = det A− ((log f)′ ◦ ι)2 − ((log f)′′ ◦ ι) sin2 θ = −
(

f ′′

f
◦ ι

)
sin2 θ.

The surface is flat if f(t) = a(t + b), with a 6= 0. The metric g̃ on the ambient space
is called a cone metric.

5.2 Minimal constant angle surfaces.

Consider first a constant angle surface of type (iii) of Theorem 3.1. Then ∂t is a
unit normal and it follows from (2.1.b) that the surface is totally umbilical with
shape operator A = f ′(t0)/f(t0) id. Hence, such a surface is minimal if and only if
f ′(t0) = 0, case in which it is also totally geodesic.

Now assume that the constant angle surface is of type (ii) of Theorem 3.1. Then it
is minimal only if it is totally geodesic. Since H = − cos θf ′(u sin θ)/f(u sin θ), either
θ = π/2, i.e. the surface is a warped product of an interval and a straight line in E2,
or f ′ = 0, i.e. the ambient space is a direct product and M is a plane.

Finally, if we assume that the constant angle surface is of type (i) of Theorem 3.1,
then from (2.6) and (3.23) it follows that H = 0 if and only if

(5.1) 2 cos θβσ′ = sin2 θ.

Hence β depends only on u. Differentiating (5.1) using (3.18) yields

(5.2)
(

1
σ′

)′
=

1 + cos2 θ

sin2 θ
.

Integrating (5.2) shows that f has to take the form

f(t) = b(t + c)
sin2 θ

1+cos2 θ .

Without loss of generality, we can assume c = 0. We put m = sin2 θ/(1 + cos2 θ),
such that f(t) = b tm, m ∈ (0, 1). From (3.3) and (3.23) we then obtain that
λ = m cot θ/u and β = u cos θ/(1−m). Then it follows that in (3.19) we have to take
α = 0. Then from the classification Theorem 3.1 we obtain that

ι(u, v) =
(

u sin θ,
cot θ

b(1−m)
(u sin θ)1−m cos v,

cot θ

b(1−m)
(u sin θ)1−m sin v

)
.

This represents a constant angle minimal surface, with θ = arccos
√

(1−m)/(1 + m).
Moreover, the surface is a rotation surface.

5.3 Constant angle surfaces with a harmonic height function.
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Consider the height function

h̃ : I ×f E2 → R : (t, x, y) 7→ t.

If ι : M → I ×f E2 is an isometric immersion of a surface, then we denote by h the
restriction of h̃ to M , i.e. h = g̃(ι, ∂t). Remark that

g(X, grad h) = X(h) = X(g̃(ι, ∂t)) = g̃(X, ∂t) = g(X,T )

for all X tangent to M and hence

gradh = T.

Thus, by using (2.4) we obtain

(5.3) ∆h = div T = trace(∇T ) = 2 cos θH + ((log f)′ ◦ ι) (1 + cos2 θ).

Remark that this formula yields the following. See also Lemma 3.1 and Corollary 3.2
in [20].

Proposition 5.1. There are no compact minimal surfaces in I ×f E2 if f is mono-
tonic.

Proof. Assume that (log f)′ ≥ 0 (resp. ≤ 0) and that M is a compact, minimal
surface in I ×f E2. By integrating (5.3) and taking into account that H = 0, one
obtains

0 =
∫

M

∆h dM =
∫

M

((log f)′ ◦ ι) (1 + cos2 θ) dM ≥ 0 (resp. ≤ 0).

It follows that (log f)′ ◦ ι = 0, that is f is constant on M and the proposition follows
immediately. ¤

We now consider non-minimal constant angle surfaces with harmonic height func-
tion. If sin θ = 0, then h is constant. If cos θ = 0, then (5.3) implies that f ′ = 0 on
M such that around M the ambient space is Euclidean and M is a part of a cylinder
in the t-direction. If the surface is of type (ii) in Theorem 3.1, with θ ∈ (0, π/2), then
it follows from (5.3) that f is constant on M , such that M is part of a plane, hence
minimal. If the surface is of type (i) in Theorem 3.1, with θ ∈ (0, π/2), then h is
harmonic if and only if

(5.4) sin θ cos θλ + σ′ = 0.

From (5.4) and (3.23) it follows that

β = − cos θ
1
σ′

.

These equations yield that β only depends on u and that λβ = 1/sin θ. From (3.3) we
easily obtain that β is constant. Therefore λ is constant and from (5.4) we obtain that
f(t) = aebt. From (2.2) we conclude that the warped product has constant negative
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sectional curvature. If we assume that it is −1, then we can put a = b = 1. It also
follows that α(v) = 0 in (3.19) and the surface is given by

ι(u, v) =
(
u sin θ,− cot θe−u sin θ cos v,− cot θe−u sin θ sin v

)
.

Since β is constant, M is flat. Moreover, the surface is a rotation surface with constant
mean curvature H = −(1 + cos2 θ)/(2 cos θ). So the surface is a flat constant mean
curvature rotation surface in the hyperbolic space.

Remark 5.2. As we have already seen, the ambient space R3 endowed with the
metric g̃ = dt2 + e2t(dx2 + dy2) has constant sectional curvature −1. This model
for the hyperbolic space is also used in [1] and [14]. Rotation surfaces in this space,
as defined above, are the rotation surfaces in the sense of [11]. By changing the
t-coordinate one can obtain the upper half space model for the hyperbolic 3-space.
More precisely, by considering z = e−t one gets that (M̃, g̃) is isometric to

(
H3

+, g−1

)
,

where

H3
+ =

{
(x, y, z) ∈ R3 , z > 0

}
, g−1 =

1
z2

(
dx2 + dy2 + dz2

)
.

In this model, the constant angle surface M obtained above, is given implicitly by
x2 + y2 = z2 cot2 θ, θ ∈ (0, π

2 ), which represents a half-cone, i.e. an equidistant
surface from a geodesic line in (H3

+, g−1) and can be regarded as the analogue of a
round cylinder in hyperbolic geometry (see also [21]). In the hyperboloid model for
the hyperbolic space, this surface is the product of a circle and a hyperbola.
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