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Abstract. Let A be an open connected subset of a C∞ complete simply
connected 2-dimensional Riemannian manifold without conjugate points
W 2. The main result of this short article states that: a point x of A has
a local maximal visibility if and only if x is a point of the convex kernel
of A. Thus we obtain a Tietze-type theorem in W 2.
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1 Introduction

The first local versus global result involving usual convexity is due to Tietze [10].
Tietze and Nakajima proved that a closed connected locally convex set in Euclidean
space is convex, thus they established a global property from a local one [9, 12, 11, 16,
17]. In [16], the authors obtained similar results in which local convexity was replaced
by weaker conditions called C−convexity and strong local C−convexity. In [12], the
authors proved that under certain conditions a starshaped set is characterized by
the existence of points enjoying a local condition, maximal visibility. Using maximal
visibility, J. Cell presented a similar result for open connected set and for its closure
and he obtained a Tietze-type theorem for partially convex planar set [10]. M. Breen
studied the union of starshaped sets and the union of orthogonally starshaped sets
using the concept of local maximal visibility in the plane [9]. In the present work
we get a Tietze-type theorem for open connected subsets of a C∞ complete simply
connected 2-dimensional Riemannian manifold without conjugate points W 2.

Now, we introduce some properties of C∞ complete simply connected n-dimensional
Riemannian manifold without conjugate points Wn. At first recall that, by the well-
known Hopf-Rinow theorem, if a Riemannian manifold is complete, then it is geodesi-
cally connected. Moreover, any two points p and q can be joined by a minimal
geodesic. So it is worth pointing out that in order to obtain convexity in Riemannian
manifolds, the assumption of completeness can not be removed [2]. The behavior of
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geodesics in manifolds without conjugate or focal points has been discussed by many
geometers as Morse, Hedlund, Green, Eberlein and others [13]. Now let Wn be a
C∞ complete simply connected n-dimensional Riemannian manifold without conju-
gate points. The Euclidean space as well as the Hyperbolic space are examples of
complete Riemannian manifolds without conjugate points. In such Riemannian man-
ifolds Wn, no two geodesics intersect twice due to the absence of conjugate points
and hence for any two different points p and q there is a unique and hence minimal
closed geodesic segment, denoted by [pq], joining them. This fact implies that the
three types of convexities in complete Riemannian manifolds that were introduced
in [1] are identical in Wnand each of them is equivalent to the classical concept of
convexity in the Euclidean space En. In the following we introduce this classical
concept of convexity in Wn. For more properties of Wn and convex sets in it see
[4, 3, 6, 7, 8, 18, 14, 15].

2 Notations and definitions

Let A be a subset of Wn. We say that A is starshaped if there exists a point p in
A such that for any point x in A the closed geodesic segment[px], joining p and x, is
in A. In this case we say that p sees x via A. The set of all such points p is called
the kernel of A and is denoted by kerA. M. Beltagy proved that kerA is convex for
n = 2[6]. A is convex if kerA = A i.e. for each x, y ∈ A, the closed geodesic segment
[xy] joining them is contained in A and hence x sees y via A. The open and closed
geodesic discs are both convex sets in Wn.

A set A is said to be locally convex at a point p in A if there exists a neighborhood
N of p such that N ∩A is convex. It is clear that the open set is a locally convex set.
The convex hull of a set A is the smallest convex set that contains A and is denoted
by C (A). It is clear that C (A) = A when A is convex. Let Ap be the set of all points
x of A that p sees via A. We say that p has higher visibility via A than q if Aq ⊂ Ap.
A point of (local) maximal visibility of A is a point p ∈ A such that there exists a
neighborhood N of p satisfying that p has higher visibility than any other point of
N ∩A [10].

A geodesic path between two points p and q is the union of n closed geodesic
segments [xixi+1] , 0 ≤ i ≤ n − 1 where xi’s are distinct points of Wn with x0 = p
and xn = q. Every geodesic segment [xixi+1] is called a side of the geodesic path. A
set A is called geodesically connected if for each two points x and y in A there exists
a geodesic path in A joining x and y [5]. −→xy denotes the geodesic ray starting from x
and passing through y, where (xy) denotes the open geodesic segment joining x and
y.

3 Maximal visibility in W 2

In this section we present the main theorem of this paper that introduces the as-
sumptions of a subset A of W 2 to get a characterization of the kernel of A using the
concept of local maximal visibility. We begin with the following two lemmas.

Lemma 3.1. If A is a nonempty open connected subset of W 2, then A is geodesically
connected.
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Proof. Let p ∈ A and let Ap denote the set of all points in A which can be joined
to p by a geodesic path in A. We claim that Ap is both open and closed as a subset
of A. To see that Ap is open, let q ∈ Ap. Since A is locally convex, there exists a
neighborhood N of q such that N ∩A is convex. It follows that each point of N ∩A
can be joined to q and hence to p by a geodesic path. Thus N ∩ A (as an open set
in the relative topology) is a subset of Ap and Ap is open in A. To see that Ap is
closed, let z ∈ Āp. Since A is locally convex, there exist a neighborhood N of z such
that N ∩ A is convex and is a neighborhood of z in the relative topology on A, and
hence N ∩ A must also intersect Ap since z ∈ Āp. Thus there exists a point w in
(N ∩A) ∩ Ap. Since N ∩ A is convex, [wz] ⊂ A. But w can be joined to p by a
geodesic path in A, hence z can also. Thus z ∈ Ap, and Ap is closed. Since Ap is
closed and open in A and A is connected, it follows that Ap must equal to A and
hence A is geodesically connected. ¤

Lemma 3.2. Let A be an open connected subset of W 2. If [xy] ⊂ A and [yz] ⊂ A,
then there exists a point q in [xy] with q 6= y, such that the convex hull of {q, y, z} is
contained in A.

Proof. Let K be the set of all points p in [yz] such that C{q, y, p} ⊂ A for some q
in [xy] with q 6= y. Since y ∈ K, K is not empty. We claim that K is both open
and closed in [yz]. Since [yz] is connected, this claim implies that K = [yz] and the
proof is complete. To see that K is open in [yz], let p ∈ K. Then there exists a point
q ∈ [xy) such that C {q, y, p} ⊂ A. Since A is open and hence locally convex then
there is a neighborhood N of p such that N ∩ A is convex. Let a ∈ N ∩ [pz] and
b ∈ N ∩ [pq], then the ray

−→
ab meets [yq] at f , and hence C {a, y, f} ⊂ A, since the

convex hull of C {a, b, p} is contained in N ∩A ⊂ A see Figure 1.
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Figure 1: The set K is open in [yz]

Therefore, a ∈ K and consequently p is an interior point in K. To see that K
is closed in [yz], let p ∈ K̄. Since A is locally convex, then there is a neighborhood
N of p such that N ∩ A is convex. Moreover, N contains a point a of K such that
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a ∈ N ∩ [yp]. Then there exists a point q ∈ [xy) such that C {q, y, a} ⊂ A. Choose
b ∈ N ∩ [aq], then the ray

−→
pb meets [qy) at f see Figure 2.
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Figure 2: The set K is closed in [yz]

Since C {a, q, y} ⊂ A by definition of K and C {a, p, b} ⊂ A by local convexity,
then C {p, f, y} ⊂ C {a, q, y} ∪ C {a, p, b} ⊂ A and hence p ∈ K. Then K is closed
and the proof is complete. ¤

Theorem 3.3. Let A be an open connected subset of W 2. Then the kernel of A is
the set of all points of maximal visibility.

Proof. Let V be the set of all points of maximal visibility in A. We want to prove that
V = kerA. It is clear that kerA ⊂ V , so we will show that V ⊂ kerA. Let x /∈ kerA
i.e. there is a point y in A such that [xy] 6⊂ A. By Lemma 3.1, A is geodesically
connected since A is an open connected subset of W 2. Therefore, there is a geodesic
path with n sides such that x = x0, x1, ..., xn = y and

Un−1
i=0 [xixi+1] ⊂ A

Choose a geodesic path P with minimal n and so P must be simple (dose not intersect
itself). Now, the points x0, x1, x2 are non-geodesic triple. By Lemma 3.2, there exists
a point t in [x1x2] such that C ([x0x1] ∪ [x1t]) ⊂ A. Let M be the set of all such points
t in [x1x2]. It is clear that M is convex, so we get a point z such that M = [xz] or
M = [xz). Since A is open, M = [xz). Now, for any neighborhood N of x, all points
of N ∩ [x0x1] see z via A where x does not i.e. x is not a point of maximal visibility
in A and therefore x is not in V . Hence V ⊂ kerA and the proof is complete. ¤

Theorem 3.3 is valid in the Euclidean space En as a manifold without conjugate
points[12]. Also it is valid in the hyperbolic space Hn since the Beltrami (or central
projection) map defined in [5] takes Hn to En and preserves geodesics. But the
generalization of Theorem 3.3 to any Wn is more difficult and is left as an open
question.



Tietze-type theorem in W 2 137

References

[1] S. Alexander, Local and global convexity in complete Riemannian manifolds, Pa-
cific Journal of Mathematics 76(2) (1978), 283–289.

[2] R. Bartolo, A. Germinario, M. Sanchez, Convexity of domains of Riemannian
manifolds, arXiv:math.DG/0004075 v1 (2009).

[3] M. Beltagy, Foot points and convexity in manifolds without focal points, Bull.
Cal. Math. Soc. 82 (1990), 338–348.

[4] M. Beltagy, Immersions into Manifolds without Conjugate Points, PhD thesis,
University of Durham, England, 1982.

[5] M. Beltagy, On starshaped sets, Bull. Malaysian Math. Sci. Soc. 11 (1988), 49–57.
[6] M. Beltagy, Sufficient conditions for convexity in manifolds without focal points,

Comment. Math. Univ. Carolinae 34(1993), 443–449.
[7] M Beltagy, and A. El Araby, Starshaped sets in Riemannian manifolds without

conjugate points, Far East J. Math. Sci. (FJMS) 6 (2002), 187–169.
[8] M. Beltagy, and S. Shenawy, Sets with zero-dimensional kernels, Int. J. of Mod.

Math., 4(2) (2009), 163–168.
[9] M. Breen, Sets of locally maximal visibility and finite unions of starshaped sets,

Monatsh. Math. 130 (2000), 1–5.
[10] J. Cell, Tietze-type theorem for partially convex planar sets, Bull. Soc. Roy. Sci.

Liege 69(1) (2000), 17–20.
[11] R.J. Dwilewicz, A short history of Convexity, Diff. Geom. Dyn. Syst. 11 (2009),

112–129.
[12] A.T. Fasto, F. Cunto, Local characterization of starshapedness, Geometriae Ded-

icata 66 (1997), 65–67.
[13] S.M. Goto , Manifolds without conjugate points, J. Diff. Geom. 13 (1978), 341–

359.
[14] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol(1), In-

terscience Publishers, New York, 1963.
[15] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol(2), In-

terscience Publishers, New York, 1969.
[16] R. Sacksteder, E.G. Straus, and F.A. Valentine, A generalization of a theorem of

Tietze and Nakajima on local convexity, Journal London Math. Soc. 36 (1961),
52–56.

[17] F.A. Valentine, Convex Sets, McGraw-Hill, Inc., New York, 1964.
[18] B. Wu On complete hypersurfaces with two distinct principal curvatures in a

hyperbolic space, Balkan J. Geom. Appl., 15(2) (2010), 126–137.

Authors’ addresses:

S. Shenawy
Basic Science Department,
Modern Academy for Engineering and Technology, Maadi, Egypt.
E-mail: s.shenawy@s-math.org , sshenawy08@yahoo.com


