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Abstract. In the framework of Chinea-Gonzales we study the class of
almost contact metric manifolds locally realized as twisted product mani-
folds I×λF , I being an open interval, F an almost Hermitian manifold and
λ > 0 a smooth function. Local classification theorems for the generalized
Sasakian space-forms in the considered class are obtained as well.
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1 Introduction

Warped products play an interesting role in clarifying the interrelation between almost
Hermitian (a.H.) and almost contact metric (a.c.m.) manifolds in a given class. The
first result in this direction, due to Kenmotsu, states that any Kenmotsu manifold
is, locally, isometric to a warped product manifold I ×λ F , where F is a Kähler
manifold, I ⊂ R an open interval and λ : I → R the function defined by: λ(t) = Cet,
C > 0 ([15]). In 2007 Dileo and Pastore extended this result, proving that any almost
Kenmotsu manifold (M,ϕ, ξ, η, g) such that the tensor field Lξϕ vanishes is locally
realized as a warped product manifold I ×λ F , where F is an almost Kähler manifold
and λ(t) = Cet, C > 0 ([7]).

On the other hand, suitable warped product manifolds are nice examples of gen-
eralized Sasakian space-forms (g.S. space-forms). In fact, given a smooth function
λ : R → R, λ > 0, and an a.H. manifold F , the warped product R ×λ F is endowed
with an a.c.m. structure naturally induced by the a.H. structure on F . If F is a
generalized complex space-form, then R×λ F is a g.S. space-form ([1]).

As an extension of warped products, Bishop introduced the concept of umbilic
products, also called twisted products ([4]). In [21] Ponge and Reckziegel stated a
splitting theorem for a Riemannian manifold (M, g) that admits two complementary
foliations L, K whose leaves intersect perpendicularly. If the leaves of L are totally
geodesics and the leaves of K totally umbilic, then (M, g) is locally isometric to a
twisted product M ′×λ M ′′ such that M ′ and M ′′ are leaves of L and K, respectively.
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Moreover, if the leaves of K are extrinsic spheres, then M ′×M ′′ is a warped product.
This last statement corresponds to the decomposition theorem of Hiepko ([13]).

In this paper, involving a.H. and a.c.m. manifolds, we provide a new link between
the Gray-Hervella work on a.H. manifolds and the Chinea-Gonzales classification of
a.c.m. manifolds ([12, 5]).

More precisely, let (F, Ĵ, ĝ) be an a.H. manifold and λ : I × F → R a positive
smooth function, I ⊂ R being an open interval. On I × F one considers the twisted
product metric gλ of the Euclidean metric on I and ĝ by λ and the a.c.m. structure
(ϕ, ξ, η, gλ) naturally induced by (Ĵ , ĝ) as in (2.1). The a.c.m. manifold I ×λ F =
(I × F, ϕ, ξ, η, gλ) is called the twisted product of I and F by λ. Firstly, we prove
that I ×λ F belongs to the Chinea-Gonzales class ⊕

1≤i≤5
Ci, briefly denoted by C1−5.

An algebraic characterization of a.c.m. manifolds which fall in the class C1−5 is
obtained, also. Combining this result with the Ponge and Reckziegel theorem, one
proves that any C1−5-manifold is locally realized as a twisted product ] − ε.ε[×λF ,
ε > 0, F being an a.H. manifold and λ : ]−ε, ε[× F → R a smooth positive function.
A differential equation involving ω(ξ), where ω is the Lee form, specifies the C1−5-
manifolds that are, locally, warped products.
Then, we point our attention to the classes Ch ⊕ C5, h ∈ {1, 2, 3, 4}. We prove that
Ch⊕C5 consists of the C1−5-manifolds that are, locally, a twisted product ]−ε, ε[×λF ,
where F belongs to the Gray-Hervella class Wh. Moreover, any Ch⊕C5-manifold such
that ω(ξ) = −1 is locally a warped product ]− ε, ε[×λF , F being a Wh-manifold and
λ :]− ε, ε[→ R acting as λ(t) = Cet, C > 0.
The last section deals with g.S. space-forms M(f1, f2, f3) that fall in the class C1−5.
By repeated applications of the second Bianchi identity, we prove that M is, locally,
a warped product manifold. Moreover, if dimM ≥ 7 and f2 never vanishes, then M
falls in the class C5 and is, locally, a warped product ]− ε, ε[×λF , F being a complex
space-form. Finally, we establish a local classification in the case f2 = 0.

In this article all manifolds are assumed to be connected.

2 Twisted product manifolds

Given an a.H. manifold (F, Ĵ, ĝ), an open interval I ⊂ R and a smooth function
λ : I×F → R, λ > 0, on I×F we consider the a.c.m. structure (ϕ, ξ, η, gλ) such that

ϕ(a ∂
∂t , U) = (0, ĴU), η(a ∂

∂t , U) = a, a ∈ F(I × F ), U ∈ X (F ),
ξ = ( ∂

∂t , 0), gλ = π∗(dt⊗ dt) + λ2σ∗(ĝ),
(2.1)

π : I × F → I, σ : I × F → F denoting the canonical projections.
Note that gλ is the twisted product metric of the Euclidean metric g0 and ĝ. If λ only
depends on the coordinate t, then gλ is the warped product metric of g0 and ĝ. Then
the a.c.m. manifold I ×λ F = (I × F, ϕ, ξ, η, gλ) is called, respectively, the twisted
product manifold and the warped product manifold of (I, g0) and (F, Ĵ, ĝ) by λ.
Through the paper, we’ll identify any vector field U on F with (0, U) ∈ X (I × F ).
The Levi-Civita connections ∇ of I ×λ F and ∇̂ of F are related by:

(2.2) ∇UV = ∇̂UV − gλ(U, V )grad log λ + gλ(U, grad log λ)V + gλ(V, grad log λ)U,
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for any vector fields U , V on F , where grad stands for gradgλ
([21]).

The following relations are well-known, also

(2.3) ∇ξξ = 0, ∇ξU = ∇Uξ = ξ(log λ)U, U ∈ X (F ).

Now, we recall some basic data involving a.c.m. and a.H. manifolds.
Given an a.c.m. manifold (M,ϕ, ξ, η, g) with fundamental form Φ,Φ(X, Y ) = g(X, ϕY ),
and Levi-Civita connection ∇, for any h ∈ {1, ..., 12} one considers the projection τh

of ∇Φ on the vector bundle Ch(M) whose fibre at any x ∈ M is the linear space
Ch(TxM) considered in [5]. Putting C(M) = ⊕

1≤h≤12
Ch(M), to any section α of C(M)

are associated the 1-forms c(α), c(α) given, in a local orthonormal frame on M , by
c(α)(X) =

∑2n+1
i=1 α(ei, ei, X) and c(a)(X) =

∑2n+1
i=1 α(ei, ϕei, X).

The Lee form ω of M , defined by ω = − 1
2(n−1) (δΦ ◦ ϕ +∇ξη) + δη

2nη, if n ≥ 2, and

ω = ∇ξη + δη
2 η, if n = 1, depends on the projections τ4,τ5 and τ12 according to the

formulas:

ω(X) =
1

2(n− 1)
c(τ4)(ϕX) +

1
2n

c(τ5)(ξ)η(X), if n ≥ 2,

ω(X) = τ12(ξ, ξ, ϕX) +
1
2
c(τ5)(ξ)η(X), if n = 1.

Let (N, J ′, g′) be an a.H. manifold with Levi-Civita connection ∇′ and fundamental
form Ω′, Ω′(X,Y ) = g′(X, J ′Y ). For any h ∈ {1, ..., 4}, one considers the component
τ ′h of ∇′Ω′ on the vector bundle Wh(N) over N whose fibre at each point p ∈ N is
the linear space Wh(TpN) introduced in [12].

If dim N = 2m ≥ 4, the 1-form ω′ = − 1
2(m−1)δ

′Ω′ ◦ J ′ is called the Lee form
and depends on the projection τ ′4. In fact, with respect to a local orthonormal frame
{Ei}1≤i≤2m, one has ω′(X) = 1

2(m−1)

∑2m
i=1 τ ′4(Ei, Ei, J

′X).
The next result is useful in determining the Chinea-Gonzales class of a twisted

product manifold I ×λ F and in relating the covariant derivatives ∇̂Ω̂,∇Φλ, where
Ω̂, Φλ denote the fundamental forms of F , I ×λ F , respectively. The Lee forms of
F, I ×λ F are denoted by ω̂, ωλ.

Proposition 2.1. Let (F, Ĵ, ĝ) be a 2n-dimensional a.H. manifold, I ⊂ R an open
interval and λ : I × F → R a smooth positive function. Then, for the twisted product
manifold I ×λ F the following relations hold
i) ∇ξϕ = 0,
ii) ∇Xξ = −ξ(log λ)ϕ2X, X ∈ X (I × F ),
iii) δη = −2nξ(log λ) and δΦλ(ξ) = 0,
iv) ωλ = σ∗(ω̂)− d(log λ), if n ≥ 2, and ωλ = −ξ(log λ)η, if n = 1.

Proof. Formula (2.3) implies i), ii). Let {Ui}1≤i≤2n be a local ĝ-orthonormal frame
on F . For any i ∈ {1, ..., 2n} one puts ei = 1

λUi, so that {ξ, e1, ..., e2n} is an adapted
local orthonormal frame on I×λ F . Applying ii), one easily obtains δη = −2nξ(log λ).
Furthermore, considering U, V ∈ X (F ), by (2.2) we have

(∇Uϕ)V = (∇̂U Ĵ)V + ϕV (log λ)U − V (log λ)ϕU
+gλ(U, V )ϕ(grad log λ)− gλ(U,ϕV )grad log λ.

(2.4)



20 Maria Falcitelli

So, considering an adapted frame as above, by (2.4) and i) we obtain δΦλ(ξ) = 0, and
δΦλ(U) = 1

λ2

∑2n
i=! gλ((∇Ui

ϕ)Ui, U) = δ̂Ω̂(U)− 2(n− 1)ϕU(log λ), U ∈ X (F ).
Hence, if n ≥ 2, one gets ωλ(U) = ω̂(U)−U(log λ), ωλ(ξ) = δη

2n = −ξ(log λ). Finally,
if n = 1, ii) and iii) give ωλ = −ξ(log λ)η and iv) follows. ¤

Remark 2.1. By Proposition 2.1 it follows that, if dimF ≥ 4, the Lee form of
I×λ F vanishes if and only if there exists a smooth positive function µ on F such that
µ ◦ σ = λ and ω̂ = d(log µ). Furthermore, one easily obtains that the C4-component
of the covariant derivative ∇Φλ vanishes if and only if σ∗(ω̂) = d(log λ)− ξ(log λ)η.

Proposition 2.2. In the same hypothesis of Proposition 2.1, for any i ∈ {1, 2, 3} ,

the Ci-component of ∇Φλ vanishes if and only if the Wi-component of ∇̂Ω̂ vanishes.

Proof. Firstly, we point out that the statement holds if dim F = 2. In fact, in this
case, for any i ∈ {1, 2, 3}, the Wi-component of ∇̂Ω̂ as well as the Ci-component of
∇Φλ vanish. Now, we assume that dim F = 2n ≥ 4 and we consider theWi-projection
τi of ∇̂Ω̂ and the Ci-projection τ̂i of ∇Φλ. Let U, V, W be vector fields on F . Applying
the theory developed in [5, 12] and Proposition 2.1 it is easy to obtain

τ4(U, V, W ) = −ωλ(ϕW )gλ(U, V ) + ωλ(ϕV )gλ(U,W )
−ωλ(W )gλ(U,ϕV ) + ωλ(V )gλ(U,ϕW )

= λ2τ̂4(U, V, W ) + ϕW (log λ)gλ(U, V )− ϕV (log λ)gλ(U,W )
+W (log λ)gλ(U,ϕV )− V (log λ)gλ(U,ϕW )

τi(U, V, W ) = 0, i ∈ {5, ..., 12} .

Furthermore by (2.4) we get

(∇UΦλ)(V,W ) = λ2(∇̂U Ω̂)(V, W )− ϕV (log λ)gλ(U,W )− V (log λ)gλ(U,ϕW )
+ϕW (log λ)gλ(U, V ) + W (log λ)gλ(U,ϕV ).

This implies
∑3

i=1 τi(U, V, W ) = λ2
∑3

i=1 τ̂i(U, V, W ), and τi(U, V,W ) = λ2τ̂i(U, V,W ),
i ∈ {1, 2, 3}. Then, the statement follows since for any i ∈ {1, 2, 3} and X, Y tangent
to I ×λ F , one has τi(ξ, X, Y ) = τi(X, Y, ξ) = 0. ¤

Proposition 2.3. Given an a.c.m. manifold (M, ϕ, ξ, η, g) with dim M = 2n + 1 the
following conditions are equivalent
i) M is a C1−5-manifold,
ii) ∇η = − 1

2nδη(g − η ⊗ η), ∇ξϕ = 0,
iii) ∇η = − 1

2nδη(g − η ⊗ η), Lξϕ = 0,
Lξ denoting the Lie derivative with respect to ξ.

Proof. In the hypothesis i) one puts ∇Φ =
∑5

i=1 τi and applies the theory developed
in [5] to evaluate the contribution of each projection τi in the calculus of ∇η, ∇ξϕ.
Since, for any i ∈ {1, ..., 5} and X, Y tangent to M one has τi(ξ,X, Y ) = 0, we get
∇ξϕ = 0. Moreover, from the relations τi(X, ξ, Y ) = 0, c(τi)(ξ) = 0, i ∈ {1, 2, 3, 4}
and τ5(X, ξ, Y ) = 1

2nc(τ5)(ξ)g(X, ϕY ) = 1
2nδηg(X, ϕY ), c(τ5)(ξ) = 0 one obtains

(∇Xη)Y = (∇XΦ)(ξ, ϕY ) = − 1
2nδη(g(X, Y )− η(X)η(Y )) and ii) follows.

The equivalence ii) ⇔ iii) is an easy consequence of the relation
(Lξϕ)X = (∇ξϕ)X −∇ϕXξ + ϕ(∇Xξ), X ∈ X (M).
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Finally, we assume ii) and write ∇Φ =
∑12

i=1 τi. Considering X,Y tangent to M , by
direct calculus we have 0 = (∇ξΦ)(ϕX, ϕY ) = −τ11(ξ, X, Y ). This implies τ11 = 0.
Since ∇ξη = 0, we also have τ12 = 0 and (∇XΦ)(ξ, ϕY ) = (∇Xη)Y = τ5(X, ξ, ϕY )
entails

∑10
i=6 τi(X, ξ, ϕY ) = 0. In particular, this implies c(τ6)(ξ) = 0, so τ6 = 0.

Hence, we get

(τ7 + τ8 + τ9 + τ10)(X, ξ, ϕY ) = 0, X, Y ∈ X (M).

Finally, the properties
(τ7+τ8)(ϕX, ξ, Y )+(τ7+τ8)(X, ξ, ϕY ) = 0, (τ9+τ10)(ϕX, ξ, Y ) = (τ9+τ10)(X, ξ, ϕY ),
τi(X, ξ, ϕY ) = τi(Y, ξ, ϕX), i ∈ {8, 9}, τi(X, ξ, ϕY ) = −τi(Y, ξ, ϕX), i ∈ {7, 10},
imply the vanishing of τ7, τ8, τ9, τ10. ¤

We recall that, if M is a 5-dimensional a.c.m. manifold, the vector bundles C1(M)
and C3(M) are trivial. Hence, in dimensions five, Proposition 2.3 gives a characteri-
zation of the class C2⊕C4⊕C5. In dimensions three the total class is C5⊕C6⊕C9⊕C12,
therefore the class C1−5 reduces to C5. More generally, in any dimensions, 2n + 1,
C5-manifolds are characterized by (∇Xϕ)Y = 1

2nδη(η(Y )ϕX + g(X,ϕY )ξ) and are
called f -Kenmotsu manifolds (f = − 1

2nδη). If f = 1, one obtains Kenmotsu mani-
folds ([15]). Moreover, in dimensions three, the relation ∇η = − 1

2δη(g−η⊗η) implies
∇ξϕ = 0 and by Proposition 2.3, we get the next result.

Corollary 2.4. Let (M, ϕ, ξ, η, g) be an a.c.m. manifold such that dim M = 3. Then
M is a C5-manifold if and only if ∇η = − 1

2 (g − η ⊗ η).

Now, we are able in specifying the class of twisted product manifolds.
Let (F, Ĵ, ĝ) be a 2n-dimensional manifold and λ : I × F → R a smooth positive

function, I ⊂ R being an open interval. By Propositions 2.1, 2.3 and Corollary 2.4 it
follows that I ×λ F is a C5-manifold if n = 1, a C2⊕C4⊕C5-manifold if n = 2, as well
as I ×λ F belongs to the class C1−5 for any n ≥ 3. Via Remark 2.1 and Proposition
2.2, under suitable restrictions on the class of (F, Ĵ, ĝ), one can state that I ×λ F

belongs to a particular subclass of C1−5. For instance, if n ≥ 2 and (Ĵ , ĝ) is a Kähler
structure, then I ×λ F is a C4 ⊕ C5-manifold. For any i ∈ {1, 2, 3}, I ×λ F belongs to
the class Ci ⊕ C4 ⊕ C5, provided that (F, Ĵ, ĝ) is a Wi-manifold.
Finally, we consider a warped product manifold I×λ F and assume that the Lee form
of F vanishes. Then, since dλ = ξ(λ)η, by Proposition 2.1 one has ωλ = −ξ(log λ)η
and the C4-component of ∇Φλ vanishes. It follows that, for any i ∈ {1, 2, 3}, I ×λ F

is a Ci ⊕ C5-manifold, provided that (F, Ĵ, ĝ) is a Wi-manifold.

3 Local description of C1−5-manifolds

In this section we give a local description of C1−5-manifolds and a characterization of
those manifolds which belong to the classes C5, Ch ⊕ C5, for any h ∈ {1, 2, 3, 4} .
Following ([6]), an isometry f(M, ϕ, ξ, η, g) → (M ′, ϕ′, ξ′, η′, g′) between a.c.m. man-
ifolds is said to be an almost contact (a.c.) isometry if f∗ ◦ ϕ = ϕ′ ◦ f∗, f∗ξ = ξ′.

Theorem 3.1. Let (M,ϕ, ξ, η, g) be an a.c.m. manifold in the class C1−5. Then
the distribution D associated with the subbundle ker η of TM is integrable and totally
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umbilic and the orthogonal distribution D⊥ is totally geodesic. The manifold M is,
locally, a.c. isometric to a twisted product manifold ] − ε, ε[×λF , ε > 0, F being an
a.H. manifold and λ :]− ε, ε[×F → R a smooth function, λ > 0. Furthermore, M is,
locally, a warped product if and only if dω(ξ) = ξ(ω(ξ))η, ω denoting the Lee form.

Proof. By Proposition 2.3 one has ∇η = −ω(ξ)(g − η ⊗ η), hence η is closed and
∇ξξ = 0. It follows that D is integrable and D⊥ is totally geodesic. Let N be a leaf
of D, denote by g′ the metric induced by g and put J ′ = ϕ|TN . Then (N, J ′, g′) is
an a.H. manifold. Since for any X ∈ X (N) one has ∇Xξ = −ω(ξ)X, (N, g′) is an
umbilic submanifold with mean curvature vector field H = ω(ξ)ξ|N . It follows that
D is a totally umbilic foliation. Moreover, D is a spheric foliation, i.e. each leaf of D
is an extrinsic sphere, if and only if 0 = ∇⊥X(ω(ξ)ξ) = X(ω(ξ))ξ, for any section X
of D. It follows that D is spheric if and only if dω(ξ) = ξ(ω(ξ))η.
By Theorem 1 and Proposition 3 in [21], (M, g) is locally isometric to a twisted
product. Hence, considering p ∈ M , there exist a (connected) open neighborhood U
of p, ε > 0, a Riemannian manifold (F, ĝ), a smooth function λ :] − ε, ε[×F → R,
λ > 0, and an isometry f : ]−ε, ε[×λ F → U such that the canonical foliations of the
product manifold ] − ε, ε[×F correspond, via f , to the foliations D, D⊥. Hence, we
have f∗(g|U ) = dt⊗dt+λ2ĝ, f∗( ∂

∂t ) = ξ|U and, for any t ∈]−ε, ε[, ft(F ) is an integral
manifold of D, where ft = f(t, ·). So, one defines an almost complex structure Ĵ on
F which makes (F, Ĵ, ĝ) an a.H. manifold and proves that f realizes an a.c. isometry
between the twisted product manifold ]− ε, ε[×λF and (U,ϕ|U , ξ|U , η|U , g|U ). ¤

As remarked in Section 2, in dimensions three the class C1−5 reduces to C5. So,
Theorem 3.1 entails that any C5-manifold (M, ϕ, ξ, η, g) is, locally, a.c. isometric to
a twisted product ] − ε, ε[×λF , F being an a.H. manifold. Since dimF = 2, F is a
Kähler manifold, as well as any leaf of D inherits from M a Kähler structure.
Considering i ∈ {1, 2, 3, 4}, a C1−5-manifold M is said to be foliated by Wi-leaves if
each leaf (N, g′ = g|TN×TN , J ′ = ϕ|TN ) of D is in the Gray-Hervella class Wi.
In order to characterize, in dimension 2n + 1, the C1−5-manifolds that are foliated by
Wi-leaves, we put our attention to the classes Ci ⊕ C5, for any i ∈ {1, 2, 3, 4}, and list
the defining conditions, that are easily obtained applying the theory developed in [5]
and related results ([8, 9]).
C1 ⊕ C5 : (∇Xϕ)X = δη

2nη(X)ϕX, (∇Xη)Y = − δη
2ng(ϕX,ϕY )

C2 ⊕ C5 : dΦ = − δη
n η ∧ Φ, dη = 0, Lξϕ = 0

C3 ⊕ C5 : (∇Xϕ)Y = (∇ϕXϕ)ϕY + δη
2nη(Y )ϕX, δΦ = 0

C4⊕C5 : (∇Xϕ)Y = ω(Y )ϕX+ω(ϕY )ϕ2X+g(X, ϕY )B−g(ϕX, ϕY )ϕB, B = ω].
The class C1⊕C5 contains nearly Kenmotsu manifolds, which are realized putting

δη = −2n in the defining condition. Putting δη = −2n in the defining condition
of C2 ⊕ C5 one obtains the almost Kenmotsu manifolds such that Lξϕ = 0. These
manifolds are locally described in [7] and recently studied in different settings ([20]).

Proposition 3.2. Let (M, ϕ, ξ, η, g) be a C1−5-manifold with dim M = 2n + 1 ≥ 5.
For any i ∈ {1, 2, 3, 4} the following conditions are equivalent
i) M is foliated by Wi-leaves;
ii) M is a Ci ⊕ C5-manifold.

Proof. Let (N, J ′, g′) be a leaf of D and denote by ∇′ its Levi-Civita connection.
Since N is a totally umbilical submanifold of M with mean curvature vector field
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H = δη
2nξ|N , for any X ′, Y ′ ∈ X (N) one has

(∇X′ϕ)Y ′ = (∇′X′J ′)Y ′ + g′(X ′, J ′Y ′)H.(3.1)

Hence, considering two vector fields X, Y such that ϕ2X,ϕ2Y are tangent to N
and writing X = −ϕ2X + η(X)ξ, Y = −ϕ2Y + η(Y )ξ, by polarization, (3.1) and
Proposition 2.3 one obtains

(3.2) (∇Xϕ)Y = (∇′ϕ2XJ ′)ϕ2Y +
δη

2n
(η(Y )ϕX + g(X,ϕY )ξ).

So, in each case, the equivalence i)⇐⇒ ii) is obtained by a routine calculus using
Proposition 2.3, (3.1), (3.2) and the defining condition of Wi-manifold ([12]). ¤

Corollary 3.3. Let (M,ϕ, ξ, η, g) be a C1−5-manifold. Then M is foliated by Kähler
leaves if and only if M is a C5-manifold.

Finally, we consider a C1−5-manifold (M, ϕ, ξ, η, g) such that dim M = 2n + 1 ≥ 5
and δη = −2n. Since ω(ξ) = −1 is constant, M is, locally, a warped product manifold.
More precisely, given p ∈ M , there exist an open neighborhood U of p, an a.H.
manifold (F, Ĵ, ĝ), a smooth positive function λ :] − ε, ε[→ R and an a.c. isometry
f :] − ε, ε[×λF → U such that f∗(g|U ) = dt ⊗ dt + λ2ĝ, f∗( ∂

∂t ) = ξ|U . Then one has
f∗(η) = dt and, by Proposition 2.1, we obtain −2n = δη ◦ f = −2nd log λ

dt . It follows
that λ acts as λ(t) = Cet, for some constant C > 0.
Clearly, given i ∈ {1, 2, 3} and M in the class Ci ⊕ C5, then M is, locally, a warped
product manifold ]− ε, ε[×λF where F is a Wi-manifold and λ(t) = Cet, C > 0.
Note that, in the case i = 2, we reobtain the local classification of almost Kenmotsu
manifolds such that Lξϕ = 0 ([7]).

4 Local description of generalized Sasakian-space-
forms

In [1] the authors call generalized Sasakian-space-form (g.S. space-form), denoted
M(f1, f2, f3), an a.c.m. manifold (M, ϕ, ξ, η, g) which admits three smooth functions
f1, f2, f3 such that the curvature tensor R satisfies

(4.1) R = f1π1 + f2S + f3T

π1, S, T being the algebraic curvature tensor fields defined by
π1(X, Y, Z) = g(Y, Z)X − g(X, Z)Y,
S(X,Y, Z) = 2g(X, ϕY )ϕZ + g(X, ϕZ)ϕY − g(Y, ϕZ)ϕX,
T (X, Y, Z) = η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ.

In [11] we proved that g.S. space-forms are characterized as the N(k)-manifolds with
pointwise constant (p.c.) ϕ-sectional curvature c admitting a smooth function l such
that R(X, Y, X, Y )−R(X, Y, ϕX, ϕY ) = l(‖ X ‖2‖ Y ‖2 −g(X, Y )2− g(X,ϕY )2), for
any vector fields X,Y orthogonal to ξ. Moreover, the functions f1, f2, f3, c, k, l are
related by f1 = c+3l

4 , f2 = c−l
4 , f3 = c+3l

4 − k.

Now, we describe g.S. space-forms which fall in the class C1−5, stating two theorems
in dimension 2n + 1 ≥ 7. Firstly, we prove some preliminary results.
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Proposition 4.1. Let (M, ϕ, ξ, η, g) be a C1−5-manifold with Lee form ω and assume
that M(f1, f2, f3) is a g.S. space-form. Then, the functions k = f1 − f3 and ω(ξ) are
constant on each leaf of D and are related by k + ω(ξ)2 = ξ(ω(ξ)).

Proof. By direct calculus, applying Proposition 2.3, one has

R(X, Y, ξ) = Y (ω(ξ))(X − η(X)ξ)−X(ω(ξ))(Y − η(Y )ξ)− ω(ξ)2(η(Y )X − η(X)Y ),

and comparing with the N(k)-condition, R(X,Y, ξ) = k(η(Y )X − η(X)Y ), one gets

(4.2) (k + ω(ξ)2)(η(Y )X − η(X)Y ) = Y (ω(ξ))(X − η(X)ξ)−X(ω(ξ))(Y − η(Y )ξ).

Hence, for two orthogonal sections X, Y of D, one has Y (ω(ξ))X − X(ω(ξ))Y = 0
and this implies the constancy of the function ω(ξ) on each leaf of D. Putting X = ξ
in (4.2), for any section Y of D we have (k + ω(ξ)2)Y = ξ(ω(ξ))Y . Hence, we
get dω(ξ) = ξ(ω(ξ))η = (k + ω(ξ)2)η. Differentiating, since dη = 0, one obtains
0 = dk ∧ η + 2ω(ξ)dω(ξ) ∧ η = dk ∧ η and the constancy of k on the leaves of D
follows. ¤

Let M(f1, f2, f3) be a manifold as in Proposition 4.1. By Theorem 3.1, M is,
locally, a warped product manifold ]− ε, ε[×λF , (F, Ĵ, ĝ) being an a.H. manifold and
λ :] − ε, ε[→ R a positive smooth function. Let f :] − ε, ε[×λF → U be an a.c.
isometry and evaluate the curvature R̂ of F . So, considering t ∈] − ε, ε[, for any
x ∈ F , X, Y, Z ∈ TxF , we have

R̂x(X, Y, Z) = (λ(t)2(f1 ◦ f)(t, x)− λ′(t)2)(ĝx(Y, Z)X − ĝx(X,Z)Y )
+λ(t)2(f2 ◦ f)(t, x)(2ĝx(X, ĴY )ĴZ + ĝx(X, ĴZ)ĴY − ĝx(Y, ĴZ)ĴX).

It follows that (F, Ĵ, ĝ) is a generalized complex space-form ([22]). Therefore, applying
the results stated in [22, 18], under suitable restrictions on the dimension, one classifies
the a.H. structure on F . Anyway, to get all the possible information on the a.c.m.
structure on M , we apply the second Bianchi identity, starting by (4.1).

Considering vector fields U,X, Y, Z on M , by Proposition 2.3, one has

(∇US)(X, Y, Z) = 2g(X, (∇Uϕ)Y )ϕZ + 2g(X, ϕY )(∇Uϕ)Z
+g(X, (∇Uϕ)Z)ϕY + g(X,ϕZ)(∇Uϕ)Y
−g(Y, (∇Uϕ)Z)ϕX − g(Y, ϕZ)(∇Uϕ)X.

(4.3)

(∇UT )(X, Y, Z) = −ω(ξ)η(Z)(g(ϕU,ϕX)Y − g(ϕU,ϕY )X)
−ω(ξ)g(ϕU,ϕZ)(η(X)Y − η(Y )X) + ω(ξ)(g(X,Z)η(Y )
−g(Y, Z)η(X))ϕ2U − ω(ξ)(g(X, Z)g(ϕU,ϕY )
−g(Y, Z)g(ϕU,ϕX))ξ.

(4.4)

Lemma 4.2. Let M(f1, f2, f3) be a g.S. space-form, with dim M = 2n + 1 ≥ 5 and
Lee form ω. Assume that M is a C1−5-manifold. Then, for any unit section X of D,
one has
i) X(f1) = −X(f2) = −3f2ω(X),
ii) f2(ω(X) + g((∇Y ϕ)Y, ϕX)) = 0, Y unit section of D orthogonal to X, ϕX.
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Proof. Let U , X, Y , Z be sections of D. Applying the second Bianchi identity, (4.1),
(4.3) and (4.4), one has

0 = U(f1)π1(X, Y, Z) + U(f2)S(X, Y, Z) + X(f1)π1(Y,U, Z)
+X(f2)S(Y, U, Z) + Y (f1)π1(U,X, Z) + Y (f2)S(U,X, Z)
+f2{2(g(X, (∇Uϕ)Y ) + g(Y, (∇Xϕ)U)
+g(U, (∇Y ϕ)X))ϕZ + 2(g(X, ϕY )(∇Uϕ)Z
+g(Y, ϕU)(∇Xϕ)Z + g(U,ϕX)(∇Y ϕ)Z)
+(g(X, (∇Uϕ)Z)− g(U, (∇Xϕ)Z))ϕY
+(g(Y, (∇Xϕ)Z)− g(X, (∇Y ϕ)Z))ϕU + (g(U, (∇Y ϕ)Z)
−g(Y, (∇Uϕ)Z))ϕX + g(X, ϕZ)((∇Uϕ)Y − (∇Y ϕ)U)
+g(Y, ϕZ)((∇Xϕ)U − (∇Uϕ)X)
+g(U,ϕZ)((∇Y ϕ)X − (∇Xϕ)Y )}.

(4.5)

We choose unit vector fields X and Y orthogonal to X,ϕX. Putting Z = X, U = ϕY
in (4.5) one obtains

ϕY (f1)Y + 2X(f2)ϕX − Y (f1)ϕY − f2(3g(X, (∇ϕY ϕ)Y − (∇Y ϕ)ϕY )ϕX
−2(∇Xϕ)X − g(ϕY, (∇Xϕ)X)ϕY − g(Y, (∇Xϕ)X)Y ) = 0.

Taking the scalar product by ϕY and ϕX we have

(4.6) Y (f1)− 3f2g(ϕY, (∇Xϕ)X) = 0

(4.7) 2X(f2)− 3f2g(X, (∇ϕY ϕ)Y − (∇Y ϕ)ϕY ) = 0.

These relations imply X(f1 + f2) = 0, for any unit section X of D. Let Y be a unit
section of D and {e1, ..., en, ϕe1, ..., ϕen, ξ} a local orthonormal frame with e1 = Y .
By (4.6) one has

2(n− 1)Y (f1)− 3f2δΦ(ϕY ) = 2(n− 1)Y (f1)− 3f2

∑n
i=2(g((∇eiϕ)ei, ϕY )

+g((∇ϕeiϕ)ϕei, ϕY )) = 0,

so 3f2ω(Y ) = − 3
2(n−1)f2δΦ(ϕY ) = −Y (f1), hence i) and ii) follow. ¤

Proposition 4.3. Let M(f1, f2, f3) be a g.S. space-form as in Lemma 4.2. If n ≥ 3,
the following properties hold
i) the functions f1, f2 are constant on each leaf of D,
ii) f2(ω − ω(ξ)η) = 0,
iii) For any vector fields X,Y one has f2((∇Xϕ)Y −ω(ξ)(η(Y )ϕX +g(X,ϕY )ξ)) = 0.

Proof. Let U ,Y be sections of D and {e1, ..., e2n, ξ} a local orthonormal frame. We
put Z = X = ei in (4.5) and sum over i ∈ {1, ..., 2n}. Applying Lemma 4.2 and
Proposition 2.3, one has

0 = (2n− 5)(Y (f1)U − U(f1)Y ) + ϕY (f1)ϕU − ϕU(f1)ϕY

−2g(Y, ϕU)
∑2n

i=1 ei(f1)ϕei + f2{2
∑2n

i=1 g(Y, (∇eiϕ)U)ϕei

+2g(Y, ϕU)
∑2n

i=1(∇eiϕ)ei + (∇ϕUϕ)Y − (∇ϕY ϕ)U
−δΦ(U)ϕY + δΦ(Y )ϕU}.

(4.8)
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We assume that ‖ Y ‖= 1, g(Y, U) = g(Y, ϕU) = 0, take in (4.8) the scalar product
by ϕY and obtain

ϕU(f1) + f2(2g((∇Y ϕ)Y,U)− g((∇ϕY ϕ)ϕY,U) + δΦ(U)) = 0.

Applying Lemma 4.2, for any section U of D we have (n − 2)f2ω(U) = 0 and ii)
follows. So, also applying Lemma 4.2, we obtain i). Considering three sections U , Y ,
Z of D, by (4.8), i) and ii) we get

f2(−2g(Y, (∇ϕZϕ)U) + g((∇ϕUϕ)Y, Z)− g((∇ϕY ϕ)U,Z)) = 0.

This also implies

0 = f2(−2g(Y, (∇ϕZϕ)U) + 2g(U, (∇ϕY ϕ)Z) + g((∇ϕUϕ)Y,Z)− g((∇ϕZϕ)U, Y )
−g((∇ϕY ϕ)U,Z) + g((∇ϕUϕ)Z, Y )) = −3f2g((∇ϕZϕ)ϕY + (∇ϕY ϕ)ϕZ,ϕU).

Hence, for any sections X,Y ,Z of D we have f2g((∇Xϕ)Y + (∇Y ϕ)X, Z) = 0.
Let {e1, ..., e2n, ξ} be a local orthonormal frame. For any i ∈ {1, ..., 2n} we put Y = ei

in (4.5), take the scalar product with ϕei and sum the obtained expressions. Since f1

and f2 are constant on the leaves of D, using the last formula, for any sections X, U ,
Z of D, we have f2g((∇Xϕ)U,Z) = 0. Hence, also applying Proposition 2.3, for any
sections X, U of D, one obtains

f2(∇Xϕ)U = −f2(∇Xη)ϕUξ = f2ω(ξ)g(X, ϕU)ξ.

Finally, considering X, Y ∈ X (M), one writes X = −ϕ2X + η(X)ξ, Y = −ϕ2Y +
η(Y )ξ, applies polarization, Proposition 2.3 and the above formula and gets iii). ¤

Lemma 4.4. Let M(f1, f2, f3) be a g.S. space-form as in Lemma 4.2. If dim M ≥ 7,
one has df1 = 2f3ω(ξ)η, df2 = 2f2ω(ξ)η, df3 = ξ(f3)η.

Proof. Let Z be a vector field on M and X,Y sections of D. One applies

(∇ξR)(X,Y, Z) + (∇XR)(Y, ξ, Z) + (∇Y R)(ξ, X,Z) = 0,

(4.1), (4.3), (4.4), Proposition 4.3 and

(∇XS)(Y, ξ, Z)− (∇Y S)(X, ξ, Z) = −2ω(ξ)S(X,Y, Z),

(∇XT )(Y, ξ, Z)− (∇Y T )(X, ξ, Z) = −2ω(ξ)π1(X, Y, Z).

Then, we obtain

(ξ(f1)− 2f3ω(ξ))π1(X,Y, Z) + (ξ(f2)− 2f2ω(ξ))S(X,Y, Z)
+X(f3)T (Y, ξ, Z)− Y (f3)T (X, ξ, Z) = 0.

(4.9)

Putting Z = ξ in (4.9) we have X(f3)Y − Y (f3)X = 0. It follows that f3 is constant
on any leaf of D and df3 = ξ(f3)η. Furthermore, (4.9) reduces to

(ξ(f1)− 2f3ω(ξ))π1(X, Y, Z) + (ξ(f2)− 2f2ω(ξ))S(X, Y, Z) = 0.

This implies ξ(f1) = 2f3ω(ξ), ξ(f2) = 2f2ω(ξ) and by Proposition 4.3 the proof is
completed. ¤



A class of almost contact metric manifolds and twisted products 27

Theorem 4.5. Let (M,ϕ, ξ, η, g) be a C1−5-manifold such that dim M ≥ 7. Assume
that M(f1, f2, f3) is a g.S. space-form. If f2 never vanishes, then
i) M is a C5-manifold and admits a cosymplectic structure with constant ϕ-sectional
curvature sign(f2),
ii) (M, ϕ, ξ, η, g) is, locally, a.c. isometric to a warped product ] − ε, ε[×λF , where
ε > 0, λ > 0 is a smooth function and F is a Kähler manifold with non-zero constant
holomorphic sectional curvature.

Proof. By Proposition 4.3 and Lemma 4.4 we have

ω = ω(ξ)η, df2 = 2f2ω, (∇Xϕ)Y = ω(ξ)(η(Y )ϕX + g(X, ϕY )ξ), X, Y ∈ X (M).

Hence M is a C5-manifold with exact Lee form ω = d log |f2| 12 . It follows that the
a.c.m. structure (ϕ, |f2|− 1

2 ξ, |f2| 12 η, |f2|g) on M is cosymplectic and has constant ϕ-
sectional curvature f2

|f2| = signf2 ([10]). Moreover, M is foliated by Kähler leaves and
one easily proves that each leaf (N, J ′, g′) of D has constant holomorphic sectional
curvature c′ = 4f2|N . By Theorem 3.1, M is, locally, a warped product manifold
]− ε, ε[×λF , where F is biholomorphic to a leaf of D. Hence F is a Kähler manifold
with non-zero constant holomorphic sectional curvature. ¤

Finally, we describe the conformally flat g.S. space-forms in C1−5.
As stated by Kim, in dimensions 2n+1 ≥ 5, the conformal flatness of a g.S. space-form
M(f1, f2, f3) is equivalent to f2 = 0. These spaces are described in [16], under the
hypothesis that the Reeb vector field is Killing. Note that, if M is a C1−5-manifold,
we have (Lξg)(X, Y ) = − 1

nδηg(ϕX, ϕY ). Hence ξ is Killing if and only if δη = 0.
It follows that the result in [16] cannot be directly applied. Examples of g.S. space-
forms in the class C1−5 can be constructed. For instance, as in [16], given ĉ > 0,
one considers the nearly Kähler manifold (S6, Ĵ , ĝ), ĝ denoting the metric of constant
curvature ĉ. Given a smooth, non constant, positive function λ : R→ R, the warped
product manifold R×λ S6 belongs to C1 ⊕ C5 and is a g.S. space-form with functions
f1 = ĉ−λ′2

λ2 , f2 = 0, f3 = ĉ−λ′2
λ2 + λ′′

λ .

Theorem 4.6. Let (M, ϕ, ξ, η, g) be a C1−5-manifold with dim M ≥ 7 and Lee form ω.
Assume that M is a conformally flat g.S. space-form with p.c. ϕ-sectional curvature
c. Then, one of the cases occurs
i) c = −ω(ξ)2 and M is, locally, a warped product ]− ε, ε[×λF , where ε > 0, λ > 0 is
a smooth function and F is a flat a.H. manifold,
ii) c+ω(ξ)2 is a non-zero constant. Then, ω(ξ) = 0 and M is, locally, a Riemannian
product ] − ε, ε[×F , where ε > 0 and F is an a.H. manifold with non-zero constant
sectional curvature,
iii) c+ω(ξ)2 is non-constant and never vanishes. Then M is, locally, a warped product
] − ε, ε[×λF , λ > 0 being a smooth function and F an a.H. manifold with non-zero
constant sectional curvature.

Proof. Since M is conformally flat, we have f2 = 0, c = f1, dc = 2f3ω(ξ)η and M
is an N(k)-manifold such that c − f3 = k = ξ(ω(ξ)) − ω(ξ)2. These relations imply
d(c + ω(ξ)2) = 2ω(ξ)(f3 + ξ(ω(ξ)))η. Hence, we have

(4.10) d(c + ω(ξ)2) = 2(c + ω(ξ)2)ω(ξ)η.
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Note that ω(ξ)η is closed, ω(ξ) being constant on the leaves of D and η closed.
Therefore, locally, ω(ξ)η can be expressed as − 1

2d(log τ), for some positive function
τ . Then, (4.10) implies the existence of a real number a such that a

τ = c + ω(ξ)2.
Together with the connectedness of M this means that either c + ω(ξ)2 = 0 or c +
ω(ξ)2 6= 0. Furthermore, any leaf (N, J ′, g′) of D has constant sectional curvature
c′ = (c + ω(ξ)2)|N .

Now, we discuss the cases a) c + ω(ξ)2 = 0, b) c + ω(ξ)2 6= 0.
In a) M is, locally, a.c. isometric to a warped product manifold ]−ε, ε[ ×λ F , where
F is a flat a.H. manifold. In fact, F is biholomorphic to a leaf of D.
In b), if c+ω(ξ)2 is constant, by (4.10) we have ω(ξ) = 0. It follows that any leaf of D
is a totally geodesic submanifold of M and has constant sectional curvature c 6= 0. So,
both the distributions D and D⊥ are totally geodesic and ii) is realized. If c + ω(ξ)2

is non-constant, we obtain iii), applying Theorem 3.1, also. ¤
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