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Abstract. In this paper first it is proved that if ξ is a nontrivial closed
conformal vector field on an n-dimensional compact Riemannian manifold
(M, g) with constant scalar curvature S satisfying S ≤ λ1(n − 1), λ1

being first nonzero eigenvalue of the Laplacian operator ∆ on M and Ricci
curvature in direction of a certain vector field is non-negative, then M is
isometric to the n-sphere Sn(c), where S = n(n − 1)c. Finally we show
that a conformal transformation F : M → M of a Riemannian manifold
(M, g) that preserves the eigenfunctions that is ∆′h = −λh whenever
∆h = −µh, for constants λ, µ, (g′ = F ∗g and ∆′ and ∆ are Laplacian
operators on (M, g′) and (M, g) respectively), then F is a homothety.
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1 Introduction

Lichnerowicz’s result states that if the Ricci curvature of a compact Riemannian
manifold (M, g) satisfies Ric ≥ (n − 1)c for a constant c, then the first nonzero
eigenvalue λ1 satisfies λ1 ≥ nc. Then Obata [9] has proved that the equality λ1 = nc
holds if and only if M is isometric to Sn(c). There are other results estimating
eigenvalues of the Laplacian operator on different compact Riemannian manifolds
(cf. [5, 10]). A smooth vector field ξ on a Riemannian manifold (M, g) is said to
a conformal vector field if there exists a smooth function f on M called potential
function that satisfies

£ξg = 2fg,

where £ξg is the Lie derivative of g with respect ξ. We say that ξ nontrivial conformal
vector field if the potential function f is a nonconstant function. If in addition ξ is
a closed vector field, ξ is said to be a closed conformal vector field. If the conformal
vector field ξ is gradient of a smooth function, then ξ is said to be a conformal
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gradient vector field. Riemannian manifolds admitting closed conformal vector fields
or conformal gradient vector fields have been investigated in (cf. [1, 2, 3, 6, 7, 11]).

Recall that the sphere Sn(c) of constant curvature c has positive Ricci curvature
and admit many conformal gradient vector fields, with its first nonzero eigenvalue
satisfying S = λ1(n−1). In [11], it is proved that on a compact Riemannian manifold
of positive Ricci curvature and constant scalar curvature if there exists a nontrivial
conformal gradient vector field, then it is isometric to a sphere. A natural question
arises can we relax the condition that Ricci curvature being positive in this result. In
this paper, we consider closed conformal vector fields (slightly general than conformal
gradient vector fields) and answer this question, indeed we prove the following :

Theorem 1.1. Let ξ be a nontrivial closed conformal vector field on an n-dimensional
compact Riemannian manifold (M, g) of constant scalar curvature S. If the Ricci
curvature of M in the direction of the vector field ∇f + cξ is non-negative, where
S = n(n−1)c and the inequality (n−1)λ1 ≥ S holds (λ1 is the first nonzero eigenvalue
of the Laplacian operator ∆), then M is isometric to the sphere Sn(c).

A conformal transformation F of a Riemannian manifold (M, g) is a diffeomor-
phism F : M → M that satisfies F ∗(g) = e−2fg for a smooth function f on M . If f
is a constant, the conformal transformation F is said to be a homothety. One of the
interesting questions is to obtain conditions under which a conformal transformation
is a homothety. For instance in [13], Xu has shown that if the Ricci tensors Ric, Ric
of the compact Riemannian manifolds (M, F ∗(g)), (M, g) satisfy Ric = Ric, then F
is a homothety. We are interested in a conformal transformation F : M → M of
a Riemannian manifold (M, g) that preserves the eigenfunctions that is ∆′h = −λh
whenever ∆h = −µh for a constants λ, µ and a smooth function h, where ∆′, ∆ are
the Laplacian operators on the Riemannian manifolds (M, F ∗(g)), (M, g) respectively.
Our next result is the following :

Theorem 1.2. Let (M, g) be an n-dimensional compact Riemannian manifold and
F : M → M be a conformal transformation with F ∗(g) = g′ = e−2fg. If for each
eigenfunction h of ∆ is also an eigenfunction of ∆′, where ∆ and ∆′ are Laplacian
operators on the Riemannian manifolds (M, g) and (M, g′) respectively, then F is a
homothety.

2 Preliminaries

Let (M, g) be a Riemannian manifold with Lie algebra X(M) of smooth vector fields
on M . A vector field ξ ∈ X(M) is said to be a conformal vector field if

(2.1) £ξg = 2fg,

for a smooth function f : M → R called the potential function, where £ξ is the Lie
derivative with respect to ξ. If ∇ is the Riemannian connection on the Riemannian
manifold (M, g), then using Koszul’s formula (cf. [3]), we obtain, for a vector field ξ
on M ,

(2.2) 2g(∇Xξ, Y ) = (£ξg) (X,Y ) + dη(X, Y ), X, Y ∈ X(M),
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where η is the 1-form dual to ξ that is η(X) = g(X, ξ), X ∈ X(M). Define a skew
symmetric tensor field ϕ of type (1, 1) on M by

(2.3) dη(X,Y ) = 2g(ϕX, Y ), X, Y ∈ X(M).

Then using equations (2.1), (2.2) and (2.3) we immediately get the following :

Lemma 2.1. Let ξ be a conformal vector field on a Riemannian manifold (M, g) with
potential function f . Then,

∇Xξ = fX + ϕX, X ∈ X(M).

Using Lemma 2.1, we immediately arrive at the following expression of the curva-
ture tensor R of the Riemannian manifold (M, g)

(2.4) R(X,Y )ξ = g(∇f, X)Y − g(∇f, Y )X + (∇ϕ) (X, Y )− (∇ϕ) (Y, X),

where (∇ϕ)(X, Y ) = ∇XϕY − ϕ(∇XY ), X, Y ∈ X(M).
For a smooth function h on M , we define an operator A : X(M) → X(M) by

A(X) = ∇X∇h, ∇h being the gradient of h. The Ricci operator Q is a symmetric
(1, 1)-tensor field that is defined by g(QX, Y ) = Ric(X, Y ), X,Y ∈ X(M), where Ric
is the Ricci tensor of the Riemannian manifold. Then we have the following (cf. [7])

Lemma 2.2. Let (M, g) be a Riemannian manifold and h be a smooth function on
M . Then the operator A corresponding to the function h satisfies

∑

i

(∇A)(ei, ei) = ∇(∆h) + Q(∇h),

where {e1, ..., en} is a local orthonormal frame, ∆ is the Laplacian operator on M and
(∇A)(X, Y ) = ∇XAY −A(∇XY ), X, Y ∈ X(M).

Using the skew symmetry of the tensor ϕ and a local orthonormal frame {e1, ..., en}
on M in equation (2.4), we compute

(2.5) Q(ξ) = −(n− 1)∇f −
n∑

i=1

(∇ϕ) (ei, ei).

The Lemma 2.1, as ϕ is skew symmetric, gives that divξ = nf , and consequently,
for a conformal vector field ξ on a compact Riemannian manifold (M, g) with potential
function f we have

(2.6)
∫

M

fdV = 0,

and using minimum principle we arrive at

(2.7) λ1

∫

M

f2dV ≤
∫

M

‖∇f‖2 dV,

where λ1 is the first nonzero eigenvalue of the Laplacian operator ∆ on M .
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Lemma 2.3. Let ξ be a conformal vector field on an n-dimensional compact Rieman-
nian manifold (M, g) with potential function f . Then

∫

M

g(∇f, ξ)dV = −n

∫

M

f2dV.

Proof. Since divξ = nf , it follows that div(fξ) = g(∇f, ξ) + nf2. Integrating this
equation we get the Lemma. ¤

For the tensor ϕ, we have ‖ϕ‖2 =
∑ ‖ϕei‖2, where {e1, ..., en} is a local orthonor-

mal frame on M . Next, we prove the following :

Lemma 2.4. Let (M, g) be an n-dimensional compact Riemannian manifold and ξ
be a conformal vector field on M with potential function f . Then,

∫

M

{
Ric(ξ, ξ)− n(n− 1)f2 − ‖ϕ‖2

}
dv = 0.

Proof. Using Lemma 2.1, equation (2.5) and skew symmetry of ϕ together with a
point wise constant local orthonormal frame {e1, ..., en}, we compute

div(ϕξ) =
n∑

i=1

g(∇eiϕξ, ei) = −
n∑

i=1

eig(ξ, ϕei)

= −
n∑

i=1

g(fei + ϕei, ϕei)−
n∑

i=1

g(ξ, (∇ϕ) (ei, ei))

= −‖ϕ‖2 + (n− 1)g(∇f, ξ) + Ric(ξ, ξ).

Integrating the above equation and using Lemma 2.3 we get the result. ¤

As a direct consequence of above Lemma we have the following interesting conse-
quence :

Corollary 2.5. On a compact Riemannian manifold of negative Ricci curvature there
does not exist a nonzero conformal vector field.

3 Proof of Theorem 1.1

Let (M, g) be an n-dimensional Riemannian manifold. Then the Ricci operator Q
satisfies

(3.1)
n∑

i=1

(∇Q) (ei, ei) =
1
2
∇S,

where {e1, ..., en} is a local orthonormal frame on M and S is the scalar curvature of
M . Let ξ be a conformal vector field on M with potential function f . First we prove
the following :
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Lemma 3.1. Let (M, g) be an n-dimensional compact Riemannian manifold of con-
stant scalar curvature S and ξ be a conformal vector field on M with potential function
f . Then, ∫

M

Ric(∇f, ξ)dV = −S

∫

M

f2dV.

Proof. We use symmetry of Q and Lemma 2.1 together with equation (3.1) to compute

div(Qξ) =
n∑

i=1

g(∇eiQξ, ei) =
n∑

i=1

eig(ξ, Qei)

=
n∑

i=1

g(fei + ϕei, Qei) +
n∑

i=1

g(ξ, (∇Q) (ei, ei))

= fS +
n∑

i=1

g(ϕei, Qei).(3.2)

Choosing a local orthonormal frame that diagonalizes the symmetric operator Q and
using the skew symmetry of ϕ, we conclude that

(3.3)
n∑

i=1

g(ϕei, Qei) = 0.

Using div(fQξ) = Ric(∇f, ξ)+fdiv(Qξ) and equations (3.2), (3.3) we get the Lemma.
¤

Let ξ be the conformal vector field on an n-dimensional compact Riemannian
manifold of constant scalar curvature S with potential function f . Then for the
function f , using divξ = nf , we have,

div(∆fξ) = g(∇∆f, ξ) + nf∆f = g(∇∆f, ξ) +
n

2
∆f2 − n ‖∇f‖2 ,

which on integration gives

(3.4)
∫

M

g(∇∆f, ξ)dV = n

∫

M

‖∇.f‖2 dV.

Using the operator A(X) = ∇X∇f together with Lemma 2.1 and Lemma 2.2, we
compute

div(Aξ) = f∆f + g(ξ,∇∆f) + Ric(∇f, ξ)

=
1
2
∆f2 − ‖∇f‖2 + g(ξ,∇∆f) + Ric(∇f, ξ),(3.5)

where we used ∆f =
∑

g(Aei, ei) and
∑

g(ϕei, Aei) = 0 which follows by choosing
a local orthonormal frame that diagonalizes the symmetric operator A and the skew
symmetry of ϕ. Integrating (3.5) and using equation (3.4) together with Lemma 3.1,
we conclude

(3.6) (n− 1)
∫

M

‖∇f‖2 dV = S

∫

M

f2dV.
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Since ξ is nontrivial, f is a nonzero function, from equation (3.6) it follows that the
constant S > 0. Combining equations (2.7) and (3.6) we conclude

λ1(n− 1) ≤ S,

and the equality holds if and only if equality in (2.7) holds and the equality in (2.7)
holds if and only if ∆f = −λ1f (cf. [4]). However, with the assumption S ≤ λ1(n−1)
in the statement, we get the equality and consequently

(3.7) ∆f = −λ1f and S = λ1(n− 1).

As ξ is closed, we have dη = 0 and ϕ = 0 consequently, Lemma 2.1 gives

(3.8) ∇Xξ = fX, X ∈ X(M).

Choosing S = n(n− 1)c, we have

(3.9) Ric(∇f + cξ,∇f + cξ) = Ric(∇f,∇f) + c2Ric(ξ, ξ) + 2cRic(∇f, ξ).

Since the equality ∆f = −λ1f = −ncf holds, we have

(3.10)
∫

M

‖∇f‖2 dV = nc

∫

M

f2dV.

Using Lemma 2.2 to compute div(A∇f), it is straight forward to derive

(3.11)
∫

M

{
Ric(∇f,∇f) + g(∇f,∇∆f) + ‖A‖2

}
dV = 0,

which together with ∆f = −ncf and the Schwartz inequality ‖A‖2 ≥ 1
n (∆f)2 =

nc2f2 gives
∫

M

Ric(∇f,∇f)dV =
∫

M

{
λ1 ‖∇f‖2 − ‖A‖2

}
dV

≤ n(n− 1)c2

∫

M

f2dV.(3.12)

Integrating equation (3.9) and using inequality (3.12) together with Lemmas 2.4 and
3.1, we arrive at ∫

M

Ric(∇f + cξ,∇f + cξ)dV ≤ 0.

As the Ricci curvature Ric(∇f + cξ,∇f + cξ) is nonnegative the above inequality
gives

Ric(∇f + cξ,∇f + cξ) = 0,

which together with equations (3.9) and Lemmas 2.4 and 3.1gives
∫

M

{
Ric(∇f,∇f)− n(n− 1)c2f2

}
dV = 0.

Using the above equation and the equation (3.10) in the equation (3.11), we arrive at

(3.13)
∫

M

{
‖A‖2 − nc2f2

}
dV = 0.
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However, the Schwartz’s inequality implies ‖A‖2 − 1
n (trA)2 = ‖A‖2 − nc2f2 ≥ 0,

with equality holding if and only if A = −cfI. Thus the equation (3.13) confirms
that A = −cfI, that is

∇X∇f = −cfX, X ∈ X(M),

which is Obata’s differential equation on M with non-constant f (as ξ is nontrivial
conformal vector field), and this proves that M is isometric to Sn(c).

4 Proof of Theorem 1.2

Let (M, g) be an n-dimensional Riemannian manifolds and F : M → M be a confor-
mal transformation with F ∗(g) = g′ = e−2fg, for a smooth function f on M .

Lemma 4.1. Let dVg and dVg′ be the volume elements of the orientable Riemannian
manifolds (M, g) and (M, g

′
), g

′
= e−2fg. Then

dVg′ = e−nfdVg.

Proof. Let {ω1, ..., ωn} be the basis of smooth 1-forms dual to {e1, ..., en} on (M, g)
and {ω1, ..., ωn} be that of {efe1, ..., e

fen} on (M, g′) respectively. Then we have for
X ∈ X(M)

ωi(X) = g(X, ei) = e2fg′(X, ei) = efg
′
(X, efei) = efωi(X),

which gives ωi = efωi. Consequently we have

dVg = ω1Λ...Λωn

= enfω1Λ...Λωn = enfdVg′ ,

and this proves the Lemma. ¤

Finally we prove the Theorem 1.2. Let h be the eigenfunction of the Laplacian
operator ∆ corresponding to the nonzero eigenvalue λ, that is ∆h = −λh, λ > 0.
Then by the hypothesis of the theorem we have ∆′h = −µh for a constant µ. Note
that the constant µ > 0, for other wise ∆′h = 0 on the compact Riemannian manifold
(M, g′) would imply h is a constant which is against the assumption ∆h = −λh,
λ > 0. Thus we have ∫

M

hdVg′ = − 1
µ

∫

M

∆′hdVg′ = 0,

which together with Lemma 4.1 gives
∫

M

he−nfdVg = 0.

Since h is arbitrary eigenfunction corresponding to nonzero eigenvalue of ∆, above
integral suggests that the function e−nf is orthogonal to each eigenfunction corre-
sponding to nonzero eigenvalue on the Riemannian manifold (M, g). This proves
e−nf is a constant function and consequently that F is a homothety.
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