The curvatures of lightlike hypersurfaces of
an indefinite Kenmotsu manifold
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Abstract. We study the forms of curvatures of lightlike hypersurfaces M
of an indefinite Kenmotsu manifold M subject to the conditions: (1) M
is locally symmetric, i.e., the curvature tensor R of M be parallel on T M,
or (2) M is a semi-symmetric manifold, i.e., R(X,Y)R =0 on TM.
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1 Introduction

In the classical theory of Sasakian manifolds, the following result is well-known:
If a Sasakian manifold is locally symmetric, then it is of constant positive curvature
1 [9]. Recently we studied the forms of curvatures of locally symmetric lightlike
hypersurfaces M of an indefinite Sasakian manifold [7]. We obtained the following
result: If M is totally geodesic, then it is of constant positive curvature 1.

Further in 1971, K. Kenmotsu proved the following result [8]: If a Kenmotsu
manifold is locally symmetric, then it is of constant negative curvature —1.

The objective of this paper is the study of curvatures of lightlike hypersurfaces of
an indefinite Kenmotsu manifold subject to the conditions: (1) M is locally symmet-
ric, i.e., the curvature tensor R of M be parallel on TM, or (2) M is a semi-symmetric
manifold, i.e., R(X,Y)R =0 on TM. We prove the following results:

Theorem 1.1. Let M be a locally symmetric lightlike hypersurface of an indefinite
Kenmotsu manifold M equipped with an almost contact metric structure (J, ¢, 6, g).

(1) If the structure vector field ¢ is tangent to M, then M is a totally geodesic space
of constant negative curvature —1. In this case, the induced connection on M is
a unique torsion-free metric connection, the transversal connection of M is flat
and the Ricci type tensor of M is an induced symmetric Ricci tensor on M.

(2) The screen distribution S(TM) of M is not totally geodesic in M.
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Theorem 1.2. Let M be a semi-symmetric lightlike hypersurface of an indefinite
Kenmotsu manifold M.

(1) If ¢ is tangent to M, then M is a totally geodesic space of constant negative
curvature —1. In this case, the induced connection on M is a unique torsion-
free metric connection on M, the transversal connection of M is flat and the
Ricci type tensor of M is an induced symmetric Ricci tensor on M.

(2) If S(TM) is totally geodesic in M, the projection Proj¢ of ¢ on M is a null
vector field on M. Moreover if the transversal connection of M is flat, then M
1s totally umbilical and the curvature tensor R of M is given by

R(X,Y)Z =20(2){0(X)Y —0(Y)X}, VX,Y, ZeIl(TM).

2 Lightlike hypersurfaces

An odd dimensional semi-Riemannian manifold M is said to be an indefinite almost
contact metric manifold [8, 10] if there exist a structure set (J, ¢, 6, g), where J is a
(1,1)-type tensor field, ¢ is a vector field which called the characteristic vector field,
6 is a 1-form and g is the semi-Riemannian metric on M such that

(2.1) JX ==X +0(X)¢, J(=0, 0oJ=0, 0(¢) =1,
0(X) =g(¢, X), g(IX,JY)=g(X,Y)-0(X)8(Y),

for any vector fields X, Y on M. An indefinite almost contact metric manifold M is
called an indefinite Kenmotsu manifold [8, 10] if

(2.2) Vx(=-X+0(X),
(2.3) (VxJ)Y = —g(JX,Y)C+0(Y)JX,

for any vector fields X, Y on M, where V is the Levi-Civita connection of M.

A hypersurface M of an indefinite Kenmotsu manifold M is called a lightlike
hypersurface if the normal bundle TM* of M is a vector subbundle of the tangent
bundle TM of M, of rank 1. Then there exists a non-degenerate complementary
vector bundle S(TM) of TM~ in TM, called a screen distribution on M, such that

(2.4) TM = TM™* ©oin S(TM),

where @®,,+;, denotes the orthogonal direct sum. We denote such a lightlike hypersur-
face by M = (M, g, S(TM)). Denote by F(M) the algebra of smooth functions on M
and by I'(E) the F(M) module of smooth sections of a vector bundle E over M. It
is well-known [2] that, for any null section ¢ of TM* on a coordinate neighborhood
U C M, there exists a unique null section N of a unique vector bundle ¢tr(TM) of

rank 1 in the orthogonal complement S(TM)* of S(TM) in M satisfying
g N)=1, gN,N)=g(N,X)=0, VX eTI'(S(TM)).

In this case, the tangent bundle TM of M is decomposed as follow:

(2.5) TM =TM @ tr(TM) = {TM*+ @ tr(TM)} Sopen S(TM).
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We call tr(TM) and N the transversal vector bundle and the null transversal vector
field of M with respect to the screen S(T'M) respectively.

Let P be the projection morphism of I'(T'M) on T'(S(TM)) with respect to the
decomposition (2.4). Then the local Gauss and Weingartan formulas of M and S(T'M)
are given respectively by

(2.6) VxY = VxY + B(X,Y)N,
(2.7) VxN = —A X +7(X)N;
(2.8) VxPY = VXPY +C(X,PY),
(2.9) Vx€ = —A{X — 1(X)¢,

forall X, Y € I'(T'M), where V and V* are the liner connections on TM and S(T'M)
respectively, B and C are the local second fundamental forms on TM and S(T'M)
respectively, A, and Ag are the shape operators on TM and S(T'M) respectively

N
and 7 is a 1-form on TM. Since V is torsion-free, V is also torsion-free and B is
symmetric on T'M. From the fact that B(X,Y) = g(VxY, §) for all X, Y e (T M),
we show that B is independent of the choice of a screen distribution and satisfies

(2.10) B(X,§)=0, VX eI(TM).
Two local second fundamental forms B and C' are related to their shape operators by

(2.11) B(X,Y) = g(A{X,Y), G(AZX,N) =0,
(2.12) C(X,PY) = g(ANX,PY), G§(A X,N)=0.

From (2.11), the operator A} is S(T'M)-valued self-adjoint such that Az = 0.

Definition 2.1. [2, 3,4, 5, 6]. We say that M is totally umbilical if, on any coordinate
neighborhood U, there is a smooth function § such that

B(X,Y)=Bg(X,Y), VX,Y e I(TM).

We say that M is totally geodesic if B =0 on U. We also say that S(T'M) is totally
geodesicin M if C =0 onU.

Example. In the case dim M = 2, we have the following example. The lightlike
cone A2 of R? is a 2-dimensional totally umbilical lightlike hypersurface [2]. Except for
this example, there are many examples of 2-dimensional totally umbilical 1-lightlike
submanifolds. About it, see Example 1 and 2 in [3] and Example 6 in [4].

The induced connection V of M is not metric and satisfies
(2.13) (Vxg)(Y.Z) = B(X,Y)n(Z) + B(X, Z)n(Y),
for any X, Y, Z € T'(TM), where 7 is a 1-form such that

(2.14) n(X)=g(X,N), VX eI (TM).
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But the connection V* on S(T'M) is metric. Using (2.6), (2.7) and (2.8), (2.9), for all
X, Y, ZeT(TM), we get the Gauss-Codazzi equations of M and S(TM)

(2.15) R(X,Y)Z = R(X,Y)Z + B(X,Z)A,Y — B(Y,Z)A, X
+{(VxB)(Y,Z) - (VyB)(X,Z) + 7(X)B(Y,Z) — 7(Y)B(X, Z)} N,
(2.16) R(X,Y)N = —Vx(A,Y) + Vy (A, X) + A [X, Y]+ 7(X)A, Y
— T(V)A X + {B(Y,A,X) — B(X,A,Y) + 2dr(X,Y)}N ;
(2.17) R(X,Y)E = —VX(ALY) + Vi (AL X) + AL[X, Y] - 7(X)AzY
+T(Y)ALX + {C(Y, ALX) — O(X, AFY) — 2dr (X, Y)}¢.

A lightlike hypersurface M = (M, g, V) equipped with a degenerate metric g and
a linear connection V is said to be of constant curvature c if there exists a constant c
such that the curvature tensor R of V satisfies

(2.18) R(X.Y)Z = c{g(Y, 2)X — g(X, 2)Y}, VX,Y,Ze(TM).
The induced Ricci type tensor R(*:2) of (M, g,V) is defined by
RO2(X)Y) =trace{Z — R(Z,X)Y}, VX,Y e (TM).

In general, R(>?) is not symmetric [2, 4, 5]. A tensor field R(©:2) of M is called its
induced Ricci tensor, denote Ric, of M if it is symmetric. It is well known that R(2)
is symmetric if and only if the 1-form 7 is closed, i.e., dr =0 on TM [2].

For any X € I'(TM), let VxN = Q(VxN), where Q is the projection morphism
of TM on tr(TM) with respect to the decomposition (2.5). Then V< is a linear
connection on the transversal vector bundle tr(T'M) of M. We say that V= is the
transversal connection of M. We define the curvature tensor R of tr(T'M) by

(2.19) RY(X,Y)N = VxVyN — VgV N - Vix y|N, VX, Y e T(TM).

If R+ vanishes identically, then the transversal connection V+ is said to be flat [7].

Theorem 2.1. Let M be a lightlike hypersurface of a semi-Riemannian manifold M.
The following assertions are equivalent:

(1) The transversal connection of M is flat, i.e., R+ = 0.

(2) The 1-form 7 is closed, i.e., dT =0, on any U C M.

(3) The Ricci type tensor R%?) is an induced Ricci tensor of M.

Proof. From (2.7) and the definition of the transversal connection V+, we have
VxN =7(X)N, VX eT(TM).
Substituting this equation into the right side of (2.19), we get
RY(X,Y)N =2dr(X,Y)N, VX,Y cD(TM).

From this result we deduce our assertion. O
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3 Proof of Theorems

Proof of Theorem 1.1

Case (1): Step 1. Let ¢ be tangent to M. It is well known [1] that if ¢ is tangent to
M, then it belongs to S(T'M). Replacing Y by ¢ to (2.6) and using (2.2), we have

(3.1) Vx(=-X+0(X)¢, B(X.()=0, VX eTI(TM).
Substituting the first equation of (3.1) [denote (3.1);] into the right side of

R(X,Y)(=VxVy(—VyVx(—-Vix y)( VX, YecT(TM)
and using (2.15), (3.1) and the fact V is torsion-free, we have

R(X,Y) = R(X,Y)C = 0(X)Y —0(Y)X +2d0(X,Y)(, VX, Y € [(TM).

Taking the scalar product with ¢ to this equation and using g(R(X,Y)(,¢) = 0 and
(2.1), we show that the 1-form 6 is closed on T'M, i.e., dd = 0 on T M. Thus we get

(3.2) RX,Y)(=0X)Y —0(Y)X, VX,Y eT'(TM).
Applying Vx to 8(Y) = ¢(Y,¢) and using (2.2), (2.6) and g(¢, N) = 0, we have
(3.3) (Vx0)(Y)=—g(X,Y)+6(X)0(Y), VX, Y eI'(TM).
Step 2. Assume that M is locally symmetric. Apply V to (3.2), we have
R(X,)Y)Vz(=(Vz0)(X)Y — (Vz0)(Y)X, VX,Y eT'(TM).
Substituting (3.1); and (3.3) in this equation and using (3.2), we obtain
(3.4) R(X,Y)Z = ¢(X,2)Y — g(Y,Z)X, VX,Y,ZeT(TM).

Thus M is a space of constant negative curvature —1.
Applying Vi to (3.4) and using (3.4) and the fact Vi R = 0, we have

(Vug)(X,2)Y = (Vug)(Y,2)X, VX,Y, Z Uecl(TM).
Taking Z =Y = £ to this equation and using (2.10) and (2.13), we have
B(X,Y)=0, VYX,YeTI(TM).

Thus M is totally geodesic. By (2.13), V is a torsion-free metric connection of M.
Consider quasi-orthonormal frame fields F' = {&, N, W,} and F’ = {¢', N', W/} of
TM induced on U C M by {S(TM), ltr(TM)} and {S'(TM), ltr'(TM)} respec-
tively. By straightforward calculations [2, 5], we obtain the relationship between V
and V' induced by the Gauss and Weingarten equations with respect to S(T'M) and
S/(TM) as follows:

v/XY' = VXY+B(X’ Y) {; (zm: €a(fa)2> g_ i qua}7

a=1 a=1
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for all X, Y € I'(TM), where ¢, is signature of W, for each a and f, are smooth
functions on U such that f, = g(IN/, W,). From this results we show that the induced
connection V of M is a unique torsion-free metric connection on M because of B = 0.
As B = 0, we have A7 = 0 due to (2.11). From (2.17), we get R(X,Y){ =
—2d7(X,Y)¢. Replacing Z by € to (3.4), we have R(X,Y)& = 0. This results imply
dr = 0 on TM. We also obtain the relationship between 7 and 7’ induced by the
Gauss and Weingarten equations with respect to S(T'M) and S"(T'M) as follows:

'(X)=7(X)+B(X, NN =N), VX el(TM).
Thus we have dr = dr’. Consequently we show that the Ricci type tensor R 2 is
an induced symmetric Ricci tensor on M.

Case (2): Step 1. In case ( is tangent to M: By Calin [1], ¢ belongs to S(T'M).
If S(T M) is totally geodesic in M, then we have A, = 0 due to (2.12). Applying Vx
to g(¢, N) =0 with X € T(T'M) and using (2.2) and (2.7), we have n(X) =0. It is a
contradiction to 7(§) = 1. Thus S(T'M) is not totally geodesic in M.

In case ( is not tangent to M: By the decomposition (2.5), ¢ is decomposed by
(3.5) ¢=W+fN,

where W is a smooth non-vanishing vector field on M and f = 6(§) # 0 is a smooth
function. Applying Vx to (3.5) and using (2.2), (2.6) and (2.7), we have

(3.6) VW = —X +0(X)W + fA X, VX € I(TM),
(3.7) Xf+ fr(X)+ B(X, W) = f0(X), ¥X € D(TM).
Substituting (3.7) into [X,Y]f = X (Y f) —Y (X f) and using (3.6) and (3.7), we have
(3.8) (VxB)(Y,W) - (VyB)(X, W)+ 1(X)BY, W) —7(Y)B(X,W)
+ f{B(Y,A,X)—- B(X,A,Y)+2dr(X,Y)} = 2fdi(X,Y),
for all X, Y € T'(TM). Using (2.15), (2.16) and (3.5), the equation (3.8) reduce to

(3.9) 2fd0(X,Y) =g(R(X,Y)(, &), VX, Y eI(TM).

Substituting (3.6) into R(X,Y)W = VxVyW — VyVxW — Vx y;W and using
(2.15), (2.16), (3.5), (3.6), (3.7), (3.9) and the fact V is torsion-free, we have

(3.10) R(X,Y)C=0(X)Y —0(Y)X +2d0(X,Y)¢, VX,Y € I(TM).

Taking the scalar product with ¢ to (3.10) and using g(R(X,Y)(,¢) = 0 and (2.1),
we show that the 1-form 6 is closed on T'M, i.e., dd =0 on T M.

Step 2. Assume that S(T'M) is totally geodesic in M. Substituting (2.15) with
Z =W and (2.16) into (3.10) and using (3.5), (3.8) and df = 0, we have

(3.11) RX, Y)W =0(X)Y —0(Y)X, VX,Y eT(TM).
Applying Vx to 0(Y) = ¢g(Y,¢) and using (2.2) and (2.6), we have
(3.12) (Vx0)(Y) = eB(X,Y) — g(X,Y) +0(X)0(Y), VX,Y €D(TM),
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where e = (¢, N). Assume that e = 0. Applying Vx to g(¢, N) = 0 with X € T'(T M)
and using (2.2) and (2.7), we have n(X) = 0. It is a contradiction to n(£) = 1. Thus
e is non-vanishing function.

Step 3. Assume that M is locally symmetric. Applying Vz to (3.11), we have
R(X,)Y)VzW =(Vz0)(X)Y —(Vz0)(Y)X, VX, Y e(TM).
Substituting (3.6) and (3.12) in this equation and using (3.11), we obtain
(313)  R(X,Y)Z = {g(X,Z) — eB(X, 2)}Y — {g(V, Z) - eB(Y, Z)} X,

for all X, Y, Z € I'(TM). Replacing Z by W to (3.13) and then, comparing this
result with (3.11) and using the fact 8(X) = g(X, W) + fn(X), we have

{f(X)+eB(X,W)}Y ={fnY)+eBY,W)}X, VX, Y eDl(TM).
Replacing Y by £ to this equation and using the fact X = PX + n(X)¢, we have
fPX=eB(X,W){, VX eI(TM).

The left term of this equation belongs to S(T'M) and the right term belongs to TM*.
This imply fPX =0 and eB(X,W) =0 for all X € I'(T'M). From the first equation
of this results we deduce f = 0. It is contradiction to f # 0. Thus S(TM) is not
totally geodesic in M. O

Corollary 3.1. Let M be a lightlike hypersurface of an indefinite Kenmotsu manifold
M. Then the structure 1-form 6 is closed on TM, i.e., we have dd =0 on TM.

Proof of Theorem 1.2

Case (1): Let ¢ be tangent to M. Then we can use all equations and results of Step
11in (1) of Theorem 1.1. Applying V7 to (3.2) and using (3.1); and (3.3), we have

(3.14) (V2R)(X.Y)C = R(X,Y)Z — g(X, 2)Y + g(Y, Z)X.
Substituting (3.14) into (R(U, Z)R)(X,Y )¢ = 0 and using (3.1); and (3.14), we have
Y

(3.15) 0 = (R(U, 2)R)(X,Y)( = 0(Z2)(VuR)(X,Y)C - 0(U)(VzR)(X,Y)(
+{B(U,Y)n(2) = B(Z,Y)n(U)} X —{B(U, X)n(Z) — B(Z, X)n(U)}Y,

forall X, Y, Z, U € T'(TM). Replacing U by ¢ to (3.15) and using (V¢ R)(X,Y)( =0
due to (3.2) and (3.14), we have (VzR)(X,Y)( = 0. From this and (3.14), we get

(3.16) R(X,Y)Z = g(X,2)Y — g(Y,2)X, VX,Y,ZeT(TM).

Thus M is a space of constant negative curvature —1. Replacing U by £ to (3.15) and
using (2.10), (3.16) and (VzR)(X,Y)( = 0, we have

B(Y,Z)X = B(X,Z)Y, VX,Y,ZeT(TM).
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Replacing Y by £ to this equation and using (2.10), we have
B(X,Y)=0, VX,Y eTD(TM).

Thus M is totally geodesic. Therefore we show that V is a unique torsion-free metric
connection on M by (2.13). As B = 0, we have A7 = 0 due to (2.11). From (2.19),
we get R(X,Y)¢ = —2d7(X,Y)¢ for all X, Y € I'(T'M). Replacing Z by £ to (3.16),
we have R(X,Y)¢ = 0. This results imply dr = 0. Thus the transversal connection
V¢ is flat and R(®?) is an induced symmetric Ricci tensor on M.

Case (2): Let S(T'M) be totally geodesic in M. Then we can use all equations
and results of Step 1 and 2 in (2) of Theorem 1.1. Thus f = g({,&) and e = g(¢, N)
are non-vanishing functions. Substituting (3.5) into (3.10) and using (2.17), we have

(3.17)  R(X, Y)W =0(X)Y —0(Y)X — 2fdr(X,Y)N, VX,Y eT(TM).

Taking the scalar product with W to this equation and using the facts g(W, N) = e,

g(X, W) =0(X) — fn(X) and g(R(X,Y)W, W) =0, we have
(3.18) 2edr(X,Y)=0Y)n(X)—-0(X)n(Y), VX, Yel(TM).
Applying Vz to (3.11) and using (3.6), (3.11) and (3.12), we have

(3.19) (VZR)(X, Y)W = R(X,Y)Z +{g(Y, Z) — eB(Y, Z)} X
—{9(X,2Z)—eB(X,Z)}Y, VX,Y, Z, Uel(TM).

Applying Vx to e = g(¢, N) with X € T'(TM) and using (2.2) and (2.7), we have
(3.20) Xe = e{8(X) + 7(X)} —n(X), VX €T(TM).

Substituting (3.19) into (R(U, Z) R)(X, Y)W = 0 and using (2.13), (3.6), (3.19), (3.20)
and the fact R(U,Z)X = R(X,Z)U + R(U,X)Z for all X, Z, U € I'(T' M), we have

(321) 0 = O(Z){R(X,Y)U +g(Y,U)X — g(X,U)Y}
— QUNR(X,Y)Z+g(Y,2)X — g(X,Z)Y}
+ e{g(R(X,2)U + R(U, X)) Z, )Y —g(R(Y,Z)U + R(U,Y)Z, £)X},

forall X, Y, Z, U € T(TM). Taking U = £ and Z = W to (3.21) and using (3.17),

(3.18) and the fact g(R(X,Y)E, &) = 0, we have

OW)R(X,Y)E = flO(X)Y —6(Y)X}, VX, Y eT(TM).
Taking the scalar product with N to this equation and using (2.19), we have
(3.22) 20W)dr(X,Y) = f{0(Y)n(X) —0(X)n(Y)}, VX,Y eT(TM).

From the facts (W) = (¢, W) = g(W, W) +ef and 1 = g(¢,¢) = g(W, W) + 2ef,
we have (W) =1 — ef. Substituting §(W) =1 — ef and (3.18) into (3.22), we have

(3.23) dr(X,Y) = f{0Y)n(X)-0X)n()}, VX, Y eD(TM).
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Comparing (3.18) and (3.23), we have 2ef = 1, i.e., g(W, W) = 0. Thus the projection
W of the structure vector field ¢ on M is a null vector field.

If the transversal connection V* is flat, then, by Theorem 2.1, we get dr = 0 on
TM. Replacing Y by £ to (3.18) with dr = 0, we also have

g(X,W) =0, VX eTI(TM).

This implies W = e and B(X,W) = 0. Thus ¢ is decomposed by ¢ = e + fN and
2ef = 1. Applying Vx to g(Y, W) = 0 and using (2.6) and (3.6), we have

eB(X,Y) = ¢(X,Y), VX,Y eT(TM).
Thus M is totally umbilical with 8 = 2f. Using this, (3.12), (3.19) and (3.21) reduce

(Vx0)(Y)=0(X)0(Y), (VzR)(X,Y)W =R(X,Y)Z,
(3.24) (R(U, Z)R)(X, Y)W = 0(Z)R(X,Y)U — 0(U)R(X,Y)Z =0,

for all X, Y, Z € I(TM). Replacing U by W to (3.24) and using §(W) = £, we have
R(X,Y)Z = 20(Z){0(X)Y — 0(Y)X}, VX,Y, Z € D(TM). O
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