Tietze-type theorem in 2-dimensional Riemannian manifolds without conjugate points

S. Shenawy

Abstract. Let A be an open connected subset of a C^{∞} complete simply connected 2-dimensional Riemannian manifold without conjugate points W^2 . The main result of this short article states that: a point x of A has a local maximal visibility if and only if x is a point of the convex kernel of A. Thus we obtain a Tietze-type theorem in W^2 .

M.S.C. 2010: 52A10, 52A30, 53B20.

Key words: maximal visibility, starshaped set, kernel, conjugate points, Tietze-type theorem.

1 Introduction

The first local versus global result involving usual convexity is due to Tietze [10]. Tietze and Nakajima proved that a closed connected locally convex set in Euclidean space is convex, thus they established a global property from a local one [9, 12, 11, 16, 17]. In [16], the authors obtained similar results in which local convexity was replaced by weaker conditions called C-convexity and strong local C-convexity. In [12], the authors proved that under certain conditions a starshaped set is characterized by the existence of points enjoying a local condition, maximal visibility. Using maximal visibility, J. Cell presented a similar result for open connected set and for its closure and he obtained a Tietze-type theorem for partially convex planar set [10]. M. Breen studied the union of starshaped sets and the union of orthogonally starshaped sets using the concept of local maximal visibility in the plane [9]. In the present work we get a Tietze-type theorem for open connected subsets of a C^{∞} complete simply connected 2-dimensional Riemannian manifold without conjugate points W^2 .

Now, we introduce some properties of C^{∞} complete simply connected *n*-dimensional Riemannian manifold without conjugate points W^n . At first recall that, by the wellknown Hopf-Rinow theorem, if a Riemannian manifold is complete, then it is geodesically connected. Moreover, any two points p and q can be joined by a minimal geodesic. So it is worth pointing out that in order to obtain convexity in Riemannian manifolds, the assumption of completeness can not be removed [2]. The behavior of

Balkan Journal of Geometry and Its Applications, Vol.16, No.2, 2011, pp. 133-137.

[©] Balkan Society of Geometers, Geometry Balkan Press 2011.

geodesics in manifolds without conjugate or focal points has been discussed by many geometers as Morse, Hedlund, Green, Eberlein and others [13]. Now let W^n be a C^{∞} complete simply connected *n*-dimensional Riemannian manifold without conjugate points. The Euclidean space as well as the Hyperbolic space are examples of complete Riemannian manifolds without conjugate points. In such Riemannian manifolds W^n , no two geodesics intersect twice due to the absence of conjugate points and hence for any two different points p and q there is a unique and hence minimal closed geodesic segment, denoted by [pq], joining them. This fact implies that the three types of convexities in complete Riemannian manifolds that were introduced in [1] are identical in W^n and each of them is equivalent to the classical concept of convexity in the Euclidean space E^n . In the following we introduce this classical concept of convexity in W^n . For more properties of W^n and convex sets in it see [4, 3, 6, 7, 8, 18, 14, 15].

2 Notations and definitions

Let A be a subset of W^n . We say that A is starshaped if there exists a point p in A such that for any point x in A the closed geodesic segment[px], joining p and x, is in A. In this case we say that p sees x via A. The set of all such points p is called the kernel of A and is denoted by ker A. M. Beltagy proved that ker A is convex for n = 2[6]. A is convex if ker A = A i.e. for each $x, y \in A$, the closed geodesic segment [xy] joining them is contained in A and hence x sees y via A. The open and closed geodesic discs are both convex sets in W^n .

A set A is said to be locally convex at a point p in A if there exists a neighborhood N of p such that $N \cap A$ is convex. It is clear that the open set is a locally convex set. The convex hull of a set A is the smallest convex set that contains A and is denoted by C(A). It is clear that C(A) = A when A is convex. Let A_p be the set of all points x of A that p sees via A. We say that p has higher visibility via A than q if $A_q \subset A_p$. A point of (local) maximal visibility of A is a point $p \in A$ such that there exists a neighborhood N of p satisfying that p has higher visibility than any other point of $N \cap A$ [10].

A geodesic path between two points p and q is the union of n closed geodesic segments $[x_ix_{i+1}], 0 \le i \le n-1$ where x_i 's are distinct points of W^n with $x_0 = p$ and $x_n = q$. Every geodesic segment $[x_ix_{i+1}]$ is called a side of the geodesic path. A set A is called geodesically connected if for each two points x and y in A there exists a geodesic path in A joining x and y [5]. \vec{xy} denotes the geodesic ray starting from x and passing through y, where (xy) denotes the open geodesic segment joining x and y.

3 Maximal visibility in W^2

In this section we present the main theorem of this paper that introduces the assumptions of a subset A of W^2 to get a characterization of the kernel of A using the concept of local maximal visibility. We begin with the following two lemmas.

Lemma 3.1. If A is a nonempty open connected subset of W^2 , then A is geodesically connected.

Proof. Let $p \in A$ and let A_p denote the set of all points in A which can be joined to p by a geodesic path in A. We claim that A_p is both open and closed as a subset of A. To see that A_p is open, let $q \in A_p$. Since A is locally convex, there exists a neighborhood N of q such that $N \cap A$ is convex. It follows that each point of $N \cap A$ can be joined to q and hence to p by a geodesic path. Thus $N \cap A$ (as an open set in the relative topology) is a subset of A_p and A_p is open in A. To see that A_p is closed, let $z \in \overline{A}_p$. Since A is locally convex, there exist a neighborhood N of z such that $N \cap A$ is convex and is a neighborhood of z in the relative topology on A, and hence $N \cap A$ must also intersect A_p since $z \in \overline{A}_p$. Thus there exists a point w in $(N \cap A) \cap A_p$. Since $N \cap A$ is convex, $[wz] \subset A$. But w can be joined to p by a geodesic path in A, hence z can also. Thus $z \in A_p$, and A_p is closed. Since A_p is closed and open in A and A is connected, it follows that A_p must equal to A and hence A is geodesically connected. \Box

Lemma 3.2. Let A be an open connected subset of W^2 . If $[xy] \subset A$ and $[yz] \subset A$, then there exists a point q in [xy] with $q \neq y$, such that the convex hull of $\{q, y, z\}$ is contained in A.

Proof. Let K be the set of all points p in [yz] such that $C\{q, y, p\} \subset A$ for some q in [xy] with $q \neq y$. Since $y \in K$, K is not empty. We claim that K is both open and closed in [yz]. Since [yz] is connected, this claim implies that K = [yz] and the proof is complete. To see that K is open in [yz], let $p \in K$. Then there exists a point $q \in [xy)$ such that $C\{q, y, p\} \subset A$. Since A is open and hence locally convex then there is a neighborhood N of p such that $N \cap A$ is convex. Let $a \in N \cap [pz]$ and $b \in N \cap [pq]$, then the ray \overrightarrow{ab} meets [yq] at f, and hence $C\{a, y, f\} \subset A$, since the convex hull of $C\{a, b, p\}$ is contained in $N \cap A \subset A$ see Figure 1.

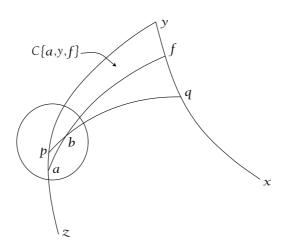


Figure 1: The set K is open in [yz]

Therefore, $a \in K$ and consequently p is an interior point in K. To see that K is closed in [yz], let $p \in \overline{K}$. Since A is locally convex, then there is a neighborhood N of p such that $N \cap A$ is convex. Moreover, N contains a point a of K such that

 $a \in N \cap [yp]$. Then there exists a point $q \in [xy)$ such that $C\{q, y, a\} \subset A$. Choose $b \in N \cap [aq]$, then the ray \overrightarrow{pb} meets [qy) at f see Figure 2.

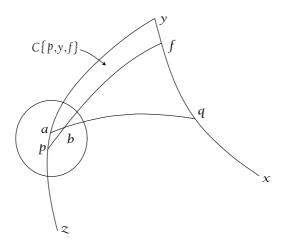


Figure 2: The set K is closed in [yz]

Since $C \{a, q, y\} \subset A$ by definition of K and $C \{a, p, b\} \subset A$ by local convexity, then $C \{p, f, y\} \subset C \{a, q, y\} \cup C \{a, p, b\} \subset A$ and hence $p \in K$. Then K is closed and the proof is complete.

Theorem 3.3. Let A be an open connected subset of W^2 . Then the kernel of A is the set of all points of maximal visibility.

Proof. Let V be the set of all points of maximal visibility in A. We want to prove that $V = \ker A$. It is clear that $\ker A \subset V$, so we will show that $V \subset \ker A$. Let $x \notin \ker A$ i.e. there is a point y in A such that $[xy] \not\subset A$. By Lemma 3.1, A is geodesically connected since A is an open connected subset of W^2 . Therefore, there is a geodesic path with n sides such that $x = x_0, x_1, ..., x_n = y$ and

$$U_{i=0}^{n-1}\left[x_{i}x_{i+1}\right] \subset A$$

Choose a geodesic path P with minimal n and so P must be simple (dose not intersect itself). Now, the points x_0, x_1, x_2 are non-geodesic triple. By Lemma 3.2, there exists a point t in $[x_1x_2]$ such that $C([x_0x_1] \cup [x_1t]) \subset A$. Let M be the set of all such points t in $[x_1x_2]$. It is clear that M is convex, so we get a point z such that M = [xz] or M = [xz). Since A is open, M = [xz). Now, for any neighborhood N of x, all points of $N \cap [x_0x_1]$ see z via A where x does not i.e. x is not a point of maximal visibility in A and therefore x is not in V. Hence $V \subset \ker A$ and the proof is complete.

Theorem 3.3 is valid in the Euclidean space E^n as a manifold without conjugate points[12]. Also it is valid in the hyperbolic space H^n since the Beltrami (or central projection) map defined in [5] takes H^n to E^n and preserves geodesics. But the generalization of Theorem 3.3 to any W^n is more difficult and is left as an open question.

References

- S. Alexander, Local and global convexity in complete Riemannian manifolds, Pacific Journal of Mathematics 76(2) (1978), 283–289.
- [2] R. Bartolo, A. Germinario, M. Sanchez, Convexity of domains of Riemannian manifolds, arXiv:math.DG/0004075 v1 (2009).
- M. Beltagy, Foot points and convexity in manifolds without focal points, Bull. Cal. Math. Soc. 82 (1990), 338–348.
- [4] M. Beltagy, Immersions into Manifolds without Conjugate Points, PhD thesis, University of Durham, England, 1982.
- [5] M. Beltagy, On starshaped sets, Bull. Malaysian Math. Sci. Soc. 11 (1988), 49–57.
- [6] M. Beltagy, Sufficient conditions for convexity in manifolds without focal points, Comment. Math. Univ. Carolinae 34(1993), 443–449.
- [7] M Beltagy, and A. El Araby, Starshaped sets in Riemannian manifolds without conjugate points, Far East J. Math. Sci. (FJMS) 6 (2002), 187–169.
- [8] M. Beltagy, and S. Shenawy, Sets with zero-dimensional kernels, Int. J. of Mod. Math., 4(2) (2009), 163–168.
- M. Breen, Sets of locally maximal visibility and finite unions of starshaped sets, Monatsh. Math. 130 (2000), 1–5.
- [10] J. Cell, Tietze-type theorem for partially convex planar sets, Bull. Soc. Roy. Sci. Liege 69(1) (2000), 17–20.
- [11] R.J. Dwilewicz, A short history of Convexity, Diff. Geom. Dyn. Syst. 11 (2009), 112–129.
- [12] A.T. Fasto, F. Cunto, Local characterization of starshapedness, Geometriae Dedicata 66 (1997), 65–67.
- [13] S.M. Goto, Manifolds without conjugate points, J. Diff. Geom. 13 (1978), 341– 359.
- [14] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol(1), Interscience Publishers, New York, 1963.
- [15] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol(2), Interscience Publishers, New York, 1969.
- [16] R. Sacksteder, E.G. Straus, and F.A. Valentine, A generalization of a theorem of Tietze and Nakajima on local convexity, Journal London Math. Soc. 36 (1961), 52–56.
- [17] F.A. Valentine, Convex Sets, McGraw-Hill, Inc., New York, 1964.
- [18] B. Wu On complete hypersurfaces with two distinct principal curvatures in a hyperbolic space, Balkan J. Geom. Appl., 15(2) (2010), 126–137.

Authors' addresses:

S. Shenawy

Basic Science Department,

Modern Academy for Engineering and Technology, Maadi, Egypt.

 $\operatorname{E-mail:}$ s.shenawy@s-math.org , sshenawy08@yahoo.com