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Abstract. In this article, surfaces are studied that arise from taking the
tensor product of two curves. More precisely, the classification of minimal
tensor product surfaces of two arbitrary curves in pseudo-Euclidean spaces
is obtained. This main result generalizes several previously known partial
results concerning tensor product surfaces and, moreover, corrects some
of these.
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1 Introduction

Tensor products of submanifolds are one of the many interesting topics studied in
differential geometry of submanifolds. The tensor product of two immersions of a
given Riemannian manifold is introduced in [4] as a generalization of the quadratic
representation of a submanifold. In [5], the tensor product of two immersions of, in
general, different manifolds, is studied. See [14] for an introduction to and an overview
of the origin of the study of tensor products of submanifolds.

A tensor product surface is obtained by taking the tensor product of two curves.
In several papers, curvature conditions and other characterizations of tensor product
surfaces are considered.

Various results are known for tensor product surfaces of two planar curves. For
instance, in [11], minimal, totally real, complex, slant and pseudo-umbilical tensor
product surfaces of Euclidean planar curves are studied. A classification of minimal,
totally real and pseudo-minimal tensor product surfaces of Lorentzian planar curves is
proved in [12]. Minimal and pseudo-minimal tensor product surfaces of a Lorentzian
planar curve and a Euclidean planar curve are considered in [13]. In [2], minimal
tensor product surfaces of two pseudo-Euclidean planar curves are classified.

Also tensor product surfaces of a planar curve and a space curve are well-studied.
A classification of minimal, totally real and slant tensor product surfaces of a Eu-
clidean space curve and a Euclidean planar curve is obtained in [1]. In [7], [8] and
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[9], the authors study minimal, totally real and complex tensor product surfaces of a
Lorentzian space curve and a Lorentzian planar curve, a Euclidean space curve and a
Lorentzian planar curve, and a Lorentzian space curve and a Euclidean planar curve
respectively.

Recently, the minimal tensor product surfaces of two arbitrary Euclidean curves
are classified in [3], hereby generalizing partially the previous mentioned results. Some
errors in the results of [1] are corrected in [3].

In the present article, a classification of minimal tensor product surfaces of two
arbitrary curves in pseudo-Euclidean spaces is proved. All the previous mentioned
results on minimal tensor product surfaces are covered by this classification theorem.
Also, some corrections of the results in [7], [8] and [9] are made.

Curvature properties of surfaces have already been the subject of many research.
This work is a contribution to the study of a minimality condition on a surface in
an arbitrary pseudo-Euclidean space. For an examination of relations between two
curvatures of a surface in a 3-space see for instance [6] and [10].

2 Preliminaries

The mean curvature vector field of a non-degenerate surface M parametrized by f(s, t)
is given by

H =
1
2

(
g11 ∂2f

∂s2
+ 2g12 ∂2f

∂s∂t
+ g22 ∂2f

∂t2

)⊥
,

where ⊥ denotes the normal part and (gij) is the inverse matrix of (gij) with gij the
components of the induced metric g on the surface M , see for example [15]. The
surface M is minimal if and only if the mean curvature vector field is identically zero.
That is, if and only if g(H, n) = 0 for every normal n of the surface M . Thus, the
next lemma follows directly.

Lemma 2.1 A surface M parametrized by f(s, t) is minimal if and only if

g

(
g22

∂2f

∂s2
+ g11

∂2f

∂t2
− 2g12

∂2f

∂s∂t
, n

)
= 0,

for every normal n of the surface.
Denote by Em

µ the m-dimensional pseudo-Euclidean space of index µ with the stan-
dard flat metric g1. Consider the standard basis {U1, . . . , Um} on Em

µ with spacelike
vectors U1, . . . , Um−µ and timelike vectors Um−µ+1, . . . , Um. Analougously, denote
the metric on En

ν by g2 and consider the standard basis {V1, . . . , Vn} on En
ν with

spacelike vectors V1, . . . , Vn−ν and timelike vectors Vn−ν+1, . . . , Vn. Denote the met-
ric matrices of Em

µ and En
ν by G1 and G2 respectively. Consider the elements of Em

µ

and En
ν as column vectors. As in [8], identify in the usual way the space Emn with

the space M of real-valued m× n matrices. Define the metric g in M by

g(A, B) = trace (G1AG2
tB),

with A,B ∈ M, where tB denotes the transpose of B. Then, (M, g) is isometric to
the pseudo-Euclidean space Emn

ρ of index ρ = µ(n− ν) + ν(m− µ).
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The tensor product is defined as

⊗ : Em
µ × En

ν →M : (X,Y ) 7→ X ⊗ Y = X tY.

Concerning the metric g of M, one has the following lemma.

Lemma 2.2 If X, W ∈ Em
µ and Y, Z ∈ En

ν , then

g(X ⊗ Y,W ⊗ Z) = g1(X, W )g2(Y, Z).

Proof. Straightforward calculation using the definitions of the metric g and the tensor
product. ¤

A pseudo-orthogonal transformation of a pseudo-Euclidean space En
ν is a linear

map of En
ν that preserves the standard flat metric of En

ν . The next lemma is used in
the proof of the classification theorem.

Lemma 2.3 Let O1 and O2 be pseudo-orthogonal transformations of Em
µ and En

ν

respectively. Then
H : M→M : A 7→ O1A

tO2

is a pseudo-orthogonal transformation of M.

Proof. From

g(H(A),H(B)) = trace (G1O1A
tO2G2O2

tB tO1)
= trace ( tO1G1O1A

tO2G2O2
tB)

= g(A,B),

it is clear that H is a pseudo-orthogonal transformation of M. ¤

3 Minimal tensor product surfaces of two pseudo-
Euclidean curves

Let f(s, t) = α(s) ⊗ β(t) = α(s) tβ(t) = (α1(s)β1(t), α1(s)β2(t), . . . , αm(s)βn(t)) be
the tensor product surface of two arbitrary pseudo-Euclidean curves

α : R→ Em
µ : s 7→ α(s) = (α1(s), . . . , αm(s))

and
β : R→ En

ν : t 7→ β(t) = (β1(t), . . . , βn(t)).

Assume f(s, t) = α(s)⊗β(t) defines an immersion of R2 intoM. It follows directly
that

fs(s, t) =
∂f

∂s
(s, t) = α′(s)⊗ β(t), ft(s, t) =

∂f

∂t
(s, t) = α(s)⊗ β′(t),

fss(s, t) = α′′(s)⊗ β(t), fst(s, t) = α′(s)⊗ β′(t) and ftt(s, t) = α(s)⊗ β′′(t),
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where primes denote ordinary differentiation. From here on, the parameters s and t
are often omitted for notational reasons. The components of the induced metric on
the surface f(s, t) = α(s)⊗ β(t) are

g11 = g(fs, fs) = g1(α′, α′)g2(β, β),
g12 = g(fs, ft) = g1(α, α′)g2(β, β′),
g22 = g(ft, ft) = g1(α, α)g2(β′, β′).

Since g11g22 − g2
12 must be distinct from zero in order for the surface to be non-

degenerate, the position vectors of α and β cannot be null.
Lemma 3.1 For i, j = 1, . . . , m and p, q = 1, . . . , n with i 6= j and p 6= q, the

vectors

n1
ijpq = (αjg1(Ui, Ui)Ui − αig1(Uj , Uj)Uj)⊗ (βqg2(Vp, Vp)Vp − βpg2(Vq, Vq)Vq) ,

n2
ijpq =

(
α′jg1(Ui, Ui)Ui − α′ig1(Uj , Uj)Uj

)⊗ (
β′qg2(Vp, Vp)Vp − β′pg2(Vq, Vq)Vq

)
,

are normal to the surface f(s, t) = α(s)⊗ β(t).

Proof. The result follows directly from Lemma 2.2. ¤

It is clear that, without altering the tensor product surface, one of the curves can
be multiplied by a non-zero constant, provided the other curve is divided by the same
constant.

For pseudo-orthogonal transformations O1 and O2 of Em
µ and En

ν respectively, it
is clear that O1α⊗O2β = O1α

tβ tO2 = H(α⊗ β). Thus, by Lemma 2.3, the curves
α and β are determined up to a pseudo-orthogonal transformation.

The minimal tensor product surfaces f(s, t) = α(s) ⊗ β(t) are classified in the
following theorem.

Theorem 3.2 A non-degenerate tensor product surface f(s, t) = α(s) ⊗ β(t) of
two pseudo-Euclidean curves α : R → Em

µ : s 7→ α(s) and β : R → En
ν : t 7→ β(t) is a

minimal surface if and only if

1. α is either

(a) a circle in a definite plane;

(b) a hyperbola in a non-degenerate plane of index 1,

and β is either

(a) a circle in a non-degenerate plane of index 1;

(b) a hyperbola in a definite plane;

(c) a hyperbola in a non-degenerate plane of index 1;

(d) a hyperbola in a degenerate plane,

or

2. β is an open part of a non-null straight line through the origin not containing
the origin and α is a planar curve,



66 Wendy Goemans, Ignace Van de Woestyne and Luc Vrancken

or vice versa for α and β.

Proof. From Lemma 2.1, it follows that the tensor product surface f(s, t) = α(s)⊗β(t)
is minimal if and only if

g1(α, α)g2(β′, β′)g(fss, n)+g1(α′, α′)g2(β, β)g(ftt, n)−2g1(α, α′)g2(β, β′)g(fst, n) = 0,

for every normal n of the surface. Calculating this condition for the normal vectors
defined in Lemma 3.1, one has the equations

g1(α, α′)g2(β, β′)(αjα
′
i − αiα

′
j)(β

′
pβq − β′qβp) = 0,(3.1)

g1(α, α)g2(β′, β′)(α′jα
′′
i − α′′j α′i)(β

′
qβp − β′pβq)

+g1(α′, α′)g2(β, β)(α′jαi − α′iαj)(β′qβ
′′
p − β′pβ

′′
q ) = 0,(3.2)

with i, j = 1, . . . , m and p, q = 1, . . . , n. Starting from equation (3.1), two cases can
be considered.

Case 1 Neither α nor β is (part of) a straight line through the origin
There exist indices ı̃, ̃ = 1, . . . , m and p̃, q̃ = 1, . . . , n such that

α′̃αı̃ − α′ı̃α̃ 6= 0 and βp̃β
′
q̃ − βq̃β

′
p̃ 6= 0.

From equation (3.1) for these ı̃, ̃, p̃, q̃ either g1(α, α′) = 0 or g2(β, β′) = 0. Since the
problem is symmetric in α and β, assume without losing generality that g1(α, α′) = 0.
Thus, g1(α, α) is a non-zero constant. Possibly after multiplying α with a non-zero
constant, one has g1(α, α) = εα = ±1 and α lies in the pseudosphere Sm−1

µ = {x ∈
Em

µ | g1(x, x) = 1} or in the pseudohyperbolic space Hm−1
µ−1 = {x ∈ Em

µ | g1(x, x) = −1}.
Clearly, α and β are non-null since otherwise g11g22− g2

12 = 0. Reparametrize α such
that g1(α′, α′) = εα′ = ±1.

Equation (3.2) is rewritten for ı̃, ̃, p̃, q̃ as

−εαεα′
α′̃α

′′
ı̃ − α′′̃ α′ı̃

α′̃αı̃ − α′ı̃α̃
=

g2(β, β)(β′q̃β
′′
p̃ − β′p̃β

′′
q̃ )

g2(β′, β′)(β′q̃βp̃ − β′p̃βq̃)
.

As a consequence,
g2(β, β)(β′q̃β

′′
p̃ − β′p̃β

′′
q̃ )

g2(β′, β′)(β′q̃βp̃ − β′p̃βq̃)
= c,

where c ∈ R. From equation (3.2) with p̃, q̃ and i, j = 1, . . . , m, one has

α′jα
′′
i − α′′j α′i = −εαεα′

g2(β, β)(β′q̃β
′′
p̃ − β′p̃β

′′
q̃ )

g2(β′, β′)(β′q̃βp̃ − β′p̃βq̃)
(α′jαi − α′iαj).

Thus, α′jα
′′
i −α′′j α′i = −εαεα′c(α′jαi−α′iαj) with i, j = 1, . . . , m. Using this, equation

(3.2) becomes

g2(β, β)(β′qβ
′′
p − β′pβ

′′
q ) = cg2(β′, β′)(β′qβp − β′pβq),

with p, q = 1, . . . , n. Summarizing, the minimality conditions (3.1) and (3.2) reduce
to

α′jα
′′
i − α′′j α′i = −εαεα′c(α′jαi − α′iαj),(3.3)

g2(β, β)(β′qβ
′′
p − β′pβ

′′
q ) = cg2(β′, β′)(β′qβp − β′pβq),(3.4)
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for every i, j = 1, . . . ,m and p, q = 1, . . . , n. From equation (3.3), it follows that

(3.5) α′′ + εαεα′cα = ηα′,

with η a function of s. Thus, α lies in a plane Πα through the origin. Therefore, α is
either a circle in a plane Πα for which g1|Πα

is definite or α is a hyperbola in a plane
Πα for which g1|Πα

is non-degenerate of index 1 (see [15] p 112-113).
From the derivative of the assumption g(α, α′) = 0 and (3.5), clearly c = 1.
From equation (3.4), one obtains

β′′ =
g2(β′, β′)
g2(β, β)

β + γβ′,

with γ a function of t. Thus, also β lies in a plane Πβ through the origin. Examine
now the four possibilities for the plane Πβ . The expressions used for β are valid
possibly after applying an appropriate pseudo-orthogonal transformation.

Case g2|Πβ
is positive definite

One can assume that β(t) = r(t) cos t Vp + r(t) sin t Vq for distinct p and q with
p, q ∈ {1, . . . , n− ν}. Equation (3.4) reduces to the differential equation rr′′ − 3r′2 −
2r2 = 0 with solution r(t) = b√

| cos(2t)| .

Case g2|Πβ
is negative definite

Thus assume that β(t) = r(t) cos t Vp + r(t) sin t Vq for distinct p and q with p, q ∈
{n−ν+1, . . . , n}. Equation (3.4) reduces to the differential equation rr′′−3r′2−2r2 =
0 with solution r(t) = b√

| cos(2t)| .

Case g2|Πβ
is non-degenerate of index 1

In this case, one can assume that β(t) = r(t) cosh t Vp + r(t) sinh t Vq with p ∈
{1, . . . , n − ν} and q ∈ {n − ν + 1, . . . , n}. Equation (3.4) reduces to the differential
equation rr′′ − 3r′2 + 2r2 = 0 with solutions

r(t) =
b√

cosh(2t)
and r(t) =

b√
| sinh(2t)| .

Case g2|Πβ
is degenerate

Assume that β(t) = β1(t)Vp + β2(t)Vq + β1(t)Vr for distinct p and q with p, q ∈
{1, . . . , n− ν} and r ∈ {n− ν + 1, . . . , n}. Equation (3.4) for β simplifies to

β′′1 β′2 − β′1β
′′
2

β′22
=

β1β
′
2 − β′1β2

β2
2

,

with solution β2(t) = b
β1(t)

.
Case 2 β is a straight line through the origin
First assume β is non-null. Then, possibly after applying an appropriate pseudo-

orthogonal transformation, β(t) = tVi with i ∈ {1, . . . , n}. However, this means that
f lies in Em

µ and f(s, t) = tα = t(α1, . . . , αm). Consequently,

fs = tα′, ft = α, fss = tα′′, fst = α′, ftt = 0,

and the minimality condition of Lemma 2.1 reduces to g(α′′, n) = 0. Thus, α′′ ∈
span{α, α′} and α is a planar curve.
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If β is a null straight line through the origin, then also the position vector of β is
null, which is a contradiction.

All parametrizations referred to in the theorem are obtained. Conversely, it can
be shown in a straightforward fashion that the tensor product surfaces of the curves
in the statement are minimal. ¤

To conclude, some remarks on this classification theorem of minimal tensor prod-
uct surfaces of two arbitrary pseudo-Euclidean curves are made.

Remark 3.3 If the tensor product surface of two arbitrary pseudo-Euclidean
curves is minimal, then the two curves are planar.

Remark 3.4 There exist no minimal tensor product surfaces of two null curves.
Neither do there exist minimal tensor product surfaces of a null curve and an arbitrary
pseudo-Euclidean curve.

Remark 3.5 The tensor product surface of a straight line through the origin not
containing the origin and an arbitrary pseudo-Euclidean curve α is a cone over the
curve α. Hence, the surface is minimal if and only if it is a part of a plane. That is,
α is a planar curve.

Remark 3.6 For the appropriate choices of m, µ, n and ν, the results of [1], [2],
[3], [7], [8], [9], [11], [12] and [13] are reconstructed.

As mentioned in [3], the sinosoidal spiral solutions for the curve β in [1] is incor-
rect. Similarly, the logaritmic and hyperbolic spiral solutions in the classification of
minimal tensor product surfaces in [8] and [9] are incorrect. In the cases where these
curves are found, the normal vectors form no basis of the normal space, leading to the
incorrect solutions.

The solutions for which one of the curves is a straight line are missing in [8] and
[9] and the solution for which the space curve lies in a degenerate plane is missing in
[7].
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[8] K. Ilarslan and E. Nešović, Tensor product surfaces of a Euclidean space curve
and a Lorentzian plane curve, Differential Geometry - Dynamical Systems, 9
(2007), 47-57.
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