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Abstract. We determine the fixed locus of the anticanonical complete
linear system of a given anticanonical rational surface. The case of a
geometrically ruled rational surface is fully studied, e.g., the monoid of
numerically effective divisor classes of such surface is explicitly determined
and is minimally generated by two elements. On the other hand, as a
consequence in the particular case where X is a smooth rational surface
with K2

X > 0, the following expected result holds: every fixed prime
divisor of the complete linear system | − KX | is a (−n)-curve, for some
integer n ≥ 1.
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1 Introduction

This note is mainly devoted to determine the integral curves of the fixed locus of
the complete linear system | −KX | of an anticanonical rational surface X. Here X
is anticanonical means that it is smooth and such that the complete linear system
| − KX | is not empty, where KX denotes a canonical divisor on X. Such linear
system is worth studying, for example, Hironaka considers the unique fixed irreducible
component of the anticanonical complete linear system of a very special anticanonical
rational surface in order to give an example for which the contraction of an integral
curve of strictly negative self-intersection on an algebraic surface is not necessarily an
algebraic one (this contraction is always an analytic surface according to Grauert).

From Theorem 4.1 below, it appears that if the fixed locus is not the zero divisor
- such situation is the general one - then its irreducible components are either smooth
rational curves of strictly negative self-intersection or an integral curve of arithmetic
genus equal to one which has in almost all cases a strictly negative self-intersection.
The case where the fixed locus is zero implies that −KX is numerically effective. The
nef-ness condition of −KX means that the intersection number of KX and of any
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prime divisor on X is less than or equal to zero. Thus the inequality K2
X ≥ 0 holds

and consequently the Picard number ρ(X) of X is less than or equal to ten.
On the other hand, from the Riemann-Roch Theorem (see Lemma 2.1 below), a

smooth rational surface Y having a canonical divisor KY of self-intersection greater
than or equal to zero is anticanonical. Such surfaces are studied intensively for dif-
ferent reasons in [17], [18], [16], [8], [11], [12], [13] and [14]. The case where the
self-intersection of a canonical divisor is equal to zero is very special and leads to
very interesting geometric phenomena, see for instance [17], [16], [12], [13] and [14].
Finally, when the self-intersetion of a canonical divisor is negative, one may determine
the geometry of some specific projective rational surfaces, e.g. see [10], [12], [13], [3],
[4], [5], [6] and [7].

In the case where K2
Y > 0 and if the fixed locus of the complete linear system

|−KY | is not equal to zero as a divisor, we will deduce mainly from Theorem 4.1 that
its prime components are smooth rational curves of strictly negative self-intersection
(see Corollary 4.2 below). Whereas in the case where K2

Y = 0, it may happen that
| −KY | is equal to a singleton, so in particular, the fixed locus is an integral curve of
arithmetic genus equal to one and of self-intersection equal to zero.

This note is organized as follows. In section 2, we give some standard facts about
smooth rational surfaces and fix our notations. Section 3 deals with the case when
the Picard number of the smooth rational surface is equal to two, i.e., the case of
geometrically ruled rational surfaces. We determine the fixed locus of the complete
linear system associated to any effective divisor (see Proposition 3.2). Also, in this
case, the monoid of numerically effective divisor classes of the geometrically ruled
rational surface is explicitly determined, it is shown that it is minimally generated
by two elements, see Lemma 3.1. Finally, section 4 contains our main result (see
Theorem 4.1 below). It is shown that if the fixed locus of the anticanonical rational
surface is not equal to zero, then every integral curve of the fixed locus is either a
(−n)-curve for some integer n ≥ 1, or an integral curve of arithmetic genus equals to
one and of self-intersection less than or equal to zero. Whereas if the fixed locus is
zero, then the self-intersection of the canonical divisor of the surface is larger than or
equal to zero; thus gives an explicit description of the anticanonical rational surface.

2 Preliminaries

In this section, we mention the notions that we need. See [9] as a reference for these
materials. Let X be a smooth algebraic surface defined over an algebraically closed
field. A divisor on X is effective if it is a nonnegative linear combination of prime
divisors. Similarly, a class of divisors modulo algebraic equivalence on X is effective
if it contains an effective divisor. Moreover, if X is rational, then the class of divisors
modulo algebraic equivalence containing the divisor D on X is effective if and only if
the vector space of global sections of the invertible sheaf OX(D) associated to D in
the Picard group Pic(X) of X is not trivial. Indeed, more generally the algebraic, the
linear, the numerical and the rational equivalences of divisors on the smooth rational
surface X are the same. On the other hand Pic(X) is isomorphic to the group Cl(X)
of classes of divisors modulo linear equivalence on X.

Let Y be an anticanonical rational surface and let KY be a canonical divisor on
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it. That Y is anticnonical means by definition that Y a smooth surface such that its
anticanonical complete linear system | −KY | is not empty. Following [9], we adopt
in all this note the following notations:

• Div(Y ) is the group of divisors on Y .

• D ∼ D′ means that D is linearly equivalent to D′, where D and D′ are elements
of Div(Y ),

• Cl(Y ) is the quotient group Div(Y )/ ∼ of Div(Y ) by ∼.

• NS(Y ) is the Néron-Severi group NS(Y ) of Y , i.e., the quotient group of Div(Y )
by the numerical equivalence classes of divisors on Y . Since Y is a rational
surface, the linear and numerical equivalences are equivalents on Div(Y ). One
has NS(Y ) is equal to Cl(Y ).

• ρ(Y ) is the rank of NS(Y ) and called the Picard number of Y .

• Fn is the Hirzebruch surface associated to the integer n, n ≥ 0 (see [9, Section
2, p. 369 ]).

• F is the element of NS(Fn) associated to any fiber of the ruling of Fn if n 6= 0,
and any fiber of any ruling of F0 if n = 0.

• Cn is the element of NS(Fn) determined by the unique integral curve of self-
intersection equal to −n if n 6= 0 or any fiber F ′ of the second ruling if n = 0.

• For a smooth rational surface Y , ρ(Y ) = 1 if and only if Y is isomorphic to the
projective plane P2. And ρ(Y ) = 2 if and only if Y is isomorphic to Fn for some
n ≥ 0. This can be deduced from [9, Chapter 5 ]).

Now we state the Riemann-Roch Theorem for smooth algebraic surfaces, see [9, The-
orem 1.6 (Riemann-Roch)., page 362].

Let X be a smooth algebraic surface. If D is a divisor on X and OX(D) denotes
the invertible sheaf associated to D in Pic(X). Then the following equality holds.

h0(X,OX(D))− h1(X,OX(D)) + h0(X,OX(KX −D)) = χ(OX) +
1
2
(D2 −KX .D),

where KX and χ(X) denote a canonical divisor and the Euler characteristic of X
respectively.
Notice that for smooth rational surfaces Z, one always has χ(OZ) = 1.
The next lemma provides, in particular, an example of an anticanonical rational
surface. It is a straightforward application of the Riemann-Roch Theorem to the
invertible sheaf associated to an anticanonical divisor (see [9, Theorem1.6 (Riemann-
Roch)., page 362]) and of the rationality criterion of Castelnuovo (see [9, Theorem
6.1., page 422] and [1]).

Lemma 2.1. Let Y be a smooth rational surface such that K2
Y ≥ 0. Then Y is

anticanonical.
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Here we recall the notion of nefness of divisors on a smooth algebraic surface X.
Let D be a divisor on a smooth algebraic surface X. D is numerically effective

(nef in short) if the intersection number of D with any prime divisor on X is larger
than or equal to zero. Similarly, a class of divisors modulo algebraic equivalence on
X is nef if this class contains a nef divisor.
To illustrate the last definition, the following examples are useful:

Example 2.1. Let π : X −→ P2 be the blow up the projective plane P2 at a finite
set of points. Then, the class of a line pulled back to X via π is nef. However, the
exceptional divisors are not nef.

Example 2.2. Let Fn be the Hirzebruch surface associated to the integer n ≥ 0.
Then F and (Cn + nF) are numerically effective.

The following example generalizes the useful remark stated in [2, Remarque utile III.5,
p.35].

Example 2.3. Let Z be a smooth algebraic surface. Let Γ1, . . . , Γp be the irreducible
components of the effective divisor D on Z. Then the followings are equivalents:

1. The intersection number of D and Γi is larger than or equal to zero for every
i = 1, . . . , p.

2. D is nef.

We are interested to answer the following question: let Y be an anticanonical rational
surface and let KY be a canonical divisor on Y . What kind of fixed integral curves
may have the anticanonical complete linear system | − KY | if it has some? More
specially, we are interested in the curves which are fixed components in | −KY |.

Since the anticanonical complete linear system |OP2(3)| of the projective plane P2

does not have a fixed component, we will focus in the case ρ(Y ) ≥ 2. Firstly in
the next section, we will review the case of geometrically ruled rational surfaces, i.e.,
those smooth rational surfaces with Picard number equal to two.

Here we give a useful result.

Lemma 2.2. Let Γ be a prime divisor on an anticanonical rational surface Z. If
Γ2 > 0, then h0(Z, OZ(Γ)) ≥ 2.

Proof. The Riemann-Roch Theorem applied to the invertible sheaf OZ(Γ) gives the following
inequality:

h0(Z,OZ(Γ)) ≥ 1 +
1

2
(Γ2 −KZ .Γ).

An application of Example 2.3 to Γ shows that Γ is nef. Taking into account that Z is

anticanonical leads to the inequality: Γ.KZ ≤ 0. Then the result follows obviously if Γ.KZ ≤
−1. Whereas if Γ.KZ = 0, then the adjunction formula implies that Γ2 ≥ 2. And we are

done. ¤

Remark 2.4. If one allows that Γ2 = 0 in the above Lemma 2.2, then the inequality
h0(Z, OZ(Γ)) ≥ 2 may fail to hold.
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3 The case of a geometrically ruled rational surface

Let Fn be the Hirzebruch surface associated to the integer n ∈ N. The Néron-Severi
group NS(Fn) of Fn is a free abelian group generated by Cn and F and it is endowed
with the intersection form denoted by . which is given on the generators by (see [9,
proposition 3.2., p. 386]):

• Cn
2 = −n;

• F2 = 0;

• Cn.F = 1.

The following lemma shows that Cn and F generate also the monoid M(Fn) of effective
divisor classes of Fn and that the monoid NEF (Fn) of numerically effective divisors
classes of Fn is generated by two elements, namely (Cn + nF) and F . Note that both
Cn, (Cn + nF) and F are all of them prime classes, i.e., each of them is the class in
NS(Fn) of a prime divisor on Fn. For completeness, we give a proof of it.

Lemma 3.1. Let NS(Fn) be as above. Then

1. M(Fn) = NCn + NF . Moreover, M(Fn) can not be generated by one element.

2. NEF (Fn) = N(Cn + nF) + NF . Moreover, NEF (Fn) can not be generated by
one element.

Proof. 1. The inclusion NCn + NF ⊂ M(Fn) is clear. Let us see why the other inclusion
is true. Take an element z in M(Fn) ⊂ NS(Fn), it follows that z = uCn + vF for some
integers u and v. The fact that F and (Cn +nF) (see Example 2.2) are numerically effective
gives the required inequalities u = z.F ≥ 0 and v = z.(Cn + nF) ≥ 0. This proves the first
statement. Since Cn and F are linearly independents, the submonoid M(Fn) of NS(Fn) can
not be generated by one element.

2. It is obvious that N(Cn + nF) + NF ⊂ NEF (Fn). Now, let x be an element of

NEF (Fn) ⊂ NS(Fn), there exist then two integers a and b such that x = aCn +bF . Since F
and Cn are effective and x is numerically effective, we get 0 ≤ F .x = a and 0 ≤ x.Cn = b−na.

So, x = aCn + bF = a(Cn + nF) + (b − na)F and we are done. Again as above,NEF (Fn)

can not be generated by one element. ¤

Next, we determine the fixed locus of any complete linear system |aCn+bF | associated
to an effective divisor D(a,b) whose class in the Néron-Severi group NS(Fn) is aCn+bF .
Our result is:

Proposition 3.2. Let aCn + bF be an effective element of NS(Fn), where n is an
integer greater than or equal to zero. Then, the complete linear system |aCn + bF |
does not have a fixed component if both inequalities b ≥ an and n ≥ 1 hold. Moreover
if b < an, then there is only one fixed component. In this case the fixed component
and the mobile component of |aCn + bF | are jCn and (a − j)Cn + bF respectively,
where j is the unique integer j such that 1 ≤ j ≤ a and (a−j)n ≤ b ≤ (a−j+1)n−1.
For n = 0, aC0 + bF does not have a fixed component.

Proof. Assuming that b ≥ an and n ≥ 1, it follows from [9, Corollary 2.18., page 380] that

the complete linear system |aCn + bF | has no fixed component. Now if b < an, then from
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jCn.(aCn + bF ) = j(b − an) < 0 we deduce that jCn is a fixed component of |aCn + bF |,
even it is the fixed component since |(a − j)Cn + bF | contains an integral curve. To end

the proof, it is straightforward from [9, Corollary 2.18., page 380] that if n = 0, then the

effective class aC0 + bF has a zero fixed locus. ¤

A direct application of the last proposition to an anticanonical divisor 2Cn +(2+n)F
on Fn gives the following.

Corollary 3.3. The complete anticanonical linear system of Fn does not have a
fixed component if n takes the values zero, one or two. And, it has Cn as the fixed
component for n ≥ 3.

Proof. Taking into account that the complete linear system of the anticanonical class of F0,

F1 and F2 respectively are |2C0 + 2F |, |2Cn + 3F | and |2Cn + 4F | respectively; and these

complete linear systems contains integral curves, the result holds in the case of Fn with

0 ≤ n ≤ 2. Now, assume that n ≥ 3. From Cn.(2Cn +(2+n)F ) = 2−n < 0, we deduce that

Cn is a fixed component of the complete linear system |2Cn + (2 + n)F | of the anticanonical

class of Fn. On the other hand, since the complete linear system |Cn + (2 + n)F | contains a

smooth curve, we deduce that Cn is the fixed component of |2Cn + (2 + n)F |. ¤

4 The case of a blow up a geometrically
ruled surface

Here, we consider the case when the Picard number ρ(Y ) of the anticanonical rational
surface Y is greater than or equal to three. In the following theorem, we determine
in particular the fixed components of the anticanonical complete linear system of Y
if it has some. If this system does not have any, then the nature of Y can be also
determined.

Theorem 4.1. Let Y be an anticanonical rational surface with Picard number ρ(Y ) ≥
3. Two cases may occur:

1. If the anticanonical complete linear system |−KY | has a fixed component, then
it is either a (−n)-curve or an integral curve of arithmetic genus equal to one and of
self-intersection less than or equal to zero. Moreover, the second case occurs with an
integral curve of self-intersection equal to zero only if K2

Y = 0.

2. If the anticanonical complete linear system |−KY | does not have a fixed compo-
nent, then K2

Y ≥ 0 and Y is isomorphic to a blow up the projective plane at r points,
may be infinitely near, r is an integer less than or equal to nine.

Proof. Since a blow up of F0 or of F1 at a nonempty set of points (may be infinitely near)
has the projective plane P2 as a minimal model, and since a blow up of F2 at a nonempty
set of points (may be infinitely near) has P2 or F3 as a minimal model, we may assume that
the surface Y has either P2 or Fn, with n ≥ 3, as a minimal model.
Let us prove the item (1−). Assume first that P2 is a minimal model of Y and let φ be a
projective birational morphism from Y to P2. Let Γ be a fixed irreducible component of the
complete linear system | −KY |. Two possibilities may occur: φ(Γ) is either a point of P2 or
an integral curve on P2.
Assume that φ(Γ) is a point, then by [9, Exercise 5.4. (a), page 419], we deduce that Γ
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is a smooth rational curve of self-intersection strictly negative, i.e. a (−n)-curve on Y for
some integer n ≥ 1. Now assume that φ(Γ) is an irreducible curve on P2, let denote by d its
degree. Since φ(−KY ) has degree equal to three. It follows that 1 ≤ d ≤ 3. If d = 3, then we
have Γ +

∑i=u
i=1 niEi = −KY for some integers ni ≥ 0 and some smooth rational curves Ei

of self-intersection strictly negative, where u ≥ 1 is an integer. On the other hand, it follows
from the fact that Γ is a fixed irreducible component of | −KY | that Γ2 ≤ 0. Otherwise, we
would get that Γ2 > 0, in particular Γ (see Lemma 2.2) moves which is a contradiction with
the fact that Γ does not move.
If d = 2, then φ(Γ) is an irreducible conic on P2. Hence, it is a smooth rational curve. It
follows from [9, Corollary 5.4., page 411] that Γ is also a smooth rational curve on Y . And
Γ should be of self-intersection strictly negative. The same argument prove that if d = 1,
then Γ is a smooth rational curve of self-intersection strictly negative.
Now let n ≥ 3 be a fixed integer, assume that Fn is a minimal model of Y . Then consider ψ
be a projective birational morphism from Y to Fn. Let Γ be a fixed irreducible component
of |−KY |, then we can assume that ψ(Γ) is an irreducible curve on Fn. Otherwise, it should
be a point of Fn; so by proceeding as in the above case for P2, we get the result.
Thus assuming that ψ(Γ) is an irreducible curve, in particular, it is an irreducible component
of −KFn = 2Cn + (2 + n)F . Thus taking into account of the results of Proposition 3.2 ,
Γ may be one of the following irreducible curves: Cn, F , Cn + nF , Cn + (1 + n)F , and
Cn + (2 + n)F . So the result follows.

The item (2−) follows at once by remarking that an anticanonical divisor −KY of Y is

numerically effective. ¤

In particular, the following result holds:

Corollary 4.2. Let X be a smooth rational surface such that K2
X ≥ 0, where KX

denotes a canonical divisor on X. Assume that the anticanonical complete linear
system has a fixed component Γ. Two cases may occur:

• If K2
X > 0, then Γ is a (−n)-curve, where n ≥ 1 is an integer;

• If K2
X = 0, then Γ is either an integral curve of arithmetic genus equal to

one and of self-intersection equal to zero, or a smooth rational curve of strictly
negative self-intersection.

Another useful result, see for instance [10] and [13], is:

Corollary 4.3. Let X be a smooth rational surface such that K2
X ≥ 0, where KX

denotes a canonical divisor on X. If −KX is not numerically effective, then the
anticanonical complete linear system has a (−n)-curve, n being an integer greater
than or equal to three, as a fixed component.
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