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Abstract. In the framework of Chinea-Gonzales we study the class of
almost contact metric manifolds locally realized as twisted product mani-
folds I x » F, I being an open interval, F' an almost Hermitian manifold and
A > 0 a smooth function. Local classification theorems for the generalized
Sasakian space-forms in the considered class are obtained as well.
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1 Introduction

Warped products play an interesting role in clarifying the interrelation between almost
Hermitian (a.H.) and almost contact metric (a.c.m.) manifolds in a given class. The
first result in this direction, due to Kenmotsu, states that any Kenmotsu manifold
is, locally, isometric to a warped product manifold I x ) F, where F' is a Kahler
manifold, I C R an open interval and X : I — R the function defined by: A(t) = Cet,
C > 0 ([15]). In 2007 Dileo and Pastore extended this result, proving that any almost
Kenmotsu manifold (M, ¢,&,n,g) such that the tensor field L¢y vanishes is locally
realized as a warped product manifold I x F, where F' is an almost Ké&hler manifold
and \(t) = Cet, C > 0 ([7)).

On the other hand, suitable warped product manifolds are nice examples of gen-
eralized Sasakian space-forms (g.S. space-forms). In fact, given a smooth function
A:R —= R, A >0, and an a.H. manifold F, the warped product R x F' is endowed
with an a.c.m. structure naturally induced by the a.H. structure on F. If F'is a
generalized complex space-form, then R x, F' is a g.S. space-form ([1]).

As an extension of warped products, Bishop introduced the concept of umbilic
products, also called twisted products ([4]). In [21] Ponge and Reckziegel stated a
splitting theorem for a Riemannian manifold (M, g) that admits two complementary
foliations L, K whose leaves intersect perpendicularly. If the leaves of L are totally
geodesics and the leaves of K totally umbilic, then (M, g) is locally isometric to a
twisted product M’ x, M" such that M’ and M" are leaves of L and K, respectively.
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Moreover, if the leaves of K are extrinsic spheres, then M’ x M" is a warped product.
This last statement corresponds to the decomposition theorem of Hiepko ([13]).

In this paper, involving a.H. and a.c.m. manifolds, we provide a new link between
the Gray-Hervella work on a.H. manifolds and the Chinea-Gonzales classification of
a.c.m. manifolds ([12, 5]).

More precisely, let (F), j,ﬁ) be an a.H. manifold and A : I x F — R a positive
smooth function, I C R being an open interval. On I x F' one considers the twisted
product metric gy of the Euclidean metric on I and g by A and the a.c.m. structure
(p,€,m, gn) naturally induced by (J,g) as in (2.1). The a.c.m. manifold I x, F =
(I x F,p,&,m,g)) is called the twisted product of I and F' by A. Firstly, we prove

that I x, F' belongs to the Chinea-Gonzales class @ Cj, briefly denoted by C;_s.
1<i<5

An algebraic characterization of a.c.m. manifolds which fall in the class C;_5 is
obtained, also. Combining this result with the Ponge and Reckziegel theorem, one
proves that any C;_s-manifold is locally realized as a twisted product | — e.e[x )\ F,
e > 0, F being an a.H. manifold and A : ]—¢,e[ x FF — R a smooth positive function.
A differential equation involving w(§), where w is the Lee form, specifies the C;_5-
manifolds that are, locally, warped products.
Then, we point our attention to the classes C, @ Cs, h € {1,2,3,4}. We prove that
Ch, ®Cs5 consists of the C;_s-manifolds that are, locally, a twisted product | —e,e[x\ F,
where F' belongs to the Gray-Hervella class W),. Moreover, any Cj, @ Cs-manifold such
that w(§) = —1 is locally a warped product | — ¢,e[x\F, F being a Wj,-manifold and
A —€,e[— R acting as A(t) = Cet, C > 0.
The last section deals with g.S. space-forms M(f1, fo, f3) that fall in the class Cy_5.
By repeated applications of the second Bianchi identity, we prove that M is, locally,
a warped product manifold. Moreover, if dim M > 7 and f5 never vanishes, then M
falls in the class C5 and is, locally, a warped product | — e, e[x\F, F being a complex
space-form. Finally, we establish a local classification in the case fo = 0.

In this article all manifolds are assumed to be connected.

2 Twisted product manifolds

Given an a.H. manifold (F,j,@\), an open interval I C R and a smooth function
A:IxF — R, A>0,onIxF we consider the a.c.m. structure (p,&, 7, g») such that

(21) #ag,U)=0.JU), nlag,U)=a a€F(IxF).UeX(F),
T E=(5,0), gy =m(dt®dt) + N0 (),

m:IxF —1, 0:1XxF — F denoting the canonical projections.

Note that gy is the twisted product metric of the Euclidean metric go and g. If X only
depends on the coordinate ¢, then g is the warped product metric of gg and g. Then
the a.c.am. manifold I x) F' = (I x F,p,&,1,gx) is called, respectively, the twisted
product manifold and the warped product manifold of (I, go) and (F, J. ,g) by A.
Through the paper, we’ll identify any vector field U on F with (0,U) € X(I x F).
The Levi-Civita connections V of I x, F and V of F are related by:

(2.2) VyV =V V — ga(U,V)gradlog A + gx(U, gradlog \)V + gx(V, gradlog \)U,
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for any vector fields U, V on F', where grad stands for grad,, ([21]).
The following relations are well-known, also

(2.3) Veb =0, VU =Vye&=£E(log U, U e X(F).

Now, we recall some basic data involving a.c.m. and a.H. manifolds.

Given an a.c.m. manifold (M, ¢, &, 7, g) with fundamental form @, ®(X,Y) = g(X, pY),
and Levi-Civita connection V, for any h € {1,...,12} one considers the projection 7,
of V® on the vector bundle Cp(M) whose fibre at any = € M is the linear space
Ch(Ty M) considered in [5]. Putting C(M) = 1<§9<12Ch(M), to any section o of C(M)

are associated the 1-forms c(a), ¢(a) given, in a local orthonormal frame on M, by
c(@)(X) = ales e, X) and ¢(a)(X) = S0 aler, pei, X).
The Lee form w of M, defined by w = —ﬁ(é@ op+ Ven) + ‘257277, if n > 2, and

w = Ven+ %’777, if n = 1, depends on the projections 74,75 and 72 according to the
formulas:

w(X) = o) (@ X) + 5 o) (En(X), i n 22,

2(n—1)

W(X) = 12(6,6,9X) + 52(m) (On(X), i m = 1.
Let (N,J’,¢’) be an a.H. manifold with Levi-Civita connection V' and fundamental
form ', Q'(X,Y) = ¢'(X,J'Y). For any h € {1,...,4}, one considers the component
77, of V'Y on the vector bundle W), (N) over N whose fibre at each point p € N is
the linear space Wy, (T, N) introduced in [12].

If dimN = 2m > 4, the 1-form o' = —m&'ﬁ’ o J' is called the Lee form
and depends on the projection 74. In fact, with respect to a local orthonormal frame
{Ei}1<icam, one has W' (X) = sty Y7, 74(Ey, By, J'X).

The next result is useful in determining the Chinea-Gonzales class of a twisted
product manifold I x I and in relating the covariant derivatives VQ, V®,, where
Q, ®, denote the fundamental forms of F', I x, F, respectively. The Lee forms of
F,I x, F are denoted by @, wy.

Proposition 2.1. Let (F,j,’g\) be a 2n-dimensional a.H. manifold, I C R an open
interval and X : I X FF — R a smooth positive function. Then, for the twisted product
manifold I x F the following relations hold

i) Vep =0,

i) Vxé = —£(log\)p?X, X € X(I x F),

ili) n = —2n&(log A) and 6P,(&) =0,

iv) wy =0*(@) —d(log ), if n>2, and wy=—ElogA)n, if n=1.

Proof. Formula (2.3) implies i), ii). Let {U;}1<i<2n be a local g-orthonormal frame
on F. For any i € {1,...,2n} one puts ¢; = %Ui, so that {£,eq,...,e2,} is an adapted
local orthonormal frame on I X F. Applying ii), one easily obtains dn = —2n&(log \).
Furthermore, considering U,V € X (F), by (2.2) we have

(Vup)V = (Vud)V + oV(log \U — V(log \)U

2.4
(2.4) +ax (U, V)p(gradlog \) — gx(U, pV)gradlog .
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So, considering an adapted frame as above, by (2.4) and i) we obtain §®,(§) = 0, and
00x(U) = 3= 2222 0x (Vo) Ui, U) = 0Q(U) = 2(n — 1)U (log ), U € X(F).

Hence, if n > 2, one gets wy(U) = ©(U) — U(log A), wr(§) = S—Z = —£(log A\). Finally,
if n =1, ii) and iii) give wy = —&(log A)n and iv) follows. O

Remark 2.1. By Proposition 2.1 it follows that, if dim F' > 4, the Lee form of
I x» F vanishes if and only if there exists a smooth positive function p on F' such that
poo = X\and @ = d(log p). Furthermore, one easily obtains that the C4-component
of the covariant derivative V®, vanishes if and only if o*(@) = d(log A) — £(log A\)n.

Proposition 2.2. In the same hypothesis of Proposition 2.1, for any i € {1,2,3},
the C;-component of V®y vanishes if and only if the W;-component of V) vanishes.

Proof. Firstly, we point out that the statement holds if dim F' = 2. In fact, in this
case, for any i € {1,2,3}, the W;-component of VQ as well as the C;-component of
V@, vanish. Now, we assume that dim F' = 2n > 4 and we consider the W;-projection
7; of VQ and the C;-projection 7; of V®,. Let U, V, W be vector fields on F'. Applying
the theory developed in [5, 12] and Proposition 2.1 it is easy to obtain

(U, V,W) = = (@W)ga(U, V) + war(V)gr (U, W)

—wA(W)ga(U, V) +wr(V)gr(U, oW)

= )\274(U V,W) + oW (log M) ga(U, V') — oV (log M) ga (U, W)
W(log A)gr(U, V) — V(log A)gr(U, W)

n(UV,W) = 0, i€ {5,..,12}.

Furthermore by (2.4) we get

(Vu®)(V,W) = X(VyQ)(V, W) — oV (log \ga (U, W) — V (log \)ga (U, ¢ W)
+oeW (log N gx(U, V) + W (log M) gx(U, V).

This implies ZZ (U, VW) = A2 Zl (U VW), and (U, V, W) = N27,(U, V, W),
i € {1,2,3}. Then, the statement follows since for any ¢ € {1,2,3} and X, Y tangent
to I x) F, one has ,(§, X,Y) = 1,(X,Y,£) = 0. O

Proposition 2.3. Given an a.c.m. manifold (M, p,&,n,g) with dim M = 2n+ 1 the
following conditions are equivalent

i) M is a Ci_5-manifold,

ii) Vip = —7%577(9 n®n), Vep=0,

i) Vip = —5-0n(g —n®@mn), Lep =0,

L¢ denoting the Lie derivative with respect to .

Proof. In the hypothesis i) one puts V& = Z?Zl 7; and applies the theory developed
in [5] to evaluate the contribution of each projection 7; in the calculus of Vn, V.
Since, for any ¢ € {1,...,5} and X, Y tangent to M one has 7;(£,X,Y) = 0, we get
Ve = 0. Moreover, from the relations 7;(X,€,Y) =0, ¢(n)(§) =0, i€ {1,2,3,4}
and 75(X,&,Y) = 5-2(15)()g(X, 9Y) = 5=0ng(X, YY), ¢(75)(€) = 0 one obtains
(Vxn)Y = (Vx®)(§,¢Y) = —5.0n(9(X,Y) — n(X)n(Y)) and ii) follows.

The equivalence ii) < iii) is an easy consequence of the relation

(Lep)X = (Vep) X — Voxé +9(Vxé), X € X(M).
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Finally, we assume ii) and write V& = 21131 7;. Considering X,Y tangent to M, by
direct calculus we have 0 = (V@) (¢pX, ¢Y) = —71(£, X, Y). This implies 741 = 0.
Since Ven = 0, we also have 12 = 0 and (Vx®)(§,¢Y) = (Vxn)Y = 15(X, &, ¢Y)
entails 2326 7i(X,&,¢Y) = 0. In particular, this implies ¢(76)(§) = 0, so 76 = 0.
Hence, we get

(7’7—|-7'8+T9—|-7'10)(X,£,<,0Y):0, X,YGX(M).

Finally, the properties

(T7+T8)(90X7 3 Y)+(T7+7_8) (Xa 3 SDY) =0, (7—9+7—10)(¢Xa 3 Y) - (T9+T10)(X7 & (PY)7
(X, &,0Y) =7(Y, &, 0X), 1 € {8,9}, T7i(X, &, 0Y) = —7(Y, €, 0X), i € {7,10},

imply the vanishing of 77, 75, T9, T10. O

We recall that, if M is a 5-dimensional a.c.m. manifold, the vector bundles C; (M)
and C3(M) are trivial. Hence, in dimensions five, Proposition 2.3 gives a characteri-
zation of the class Co ®C4 @B Cs. In dimensions three the total class is C5 ®Cq ®Co B 12,
therefore the class C;_5 reduces to C5. More generally, in any dimensions, 2n + 1,
Cs-manifolds are characterized by (Vx¢)Y = 5=dn(n(Y)eX + g(X,Y)) and are
called f-Kenmotsu manifolds (f = —%577). If f =1, one obtains Kenmotsu mani-
folds ([15]). Moreover, in dimensions three, the relation Vi = —1én(g—n®n) implies

V¢ = 0 and by Proposition 2.3, we get the next result.

Corollary 2.4. Let (M, ¢,£,n,9) be an a.c.m. manifold such that dim M = 3. Then
M is a Cs-manifold if and only if Vi = —3(g —n®mn).

Now, we are able in specifying the class of twisted product manifolds.

Let (F,J,g) be a 2n-dimensional manifold and A : I x FF — R a smooth positive
function, I C R being an open interval. By Propositions 2.1, 2.3 and Corollary 2.4 it
follows that I x ) F'is a Cs-manifold if n = 1, a Co @& C4 @ Cs-manifold if n = 2, as well
as I x F belongs to the class C;_5 for any n > 3. Via Remark 2.1 and Proposition
2.2, under suitable restrictions on the class of (F, j, g), one can state that I x, F
belongs to a particular subclass of C;_5. For instance, if n > 2 and (1 g) is a Kéhler
structure, then I x F is a C4 @ Cs-manifold. For any i € {1,2,3}, I x, F belongs to
the class C; @ C4 @& Cs, provided that (F, j, 9) is a W;-manifold.

Finally, we consider a warped product manifold I x F' and assume that the Lee form
of F vanishes. Then, since d\ = £(\)n, by Proposition 2.1 one has wy = —&(log \)n
and the C4-component of V&), vanishes. It follows that, for any ¢ € {1,2,3}, I x, F

is a C; ® Cs-manifold, provided that (F, J, ,§) is a W,;-manifold.

3 Local description of C;_s;-manifolds

In this section we give a local description of C;_5-manifolds and a characterization of
those manifolds which belong to the classes Cs, Cp, @ Cs, for any h € {1,2,3,4}.
Following ([6]), an isometry f(M,p,&,n,9) — (M', ¢, &' 7, g') between a.c.m. man-
ifolds is said to be an almost contact (a.c.) isometry if f.op = ¢’ o fi, fu& =¢.

Theorem 3.1. Let (M, ¢,£,1n,9) be an a.c.m. manifold in the class Ci—5. Then
the distribution D associated with the subbundle kern of T M is integrable and totally
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umbilic and the orthogonal distribution D is totally geodesic. The manifold M is,
locally, a.c. isometric to a twisted product manifold | — e,e[x\F, € > 0, F being an
a.H. manifold and X\ :] — e,e[xF — R a smooth function, A > 0. Furthermore, M is,
locally, a warped product if and only if dw(§) = £&(w(§))n, w denoting the Lee form.

Proof. By Proposition 2.3 one has V) = —w(€)(g — n ® ), hence n is closed and
V€ = 0. It follows that D is integrable and D is totally geodesic. Let N be a leaf
of D, denote by ¢’ the metric induced by g and put J' = @jpx. Then (N,J',¢') is
an a.H. manifold. Since for any X € X(N) one has Vx¢ = —w(§)X, (N,g’) is an
umbilic submanifold with mean curvature vector field H = w(§)§n. It follows that
D is a totally umbilic foliation. Moreover, D is a spheric foliation, i.e. each leaf of D
is an extrinsic sphere, if and only if 0 = V3 (w(£)¢) = X (w(€))E, for any section X
of D. Tt follows that D is spheric if and only if dw(§) = &(w(§))n.

By Theorem 1 and Proposition 3 in [21], (M, g) is locally isometric to a twisted
product. Hence, considering p € M, there exist a (connected) open neighborhood U
of p, e > 0, a Riemannian manifold (F,g), a smooth function A :] — ¢,e[xF — R,
A > 0, and an isometry f :]—¢, e[ Xy F' — U such that the canonical foliations of the
product manifold | — ¢,&[x F' correspond, via f, to the foliations D, DX. Hence, we
have f*(gjv) = dt@dt+ 23, f*(%) =y and, for any t €] —¢,¢[, fi(F)is an integral
manifold of D, where f; = f(t,-). So, one defines an almost complex structure J on
F which makes (F, j, g) an a.H. manifold and proves that f realizes an a.c. isometry
between the twisted product manifold | — ¢, e[xxF" and (U, ¢\, §us mu, 9jv)- O

As remarked in Section 2, in dimensions three the class C;_5 reduces to Cs. So,
Theorem 3.1 entails that any Cs-manifold (M, ¢, &, n, g) is, locally, a.c. isometric to
a twisted product | — ,e[xF, F being an a.H. manifold. Since dimF =2, F is a
Kéhler manifold, as well as any leaf of D inherits from M a Kahler structure.
Considering ¢ € {1,2,3,4}, a C;_s-manifold M is said to be foliated by W;-leaves if
each leaf (N, ¢" = gjrnxrn,J' = @jrn) of D is in the Gray-Hervella class W;.

In order to characterize, in dimension 2n + 1, the C;_s-manifolds that are foliated by
W;-leaves, we put our attention to the classes C; @ Cs, for any ¢ € {1,2, 3,4}, and list
the defining conditions, that are easily obtained applying the theory developed in [5]
and related results ([8, 9]).

CLaC: (Vxp)X = gIn(X)pX, (Vxn)Y =—3Lg(pX,¢Y)

Co®Cs: do=-InpAd, dyp=0, Lep=0

Cs®Cs:  (Vxp)V = (Voxp)pY + gin(Y)pX, =0

Ci®Cs:  (Vxp)Y = w(Y)pX +w(pY)p?’X +9(X,0Y)B—g(¢X,oY)pB, B =uwh

The class C; @ C5 contains nearly Kenmotsu manifolds, which are realized putting
0n = —2n in the defining condition. Putting dn = —2n in the defining condition
of C2 ® Cs one obtains the almost Kenmotsu manifolds such that L¢p = 0. These
manifolds are locally described in [7] and recently studied in different settings ([20]).

Proposition 3.2. Let (M, p,&,n,9) be a Ci_5-manifold with dim M = 2n+1 > 5.
For any i € {1,2,3,4} the following conditions are equivalent

i) M is foliated by W;-leaves;

it) M is a C; ® Cs-manifold.

Proof. Let (N,J',¢’) be a leaf of D and denote by V' its Levi-Civita connection.
Since N is a totally umbilical submanifold of M with mean curvature vector field
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H = 3¢y, for any X', Y’ € X(N) one has
(3.1) (V)Y = (Vi )Y + g/ (X', J'Y')H.

Hence, considering two vector fields X, Y such that ©?X,0?Y are tangent to N
and writing X = —¢?X +n(X)¢, Y = —?Y + n(Y)E, by polarization, (3.1) and
Proposition 2.3 one obtains

(32 (Vx@)¥ = (Vo /)Y + (¥ )oX +g(X, Y )).

So, in each case, the equivalence i)<=- ii) is obtained by a routine calculus using
Proposition 2.3, (3.1), (3.2) and the defining condition of W;-manifold ([12]). O

Corollary 3.3. Let (M, p,£,m,9) be a Ci_s-manifold. Then M is foliated by Kdhler
leaves if and only if M is a Cs-manifold.

Finally, we consider a C;_s-manifold (M, ¢,£,n,¢g) such that dimM =2n+1>5
and 0n = —2n. Since w(£) = —1 is constant, M is, locally, a warped product manifold.
More precisely, given p € M, there exist an open neighborhood U of p, an a.H.
manifold (F,J,g), a smooth positive function X :] — ¢,¢[— R and an a.c. isometry
[ ] —e,e[xaF — U such that f*(gp) = dt ® dt + \*g, f*(%) = {jy. Then one has
f*(n) = dt and, by Proposition 2.1, we obtain —2n = dno f = —QndlgtgA. It follows
that A acts as A(t) = Ce?, for some constant C' > 0.

Clearly, given i € {1,2,3} and M in the class C; & Cs, then M is, locally, a warped
product manifold | — &,e[x \F where F is a W;-manifold and \(t) = Ce?, C > 0.
Note that, in the case ¢ = 2, we reobtain the local classification of almost Kenmotsu
manifolds such that Lep = 0 ([7]).

4 Local description of generalized Sasakian-space-
forms

In [1] the authors call generalized Sasakian-space-form (g.S. space-form), denoted
M(f1, f2, f3), an a.c.m. manifold (M, ¢, &,n, g) which admits three smooth functions
f1, f2, f3 such that the curvature tensor R satisfies

(4.1) R= fimi + foS+ f3T

w1, S, T being the algebraic curvature tensor fields defined by

m(X,Y,2) =g(Y,Z)X - g(X, 2)Y,

S(X,Y,2) =29(X, Y )oZ + g(X,0Z)pY — g(Y, 0Z)pX,

T(X,Y,Z) = n(X)n(2)Y = n(Y)n(2)X + g(X, Z)n(Y)§ — g(Y, Z)n(X)¢.
In [11] we proved that g.S. space-forms are characterized as the N (k)-manifolds with
pointwise constant (p.c.) yp-sectional curvature ¢ admitting a smooth function ! such
that R(X,Y, X,Y) — R(X,Y,oX,0Y) = (|| X || Y [|” —g(X,Y)? — g(X, Y)?), for
any vector fields X,Y orthogonal to £&. Moreover, the functions f1, fa, f3, ¢, k, [ are
related by f1 = CTZ, fo= %7 fs= %3[ — k.

Now, we describe g.S. space-forms which fall in the class C; _5, stating two theorems
in dimension 2n + 1 > 7. Firstly, we prove some preliminary results.
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Proposition 4.1. Let (M, p,&,1,9) be a Ci_5-manifold with Lee form w and assume
that M (f1, f2, f3) is a g.S. space-form. Then, the functions k = f1 — f3 and w(§) are
constant on each leaf of D and are related by k + w(&)? = £(w()).

Proof. By direct calculus, applying Proposition 2.3, one has

R(X,Y,€) = Y (w(©))(X = n(X)€) - X(@(€)(Y = n(Y)§) = w(©)*(n(Y)X - n(X)Y),

and comparing with the N(k)-condition, R(X,Y,¢) = k(n(Y)X —n(X)Y), one gets

(42) (k+w(©*)mY)X = n(X)Y) =Y (W)X —n(X)§) — X(w(€)(Y = n(Y)§).

Hence, for two orthogonal sections X, Y of D, one has Y (w(£))X — X(w(£))Y =0
and this implies the constancy of the function w(§) on each leaf of D. Putting X = ¢
n (4.2), for any section Y of D we have (k + w(£)?)Y = &(w(€))Y. Hence, we
get dw(§) = &(w(€))n = (k + w(€)?)n. Differentiating, since dn = 0, one obtains
0 = dk An+2w()dw(é) ANn = dk A n and the constancy of k on the leaves of D
follows. |

Let M(f1, f2, f3) be a manifold as in Proposition 4.1. By Theorem 3.1, M is,
locally, a warped product manifold | —e,e[x\F, (F, J, 9) being an a.H. manifold and
A ] — g,e[— R a positive smooth function. Let f :] — g,e[x\F — U be an a.c.
isometry and evaluate the curvature R of F. So, considering ¢ €] — g,¢[, for any
xeF, XY, ZeT,F, we have

Ro(X,Y,Z) = \®2(fro N)t,a) = N©) @Y, 2)X —g.(X,2)Y)
FA)?(f2 0 )t 2) (20 (X, IY)IZ + G (X, JZ)TY — G (Y, JZ)JX).

It follows that (F, J, g) is a generalized complex space-form ([22]). Therefore, applying
the results stated in [22, 18], under suitable restrictions on the dimension, one classifies
the a.H. structure on F. Anyway, to get all the possible information on the a.c.m.
structure on M, we apply the second Bianchi identity, starting by (4.1).

Considering vector fields U, X,Y, Z on M, by Proposition 2.3, one has

(VuS)(X,Y,Z) =29(X,(Vup)Y)pZ +29(X,¢Y)(Vue)Z
(4.3) +9(X, (Vue)Z)pY + 9(X,0Z)(Vue)Y
—9(Y,(Vup)Z)pX — g(Y,0pZ)(Vue)X.

(VuT)(X, Y, Z) = —w(En(Z)(g(eU,X)Y — g(U, ¢Y)X)
(4.4) —w(&)g(eU, 9Z)(n(X)Y —n(Y)X) +w(§)(9(X, Z)n(Y)
' —9(Y, Z)n(X))p*U — w(&)(9(X, Z)g(eU, Y)
—9(Y, Z)g(oU, pX))§

Lemma 4.2. Let M(fi, fa, f3) be a ¢.5. space-form, with dim M = 2n+1 > 5 and
Lee form w. Assume that M is a Cyi_5-manifold. Then, for any unit section X of D,
one has

i) X(f1) = =X (f2) = =3fow(X),

i) folw(X)+9(Vye)Y,pX)) =0, Y unit section of D orthogonal to X, pX.
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Proof. Let U, X, Y, Z be sections of D. Applying the second Bianchi identity, (4.1),
(4.3) and (4.4), one has

0= U(fl)’]rl(Xv Ya Z) + U(fQ)S(X7Y’ Z) +X(f1)7T1(Y, Ua Z)
+X(f2)SY, U, Z) + Y (f1)m(U, X, Z)+ Y (f2)S(U, X, Z)
+2{2(9(X, (Vue)Y) + g(Y, (Vxe)U)
+9(U, (Vy @) X))pZ +2(9(X, 9Y)(Vup) Z
+9(Y,pU)(Vxp)Z + g(U, pX)(Vyp)Z)
+(9(X, (Vup)Z) — g(U,(Vxp)Z))pY
+(@(Y, (Vxp)Z) — g(X, (Vyp)Z))pU + (9(U, (Vyp)Z)
—9(Y,(Vue)Z))pX + 9(X, 0 Z)(Vue)Y — (Vyp)U)
+9(Y, 0Z)((Vxp)U — (Vyp)X)
+9(U,0Z)(Vyp) X — (Vxp)Y)}.

We choose unit vector fields X and Y orthogonal to X,0X. Putting Z = X, U = oY
in (4.5) one obtains

OY (f1)Y +2X(f2)pX =Y (f1)pY — fa(39(X, (Voy @)Y — (Vy@)pY )pX
=2(Vxp)X — g(¢Y, (Vxp) X)pY — g(Y, (Vxp)X)Y) = 0.

Taking the scalar product by ¢Y and ¢X we have

(4.6) Y (f1) = 3f29(¢Y, (Vxp)X) =0

(4.7) 2X(f2) = 3f29(X, (Vey )Y — (Vyp)pY) =0.

These relations imply X (f1 4+ f2) = 0, for any unit section X of D. Let Y be a unit
section of D and {ey, ..., ey, peq, ..., pen, &} a local orthonormal frame with e; = Y.
By (4.6) one has

2(n — DY (f1) = 3f200(¢Y) =2(n—1)Y(f1) —3f2 ) 1 5(9((Ve,0)es, 9Y)
+9((Ve, 0)pei, Y)) = 0,

50 3fow(Y) = 7ﬁf25q}(§0}/) = —Y(f1), hence i) and ii) follow. O

Proposition 4.3. Let M (f1, fo, f3) be a g.S. space-form as in Lemma 4.2. If n > 3,
the following properties hold

i) the functions f1, fa are constant on each leaf of D,

it) fol(w — w(E)n) = 0,

iii) For any vector fields XY one has fa((Vxp)Y —w(§)(n(Y)pX +9(X, ¢Y)E)) = 0.

Proof. Let U,Y be sections of D and {ey, ..., ea,,£} a local orthonormal frame. We
put Z = X = ¢; in (4.5) and sum over i € {1,...,2n}. Applying Lemma 4.2 and
Proposition 2.3, one has

0 =@2n-5)Y(fL)U -U(f1))Y)+ Y (f1)pU — pU(f1)pY
(4.8) —2g(Y,0U) Y27 ei fr)pei + {2507 9V, (Ve,0)U) e
' +29(Y, 0U) 320 (Vep)ei + (Voup)Y — (Veoy)U
—6D(U)pY + 6®(Y) U}



26 Maria Falcitelli

We assume that | Y ||= 1, g(Y,U) = g(Y,oU) = 0, take in (4.8) the scalar product
by @Y and obtain

eU(f1) + f229((Vy @)Y, U) — g((Voy )Y, U) + d@(U)) = 0.

Applying Lemma 4.2, for any section U of D we have (n — 2) fow(U) = 0 and ii)
follows. So, also applying Lemma 4.2, we obtain i). Considering three sections U, Y,
Z of D, by (4.8), 1) and ii) we get

f2(=29(Y, (Vozo)U) + 9(Vou @)Y, Z) — g(Vey @)U, Z)) = 0.
This also implies

0= fa(—29(Y,(Vozo)U) +29(U, (Voy ) Z) + 9(Voue)Y, Z) — g((Vozp)U,Y)
—9(Voyo)U, Z) + 9(Voup)Z2,Y)) = =3f29((Voze)pY + (Veove)eZ, oU).

Hence, for any sections X,Y,Z of D we have fag((Vxp)Y + (Vye)X,Z) =0.

Let {e1, ..., ean, &} be alocal orthonormal frame. For any i € {1,...,2n} we put Y = ¢,
in (4.5), take the scalar product with @e; and sum the obtained expressions. Since f;
and f are constant on the leaves of D, using the last formula, for any sections X, U,
Z of D, we have f29((Vxp)U,Z) = 0. Hence, also applying Proposition 2.3, for any
sections X, U of D, one obtains

L2(Vx)U = —fo(Vxn)pUE = fow(§)g(X, pU)E.

Finally, considering X, Y € X (M), one writes X = —¢?X + n(X)§, Y = —p?Y +
n(Y)&, applies polarization, Proposition 2.3 and the above formula and gets iii). O

Lemma 4.4. Let M (f1, fa, f3) be a g.S. space-form as in Lemma 4.2. If dim M > 7,
one has dfi = 2f3w(&)n, dfz =2fow(§)n, dfs =E(f3)n.

Proof. Let Z be a vector field on M and X,Y sections of D. One applies
(VeR)(X,Y, Z) + (VxR)(Y, & Z) + (VY R)(§, X, Z) =0,
(4.1), (4.3), (4.4), Proposition 4.3 and
(Vx9)(Y,€,2) = (VyS)(X, €, Z2) = —2w(§)S(X,Y, Z),
(VxT)(Y,§,2) = (VyT)(X,§, Z) = —2w(§)m(X,Y, Z).
Then, we obtain

(4.9) (€(f1) = 2f5w(§))m (X, Y, Z) + (§(f2) — 2fow(§))S(X, Y, Z)

Putting Z = £ in (4.9) we have X (f35)Y — Y (f5)X = 0. It follows that f3 is constant
on any leaf of D and dfs = £(f3)n. Furthermore, (4.9) reduces to

(£(f1) = 2f3w(§))m (X, Y, Z) + (£(f2) — 2faw(§))S(X,Y, Z) = 0.

This implies £(f1) = 2fsw(§), &(f2) = 2fow(§) and by Proposition 4.3 the proof is
completed. O
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Theorem 4.5. Let (M, ¢,&,n,9) be a Ci—5-manifold such that dim M > 7. Assume
that M(f1, fa, f3) is a ¢.S. space-form. If fo mever vanishes, then

i) M is a Cs-manifold and admits a cosymplectic structure with constant @-sectional
curvature sign(fa),

i) (M,p,&,n,9) is, locally, a.c. isometric to a warped product | — ,e[X\F, where
e >0, A > 0 is a smooth function and F is a Kdhler manifold with non-zero constant
holomorphic sectional curvature.

Proof. By Proposition 4.3 and Lemma 4.4 we have
w=w(@)n, dfz =2fow, (Vxe)Y =w()n(Y)eX +g(X,¢Y)E), X, Y € X(M).

Hence M is a Cs-manifold with exact Lee form w = dlog]| f2|%. It follows that the
a.c.m. structure (¢, |f2|’%§, |f2|%7]7 |f2lg) on M is cosymplectic and has constant ¢-
sectional curvature |}C2‘ = signfa2 ([10]). Moreover, M is foliated by Kéhler leaves and
one easily proves that each leaf (N, J’,¢") of D has constant holomorphic sectional
curvature ¢ = 4 fg‘ ~- By Theorem 3.1, M is, locally, a warped product manifold
| — e,e[x\F, where F is biholomorphic to a leaf of D. Hence F is a Kahler manifold

with non-zero constant holomorphic sectional curvature. O

Finally, we describe the conformally flat g.S. space-forms in C;_s.
As stated by Kim, in dimensions 2n+1 > 5, the conformal flatness of a g.S. space-form
M (f1, f2, f3) is equivalent to fo = 0. These spaces are described in [16], under the
hypothesis that the Reeb vector field is Killing. Note that, if M is a C;_s-manifold,
we have (L¢g)(X,Y) = —Long(¢X,¢Y). Hence ¢ is Killing if and only if 6 = 0.
It follows that the result in [16] cannot be directly applied. Examples of g.S. space-
forms in the class C;_5 can be constructed. For instance, as in [16], given ¢ > 0,
one considers the nearly Kihler manifold (S, j, g), g denoting the metric of constant
curvature ¢. Given a smooth, non constant, positive function A : R — R, the warped
product manifold R x , S% belongs to C; @® Cs and is a g.S. space-form with functions

Af/\/2 A7>\/2 )\//
=5, f2=0, fs=5—+ .

Theorem 4.6. Let (M, ¢,&,n,g) be aCi_5-manifold with dim M > 7 and Lee form w.
Assume that M is a conformally flat g.S. space-form with p.c. p-sectional curvature
c. Then, one of the cases occurs

i) c = —w(€)? and M is, locally, a warped product | —e,e[x\F, where ¢ >0, A > 0 is
a smooth function and F is a flat a.H. manifold,

ii) ¢+ w(€)? is a non-zero constant. Then, w(€) =0 and M is, locally, a Riemannian
product | — e,e[xF, where € > 0 and F is an a.H. manifold with non-zero constant
sectional curvature,

iii) c+w(€)? is non-constant and never vanishes. Then M s, locally, a warped product
| —e,e[XAF, XA > 0 being a smooth function and F an a.H. manifold with non-zero
constant sectional curvature.

Proof. Since M is conformally flat, we have fo = 0, ¢ = f1, dc = 2f3w(&)n and M
is an N (k)-manifold such that ¢ — f3 = k = £(w(€)) — w(€)?. These relations imply
d(c+w(€)?) = 2w(€)(f3 + £(w(€)))n. Hence, we have

(4.10) d(c+w(§)?) = 2(c+ w(€)*w(E)n.



28 Maria Falcitelli

Note that w(&)n is closed, w(§) being constant on the leaves of D and 7 closed.
Therefore, locally, w(&)n can be expressed as —3d(log 7), for some positive function
7. Then, (4.10) implies the existence of a real number a such that ¢ = ¢+ w(£)?.
Together with the connectedness of M this means that either ¢ + w(£)? = 0 or ¢ +
w(€)? # 0. Furthermore, any leaf (N,J’,g’) of D has constant sectional curvature
¢ = (e +wl€))w.
Now, we discuss the cases a) ¢ + w(£)? =0, b) ¢+ w(£)? # 0.

In a) M is, locally, a.c. isometric to a warped product manifold |—e, e[ x F', where
F ' is a flat a.H. manifold. In fact, F is biholomorphic to a leaf of D.

In b), if c+w(&)? is constant, by (4.10) we have w(&) = 0. It follows that any leaf of D
is a totally geodesic submanifold of M and has constant sectional curvature ¢ # 0. So,
both the distributions D and D+ are totally geodesic and ii) is realized. If ¢ + w(&)?
is non-constant, we obtain iii), applying Theorem 3.1, also. (]
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