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Iulia Elena Hirică and Constantin Udrişte

Abstract. The purpose of this paper is threefold: (1) to analyze the
Riemann flow and the Riemann wave; (2) to introduce and study the gen-
eralized Riemann flow; (3) to define the Einstein flow, the Einstein wave
and Einstein inequalities. This means to control the geometric quantities
associated to a Riemannian metric as it evolves with respect to a parame-
ter via a geometric PDE. The evolution PDEs lead to some families of the
Riemannian metrics: expanding, collapsing, solitonic, geodesically, con-
formally or concircular related. This approach and our open problems on
Riemann waves and sectional curvature, Einstein flows, Einstein waves,
multitime flows, multitime waves, and multitime solitons inaugurate new
understandings of certain phenomena in differential geometry and physics.
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1 Introduction

Hamilton published some groundbreaking papers [4], [5], introducing and studying the
concept of the Ricci flow. This was the first means to study the geometric quantities
associated to a metric g(x, t), (x, t) ∈ M ×R as the metric evolves via a PDE, where
M is a differentiable manifold. For a Riemannian manifold (M, g0(x)) the Ricci flow
PDE is

∂g

∂t
(x, t) = −2 S(g(x, t)), g(x, 0) = g0(x),

where S(g(x, t)) denotes the Ricci curvature tensor associated to the metric g(x, t).
Hamilton [5] proved that closed 3-manifolds, which admit metrics of strictly positive
Ricci curvature, are diffeomorphic to quotients of the round 3-sphere by finite groups
of isometries acting freely.

The papers of Hamilton give a new perspective of understanding to differential
geometers and other mathematicians to introduce and study geometrical evolution
PDEs. Usually, the idea is to evolve the metric in some way that will make the
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manifold ”what we want”. The main hope is to underline topological properties of
the manifolds from the existence of such round metrics.

The Hamilton Ricci flow was used by Perelman [12], [13] to prove the geometriza-
tion and Poincaré conjectures, i.e., every simply connected closed 3-dimensional man-
ifold is homeomorphic to the 3-sphere. Also, other important mathematicians con-
tributed to the subject from different perspectives [2], [14], [3], [30].

Kong and Liu [9] studied the wave character of metrics (ultra-hyperbolic PDEs).
Recently, the second author [19], [23] introduced and studied two touchstone no-

tions in Riemannian geometry: Riemann flow and Riemann wave via the bialternate
product Riemannian metric. The aims of this work are: (1) to continue with new
properties of the Riemann flow or wave, (2) to find special classes of metrics deter-
mined by some Riemann type flows or waves; (3) to introduce the Einstein flow and
the Einstein wave.

Section 2 classifies the ultra-hyperbolic-parabolic geometric evolutions and recall
some properties of Riemann flows and Riemann waves. The relation between a Rie-
mann wave and the sectional curvature is formulated as an open problem. Section
3 introduces and studies T -Riemann type flows, T -Riemann solitons and classes of
metrics determined by generalized Riemann type flows. Section 4 proposes the open
problems of Einstein flows, Einstein waves, Einstein inequalities and multitime flows,
multitime waves, multitime solitons.

2 Geometric evolutions

2.1 Ultra-hyperbolic-parabolic Ricci evolutions

The Ricci flow is a powerful tool to understand the geometry and topology of some
Riemann manifolds. Any solution of Ricci flow equation will help us to understand its
behavior for general cases and the singularity formation, further the basic topological
and geometrical properties as well as analytic properties of the underlying manifolds.

An ultra-hyperbolic Ricci evolution is the Ricci wave. The Ricci flow and the Ricci
wave PDEs are prolongations of the Einstein equation, which plays significant role in
general relativity and modern theoretical physics. Any solution of them can help us
to find new solutions of the Einstein equation.

Let S(g(x, t)) be the Ricci tensor associated to the metric g(x, t). Both, the Ricci
flow and the Ricci wave PDEs are particular cases of the following PDEs system

α(x, t)
∂2g

∂t2
(x, t) + β(x, t)

∂g

∂t
(x, t) + γ(x, t) g(x, t) + 2S(g(x, t)) = 0,

where α, β, γ are certain smooth functions. Particularly,
a) if α = 1; β = γ = 0, then the formula goes back to the wave metric (ultra-

hyperbolic equations) [9];
b) if α = 0; β = 1, γ = 0, then one gets the famous Ricci flow (ultra-parabolic

equations) [4], [5], [12];
c) if α = 0; β = 0, γ = const, we obtain the case of Einstein PDEs (ultra-

hyperbolic equations).
In this sense, the foregoing evolution equation represent a ultra-hyperbolic-parabolic

evolution.
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Theorem 2.1 [9]. Let g(x, t) be the Ricci wave and Rijkl, i, j, k, l = 1, n be
the associated Riemann curvature tensor, Sij be the Ricci tensor and ρ be the scalar
curvature. Then the Ricci wave g(x, t) is solution of the following PDEs

∂2Rijkl

∂t2
= ∆Rijkl + (lower order terms)

∂2Sij

∂t2
= ∆Sij + (lower order terms)

∂2ρ

∂t2
= ∆ρ + (lower order terms),

where ∆ is the Laplacian with respect to the evolving metric, the lower order terms
only contain lower order derivatives of g(x, t).

Example. Let us consider the initial Einstein metric

ds2 =
1

1− kr2
dr2 + r2dθ2 + r2 sin2 θ dϕ2,

where k is a constant taking the values −1, 0, 1. The metric

ds2 = (−2kt2 + c1t + c2)
{

1
1− kr2

dr2 + r2dθ2 + r2 sin2 θ dϕ2

}

is a solution of the hyperbolic geometric flow, where c1 and c2 are two constants
related by some conditions. It plays an important role in cosmology.

2.2 Ultra-hyperbolic-parabolic Riemann evolutions

For (0, 2)-tensors a and b, their Kulkarni-Nomizu product a ∧ b is given by

(a ∧ b)(X1, X2;X,Y ) = a(X1, X)b(X2, Y ) + a(X2, Y )b(X1, X)

−a(X1, Y )b(X2, X)− a(X2, X)b(X1, Y ).

The Kulkarni-Nomizu product G = 1
2 g ∧ g is the Riemann metric induced by g on

2-forms. It coincides to the bialternate product Riemannian metric

G = g ¯ g, Gijkl = gikgjl − gilgjk, i, j, k, l = 1, n.

If n ≥ 3, then the bialternate product Riemannian metric G determines the Rieman-
nian metric g (see [19], [23]).

The basic changes of the Riemannian metric work as follows: (1) a change of the
form ḡij = gij + hij leads to Ḡ = G + H + g ∧ h, where Hijkl = hikhjl − hilhjk;
(2) a conformal change ḡ = e2ϕ g gives Ḡ = e4ϕ G; (3) a change g(x, t) = ϕ∗t g(x, 0),
by a time-dependent family of diffeomorphisms ϕt : M 7→ M, ϕ0 = id, produces
G = ϕ∗t G0.

Let R(g(x, t)) be the Riemann curvature tensor associated to the metric g(x, t).
The study of the Riemann flow PDE

∂G

∂t
(x, t) = −2 R(g(x, t))
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and of the Riemann wave PDE

∂2G

∂t2
(x, t) = −2 R(g(x, t))

started in the papers [19], [23]. These PDEs systems are particular forms of the
following PDEs system

A(x, t)
∂2G

∂t2
(x, t) + B(x, t)

∂G

∂t
(x, t) + C(x, t)G(x, t) + 2R(g(x, t)) = 0,

where A,B, C are certain smooth functions. The most familiar cases are:
a) if A = 1; B = C = 0, then the formula goes back to the wave metric (ultra-

hyperbolic equations);
b) if A = 0; B = 1, C = 0, then one gets the Riemann flow (ultra-parabolic

equations);
c) if A = 0; B = 0, C = const, we obtain the case of flat manifold PDEs (ultra-

hyperbolic equations).
In this sense, the foregoing evolution PDE represent an ultra-hyperbolic-parabolic

evolution.

2.3 Properties of the Riemann flow

Let R(g(x, t)) be the Riemann curvature tensor associated to the metric g(x, t). The
Riemann flow g(x, t), i.e., a solution of the PDE

∂G

∂t
(x, t) = −2 R(g(x, t))

has the following properties [19], [23]:
Short time existence and uniqueness. Let (M, g0) be a compact Riemann

manifold. Then there exists ε > 0 such that the initial value problem

∂G

∂t
(x, t) = −2 R(g(x, t)), g(x, 0) = g0

has a unique solution g(x, t) on M × [0, ε].
Expanding hyperbolic space. If (M, g0) is a Riemann manifold (n ≥ 2) of

constant sectional curvature −1, then the evolution metric of the Riemann flow is
g(t) = (1 + (n− 1)t) g0. The manifold expands homothetically for all time.

Collapsing the sphere. For the round unit sphere (Sn, g0), n ≥ 2, the evolution
metric of the Riemann flow is g(t) = (1 − (n − 1)t) g0 and the sphere collapses to a
point in finite time.

Equilibrium points. A Riemannian manifold is flat, i.e., local isometric to
the Euclidean space, if and only if the Riemannian curvature tensor vanishes. The
corresponding metric is an equilibrium point of the Riemann flow.

Now let us comment the connection between a Riemann flow and the sectional
curvature.

Riemann flow and sectional curvature. Given a Riemannian manifold (M, g)
and two local linearly independent vector fields X and Y , the sectional curvature is
defined by

K(X,Y ) =
R(X,Y,X, Y )
G(X, Y, X, Y )

.
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The sectional curvature is a further, equivalent but more geometrical, description of
the curvature of Riemannian manifolds.

Supposing g(x, t) is a Riemann flow and denoting

σ(x, t) = G(x, t)(X(x), Y (x), X(x), Y (x)),

we obtain the first order partial differential equation σt(x, t) = −2K(x, t)σ(x, t).
Imposing the initial condition σ(x, 0) = c(x), we find the solution

σ(x, t) = c(x) exp
(
−2

∫ t

0

K(x, s)ds

)
.

2.4 Properties of the Riemann wave

Let R(g(x, t)) be the Riemann curvature tensor associated to the metric g(x, t). The
Riemann wave g(x, t), i.e., a solution of the PDE

∂2G

∂t2
(x, t) = −2 R(g(x, t))

has the following properties [19], [23]:
Short time existence and uniqueness. Let (M, g0(x)) be a compact Rieman-

nian manifold and k1(x) be a (0, 2) symmetric tensor field on M . Then there exists
a constant ε > 0 such that the initial value problem

∂2G

∂t2
(t, x) = −2 R(g(t, x)), g(0, x) = g0(x),

∂g

∂t
(0, x) = k1(x)

has a unique smooth solution g(t, x) on M × [0, ε].
Expanding hyperbolic space. If (M, g0) is a Riemann manifold (n ≥ 2) of

constant sectional curvature −1, then an evolution metric of the Riemann wave is
g(t) = (1 + vt− λ

6 t2) g0 and the manifold expands homothetically for all time.
Collapsing the sphere. For the round unit sphere (Sn, g0), n ≥ 2, the evolution

metric of the Riemann wave is of the form g(t) = f(t) g0, where f : [0, T ) → R is
a concave function, with limt→T f(t) = 0, and the sphere collapses to a point when
t → T .

Steady state points. A Riemannian manifold is flat, i.e., local isometric to
the Euclidean space, if and only if the Riemannian curvature tensor vanishes. The
corresponding metric is a steady state point of the Riemann wave.

Now let us introduce the connection between a Riemann wave and the sectional
curvature.

Riemann wave and sectional curvature. Supposing g(x, t) is a Riemann wave
and denoting

σ(x, t) = G(x, t)(X(x), Y (x), X(x), Y (x)),

we obtain the second order partial differential equation

σt2(x, t) + 2K(x, t)σ(x, t) = 0.

Imposing the initial conditions σ(x, 0) = c(x), σt(x, 0) = v(x), we can adapt the
theory in [8] to this geometric PDE (open problem).
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3 Generalized Riemann flows

3.1 T -Riemann type flow

Let M be a smooth closed manifold endowed with a Riemann metric g(x, t). Let T
be a (0, 4)-generalized curvature tensor field depending on g(x, t), i.e., a tensor field
which has the same symmetries as the Riemann curvature tensor and verifies the first
Bianchi identity. A generalized Riemann flow or a T -Riemann type flow is a means of
processing the Riemann metric g(x, t) by allowing it to evolve under the PDEs system

∂G

∂t
(x, t) = −2 T (g(x, t)), g(x, 0) = g0(x).

Usually, the Riemann curvature tensor field Rijkl splits into three pieces

Rijkl = Sijkl + Eijkl + Wijkl,

which are called respectively the scalar part, the semi-traceless part and the fully
traceless part [10].

The fully traceless part, i.e., the Weyl curvature tensor field

Wijkl = Rijkl − 1
n− 2

(gikSjl − gilSjk − gjkSil + gjlSik) +
ρ

(n− 1)(n− 2)
Gijkl

measures the deviation of the Riemann manifold from conformal flatness. If it van-
ishes, the manifold is (locally) conformally equivalent to a flat manifold. From physical
point of view, the (0, 4)-conformal Weyl curvature tensor field represents the part of
the gravitational field which can propagate as a gravitational wave through a region
containing no matter or nongravitational fields.

Theorem 3.1[19], [23]. On a Riemannian manifold (M, g(x, t)) the Ricci type
flow

∂gij

∂t
(x, t) = α gij(x, t) + β Sij(g(x, t))

determines a Riemann type flow

∂Gijkl

∂t
(x, t) = 2α Gijkl(x, t) + β Eijkl(g(x, t)),

where α and β are functions on M, and Eijkl(g(x, t)) is the semi-traceless part of the
Riemann curvature tensor.

3.2 T -Riemann solitons

If the Riemann space is T (g(t))-flat, then the corresponding metric g(x, t) is a fixed
point of the T -Riemann type flow. We can regard as generalized fixed points of
the T -Riemann type flow, those manifolds which change by a diffeomorphism and a
rescaling.

Let g(x, t) be a solution of a T - Riemann type flow on the manifold M . One
considers

ϕt : M 7→ M, ϕ0 = id
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to be a time-dependent family of diffeomorphisms and σ(t) be a time dependent scale
factor. If we have

g(x, t) = σ(t)ϕ∗t g(x, 0), σ(0) = 1,

then the solution (M, g(x, t)) or (Λ2(M), G(x, t) = g(x, t)¯ g(x, t)) is called a gener-
alized Riemann soliton.

Since
Gijkl = σ2(t)ϕ∗t gik(0)ϕ∗t gjl(0)− σ2(t)ϕ∗t gil(0)ϕ∗t gjk(0),

it follows

∂G

∂t
(t) |t=0= 2σ′(0)g(0)¯ g(0) + LV g(0)¯ g(0) + g(0)¯ LV g(0),

where V = ∂ϕt

∂t and LV is the Lie derivative.
Theorem 3.2. If σ′(0) = λ and V = ∇f , then the function f is a solution of the

PDEs system

Tijkl + λGijkl(0) + gjl(0)∇i∇kf − gjk(0)∇i∇lf + gik(0)∇j∇lf − gil(0)∇j∇kf = 0.

The solutions g(x, t) of a T - Riemann type flow on the manifold M are called
generalized gradient Riemann solitons. A generalized gradient Riemann soliton is
called shrinking if λ < 0, static if λ = 0, and expanding if λ > 0.

3.3 Classes of metrics determined by
Riemann type flows

a) Geodesically related metrics
A diffeomorphism f : Vn = (M, g) 7→ V n = (M, ḡ) is called geodesic mapping if it

maps geodesics of the Riemannian metric g into geodesics of the Riemannian metric
ḡ. There exists a geodesic mapping f if and only if the Weyl formulae are satisfied

∇XY = ∇XY + ψ(X)Y + ψ(Y )X,

where ψ ∈ ∧1(M).
The (0, 4)-projective Weyl curvature tensor

P (X, Y, Z, W ) = R(X, Y, Z, W )− 1
n− 1

[S(Y, Z)g(X, W )− S(X, Z)g(Y, W )]

is invariant under the geodesic mappings, i.e., P = P.
The pseudo-symmetric Riemannian spaces, for which the tensors R·R and Q(g,R)

are linearly dependent at every point of the manifold, constitute a generalization of
spaces of constant sectional curvature, along the line of locally symmetric (∇R = 0)
and semi-symmetric spaces (R ·R = 0) [6]. We have

(R ·R)(X1, . . . , X4; X, Y ) = (R(X, Y ) ·R)(X1, . . . , X4) =

= −R(R(X,Y )X1, . . . , X4)− · · · −R(X1, . . . , R(X, Y )X4),

Q(g, R)(X1, . . . , X4; X, Y ) = −((X ∧ Y ) ·R)(X1, . . . , X4) =
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= R((X ∧ Y )X1, . . . , X4) + · · ·+ R(X1, . . . , (X ∧ Y )X4),

where (X ∧g Y )U = g(U, Y )X − g(U,X)Y.
This notion arose during the study of totally umbilical submanifolds of semi-

symmetric spaces, as well as during the consideration of geodesic mappings.
Theorem 3.4. Let (M, g0(x)) be a Riemann manifold. The class g(x, t) of

geodesically related metrics with g0, given by the P -Riemann type flow, satisfies

G(x, t) = −2P (g0(x)) t + G0(x).

Moreover, if (M, g0(x)) is a pseudo-symmetric space, then (M, g(x, t)) is also pseudo-
symmetric.
Proof. Implicit solution of a Cauchy problem associated to a P -Riemann type flow.
¤

b) Concircular transformations of metrics
Let g 7→ e2ug be a conformal transformation of the metric g on the Riemann space

(M, g) [7]. The tensor field of the conformal change B ∈ T 0,2(M) has the components
Bij = ui,j − uiuj , ui = ∂u

∂xi , i, j = 1, n. If B = 1
n Tr(B)g, then the conformal change

is called concircular transformation.
A concircular transformation carries all the circles of the manifold into circles (a

curve in a Riemannian manifold is called circle when the first curvature is constant
and all the other curvatures are identically zero).

The (0, 4)-concircular curvature tensor

Z(X, Y, Z, W ) = R(X, Y, Z, W )− ρ

n(n− 1)
G(X, Y, Z, W )

is invariant under concircular transformations, where ρ is the scalar curvature.
Theorem 3.5. Let (M, g0(x)) be a Riemann manifold. The class g(x, t) of con-

circular related metrics with g0(x), given by the Z-Riemann type flow, satisfies

G(x, t) = −2Z(g0(x)) t + G0(x).

Proof. Implicit solution of a Cauchy problem associated to a Z-Riemann type flow.
¤

c) Conharmonic transformations of metrics
It is known that a harmonic function is defined as a function whose Laplacian

vanishes. In general, a harmonic function does not transform into a harmonic function,
by a conformal change of the Riemannian metric.

The condition under which the harmonic functions remain invariant have been
studied by Ishii, who introduced the conharmonic transformation as a subgroup of
the conformal transformations satisfying the condition

uij = ui,j − uiuj +
1
2
ukukgij = 0, i, j, k = 1, n.

The (0, 4)-conharmonic curvature tensor

C(X,Y, Z,W ) = R(X,Y, Z, W )− 1
n− 2

[g(Y, Z)S(X,W )
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−g(X, Z)S(Y,W ) + g(X, W )S(Y, Z)− g(Y, W )S(X,Z)]

is invariant under conharmonic transformations.
Theorem 3.6. Let (M, g0(x)) be a Riemann manifold. The class g(x, t) of con-

harmonically related metrics with g0(x), given by the C-Riemann type flow, satisfies

G(x, t) = −2C(g0(x)) t + G0(x).

Proof. Implicit solution of a Cauchy problem associated to a C-Rieman type flow.¤

4 Open Problems

4.1 Einstein flow and Einstein wave

Let (M, gαβ), α, β = 1, 4, be a spacetime. The metric gαβ determines the Ricci
curvature tensor Sαβ and the scalar curvature ρ. If Tαβ is the stress-energy tensor, Λ
is the cosmological constant, G is the Newton gravitational constant, c is the speed of
light in vacuum, then the Einstein field equations (EFE) or Einstein PDEs

(EFE) Sαβ − 1
2

gαβρ + gαβΛ− 8πG

c4
Tαβ = 0

(set of 10 PDEs) describe the fundamental interaction of gravitation as a result of
spacetime being curved by matter and energy. Solution techniques for the EFE include
simplifying assumptions such as symmetry. Special classes of exact solutions in general
relativity model many gravitational phenomena, such as rotating black holes and the
expanding universe. Further simplification is achieved taking gαβ(ε) as a differentiable
variation of a solution gαβ(0). We denote ∂gαβ

∂ε |ε=0 = hαβ . The relations gαβgβγ = δγ
α

implies
∂gλγ

∂ε
|ε=0 = −hαβgβγgαλ = −hλγ .

In EFE, we take the partial derivative with respect to ε and set ε = 0, we find the
infinitesimal deformation of EFE or the linearized EFE around a solution gαβ(0).
These equations are used to study phenomena such as gravitational waves.

Let us define the Einstein flow g(τ) by

∂gαβ

∂τ
= Sαβ − 1

2
gαβρ + gαβΛ− 8πG

c4
Tαβ ,

where τ is an appropriate evolution parameter (for example, time, mass etc). Simi-
larly, we introduce the Einstein wave g(τ) defined by

∂2gαβ

∂τ2
= Sαβ − 1

2
gαβρ + gαβΛ− 8πG

c4
Tαβ .

The solutions g(0) of Einstein PDEs are steady states for the Einstein flow PDE or,
respectively, for the Einstein wave PDE.

Study the properties of Einstein flow and Einstein wave. Extend the ideas to black
holes.
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4.2 Einstein partial differential inequalities

Study the spacetime characterized by the partial differential inequations [25]

Sαβ − 1
2

gαβρ + gαβΛ ≥ 8πG

c4
Tαβ ,

the inequality being in the sense of positive semidefinite matrix. Generally, study the
geometric entities related by partial differential inequalities, as defined in [25].

4.3 Multitime flows, multitime waves,
multitime solitons

Study the multitime flows, waves, solitons having in mind the model of multitime
sine-Gordon solitons via geometric characteristics [11]. For related subjects, see also
[1], [6] - [10], [29] - [26], [27]-[22].
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