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Abstract. We find combinatorial conditions which ensure the collapsibil-
ity of a finite simplicial complex of dimension 3 or less. Our main result
states that any finite systolic standard piecewise Euclidean simplicial com-
plex of dimension 3 and 2, satisfying the property that any 2-simplex is a
face of at most two 3-simplices in the complex, simplicially collapses to a
point. A simplicial complex is systolic if it is simply connected, connected
and locally 6-large. Our proof relies on the fact that any cycle in a systolic
complex has a van Kampen diagram of minimal area whose disk is itself
systolic. Our proof follows by applying discrete Morse theory.

M.S.C. 2010: 05C99, 05C75.
Key words: systolic simplicial complex; standard piecewise Euclidean metric; van
Kampen diagram; directed geodesic; gradient vector field; discrete Morse function;
collapsibility.

Introduction

In this paper we study necessary and sufficient conditions for the collapsibility of a
finite simplicial complex of dimension 3 or less. The main tool we use in the proof is
discrete Morse theory.

The combinatorial condition we have in mind is called local 6-largeness (see [10]).
It was introduced by T. Januszkiewicz and J. Swiatkowski in [10] and independently
by F. Haglund in [9]. In dimension 2, local 6-largeness is called the 6-property of
the simplicial complex (see [4], [13]). A 2-dimensional simplicial complex has the
6-property if the link of each of its vertices is a graph of girth at least 6. The girth of
a graph is defined as the minimum number of edges in a circuit.

In dimension 2, the 6-property is the natural combinatorial condition attached to
the CAT(0) metric concept (see [1], [6], [8]). A geodesic metric space is a CAT(0) space
if geodesic triangles are thinner than comparison triangles in Euclidean space. The
standard piecewise Euclidean metric structure on a 2-dimensional simplicial complex
is nonpositively curved if and only if the link of each of its vertices has girth at least
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6 (see [1], chapter II.5, page 207; [2], chapter 4.2, page 113). We emphasize that the
equivalence no longer holds in higher dimensions (see [10], chapter 14, page 51). Our
result in dimension 3 has therefore no implication with CAT(0).

It turns out that systolic spaces have many properties similar to CAT(0) spaces.
In dimension 2, for instance, both CAT(0) and systolic simplicial complexes (not
necessarily endowed with the standard piecewise Euclidean metric), collapse to a
point (see [12], chapter 3.1, pages 36 − 48; [4]). Besides, the weaker condition of
contractibility does characterize both nonpositively curved spaces (see [1], chapter
II.1, page 161) and systolic ones (see [10], chapter 4, page 21). K. Crowley showed
in [5] that CAT(0) standard piecewise Euclidean complexes of dimension 3 or less
satisfying the property that any 2-simplex is a face of at most two 3-simplices in the
complex, simplicially collapse to a point. The aim of this paper is to show that in
dimension 2 and 3, under the same technical condition, systolic standard piecewise
Euclidean complexes enjoy the same property. So the novelty of our approach is
that, in dimension 3, our hypothesis is no longer of metric nature. It is important to
note, however, that our result in dimension 2 is equivalent to K. Crowley’s, although
we call the 2-complex systolic, while she called it CAT(0). Namely, the curvature
condition on the 2-complex in [5] seems metric, but it is in fact, just as in our paper,
combinatorial. This is true because the CAT(0) 2-complex in K. Crowley’s paper is
constructed by endowing it with the standard piecewise Euclidian metric such that
each of its interior vertices has degree at least 6. The standard piecewise Euclidian
metric on the 2-complex becomes hence CAT(0).

It is interesting to note that, since 4−systolic cubical complexes are, according to
M. Gromov’s combinatorial description of nonpositively curved cubical complexes (see
[6], Appendix I.6, page 516), CAT(0) spaces (see [11]), the collapsibility of CAT(0)
cubical complexes of dimension three or less (see [12], chapters 5.5−5.8, pages 73−90)
guarantees the collapsibility of 4-systolic cubical ones of the same dimension.

Our main result states that any finite systolic simplicial complex of dimension
2 and 3 endowed with the standard piecewise Euclidian metric and satisfying the
property that any 2-simplex is a face of at most two 3-simplices in the complex, is
collapsible. As in [5], the main tool used in the proof is discrete Morse theory (see
[7]), a combinatorial analogue of the classical smooth Morse theory developed in the
1920s (see [14], [3]). The proof relies on the following result regarding van Kampen
diagrams (see [13]) and proven in [10] (see chapter 1, page 11): there exists, for any
cycle in a systolic simplicial complex, a simplicial nondegenerate van Kampen diagram
of minimal area whose disk is itself systolic. Besides, when applying discrete Morse
theory, we will make frequent use of well known results concerning systolic geometry.
Namely, any two vertices in a systolic complex can be joined by a unique directed
geodesic. Any sequence of vertices in a systolic complex, such that any two of its
consecutive vertices belong to two consecutive simplices in a directed geodesic, is a
geodesic in the 1-skeleton of the complex (see [10], chapter 9, page 40).

1 Preliminaries

We present in this section the notions we shall work with and the results we shall
refer to. Let (X, d) be a metric space. Given a path γ : [a, b] → X in X, its length is
defined by L(γ) = sup{∑n

i=1 d(γ(ti−1), γ(ti))}, where the supremum is taken over all
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possible subdivisions of [a, b], a = t0 < t1 < ... < tn = b.
We call (X, d) a geodesic space if given two points p, q in X, there is a path from p

to q whose length equals d(p, q). Such a distance minimizing path is called a geodesic
segment. We denote it by [p, q].

Let (X, d) be a geodesic space. A geodesic triangle in X consists of three points
p, q, r ∈ X, called vertices, and a choice of three geodesic segments [p, q], [q, r], [r, p]
joining them, called sides. Such a geodesic triangle is denoted by 4 = 4(p, q, r). If
a point x ∈ X lies in the union of [p, q], [q, r] and [r, p], then we write x ∈ 4. A
triangle 4 = 4(p, q, r) in R2 is called a comparison triangle for 4 = 4(p, q, r) if
d(p, q) = dR2(p, q), d(q, r) = dR2(q, r) and d(r, p) = dR2(r, p). A point x ∈ [q, r] is
called a comparison point for x ∈ [q, r] if d(q, x) = dR2(q, x).

We call (X, d) a CAT(0) space if it is a geodesic space all of whose geodesic
triangles satisfy the so called CAT(0) inequality: for any 4 ⊂ X and for any x, y ∈ 4:
d(x, y) ≤ dR2(x, y), where x, y ∈ 4 are the corresponding comparison points in the
comparison triangle 4 of 4 in R2.

We call (X, d) non-positively curved if it is locally a CAT(0) space, i.e. for every
x ∈ X, there exists rx > 0 such that the ball B(x, rx), endowed with the induced
metric, is a CAT(0) space.

Let X be a finite, connected standard piecewise Euclidean simplical complex. The
standard piecewise Euclidean metric on |X| is defined by declaring each simplex to be
isometric to a regular simplex of edge length equal 1 in R2.

A finite sequence of vertices v1, v2, ..., vk+1 in X such that any two consecutive
vertices vi, vi+1 span an edge, 1 ≤ i ≤ k, is called a combinatorial path between
the vertices v1 and vk+1 in X. Note that the combinatorial path [v1, v2, ..., vk+1]
from v1 to vk+1 is the edge-path [v1, v2][v2, v3]...[vk, vk+1] from v1 to vk+1. We call
the edge-path α = [v1, v2][v2, v3]...[vk, vk+1] a closed edge-path or cycle if v1 = vk+1.
We denote by |α| the number of 1-cells contained in α and we call it the length of
α. If there exists a combinatorial path from v1 to vk+1 of length k, but there does
not exist a combinatorial path from v1 to vk+1 of length less than k, then we call
any combinatorial path of length k joining v1 to vk+1, a combinatorial geodesic. The
combinatorial distance between two vertices v1 and vk+1 in X, denoted by dc(v1, vk+1),
is the length of a combinatorial geodesic joining v1 to vk+1. We call the vertex v2 a
neighbor of v1 if dc(v1, v2) = 1.

Let σ be a simplex of X. The link of X at σ, denoted Lk(σ,X), is the subcomplex
of X consisting of all simplices of X which are disjoint from σ and which, together
with σ, span a simplex of X. The (closed) star of σ in X, denoted St(σ,X), is the
union of all simplices of X that contain σ. A subcomplex L in X is called full (in
X) if any simplex of X spanned by a set of vertices in L, is a simplex of L. A full
cycle in X is a cycle that is full as subcomplex of X. We define the systole of X by
sys(X) = min{|α| : α is a full cycle in X}.

We introduce further a combinatorial curvature condition on simplicial complexes.
We call X 6-large if sys(X) ≥ 6 and sys(Lk(σ,X)) ≥ 6 for each simplex σ of X. We
call X locally 6-large if the star of every simplex of X is 6-large. We call X 6-systolic
if it is connected, simply connected and locally 6-large. We abbreviate 6−systolic to
systolic. Systolic complexes are contractible (see [10, chapter 4, page 21]).
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We define next a directed geodesic in a systolic simplicial complex and present a
few basic results concerning this notion.

For a subcomplex L of X, we denote by NX(L) the subcomplex of X being the
union of all (closed) simplices that intersect L. Given a simplex σ in a systolic complex
X, we define a system Bn = Bn(σ,X) of combinatorial balls in X of radii n centered
at σ as B0 := σ, Bn+1 = NX(Bn) for n ≥ 0.

A sequence (σn) of simplices in a systolic simplicial complex X is a directed geodesic
if any two consecutive simplices in the sequence are disjoint and span a simplex of X,
whereas any three consecutive simplices in the sequence satisfy St(σi, K)

⋂
B1(σi+2, K) =

σi+1.
Theorem 1.1. Let X be a systolic simplicial complex. Then:

1. given two vertices v, w in X, there is exactly one directed geodesic from v to w;
2. if v, w are two vertices in X such that dc(v, w) = n, then the directed geodesic

from v to w consists of n + 1 simplices.
(For the proof see [10], chapter 9, page 40.)

Note that the sequence of simplices in a directed geodesic is, just as its name
suggests, no longer a directed geodesic after reversing the order of its simplices. So
there exists a unique directed geodesic δ1 joining two vertices v and w in X and there
exists another directed geodesic δ2 from w to v in X which is also unique and differs
therefore from δ1. The above result implies that any sequence of vertices in X, such
that any two consecutive vertices in the sequence belong to two consecutive simplices
in a directed geodesic, is a geodesic in the 1-skeleton of the complex.

A combinatorial map f : X1 → X2 between two simplicial complexes X1 and X2

is a continuous map such that each open simplex of X1 is mapped homeomorphically
onto an open simplex of X2. We call a combinatorial map nondegenerate if it is injec-
tive on each simplex of the triangulation. A combinatorial 2-complex is a simplicial
2-complex such that the 2-cells are attached through continuous maps from S1 to the
1-skeleton of the complex. S1 denotes the unit circle in R2. A combinatorial disk is
a combinatorial 2-complex homeomorphic to a disk.

We shall study the simplicial complex X by associating to each closed edge-path α
in X a diagram in the Euclidean plane, called a van Kampen diagram, which contains
all the essential information about α (see [13], [4]). Van Kampen diagrams turned
out to be useful tools for showing collapsibility.

Let α = e0e1...en be a closed edge-path in X. A van Kampen diagram for α is
a pair (D, φ). D is a finite, simply connected combinatorial disk embedded in the
plane, bounded by the closed edge-path β = f0f1...fn. φ : D → X is a combinatorial
map assigning to each edge fi of β in ∂D an edge φ(fi) = ei of α in X such that
φ(f−1

i ) = φ(fi)−1 for all 0 ≤ i ≤ n. The area of the diagram is given by the number
of 2-simplices of D. Let v be a vertex of X. The degree of v, denoted by deg v, is the
number of edges having v as initial vertex.

The following theorems will be of crucial importance when showing the main result
of the paper.
Theorem 1.2. Let X be a simply connected simplicial complex and let α be a cycle
in X. Then there exists a nondegenerate simplicial van Kampen diagram (D,φ) for
α (i.e. φ is a nondegenerate combinatorial map) such that φ is an isomorphism from
the boundary of D to α (for the proof see [10], chapter 1, page 12).
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Theorem 1.3. Let X be a systolic simplicial complex and let α be a cycle in X. Let
(D,φ) be a nondegenerate simplicial van Kampen diagram for α. If D has minimal
area, then D is systolic. If moreover α is a full subcomplex of X, then D has at least
one interior vertex (for the proof see [10], chapter 1, page 14).

Theorem 1.4. Let X be a simplicial complex and let α be a cycle in X. Let (D,φ)
be a nondegenerate simplicial van Kampen diagram for α of minimal area. Then φ
maps i-simplices to i-simplices, 0 ≤ i ≤ 2 (for the proof see [5], Lemma 5).

Let X be a simplicial complex and let α be an i-simplex of X. If β is a k-
dimensional face of α but not of any other simplex in X, then we say there is an
elementary collapse from X to X \ {α, β}. If X = X0 ⊇ X1 ⊇ ... ⊇ Xn = L
are simplicial complexes such that there is an elementary collapse from Xj−1 to Xj ,
1 ≤ j ≤ n, then we say that X simplicially collapses to L. |X| denotes the underlying
space of X and Xk denotes the k− skeleton of X.

The main tool used in the proof of our main results is discrete Morse theory. In
the remainder of the section we introduce the main notions in discrete Morse theory
and we give a few basic results regarding these notions.

We denote by α(i) an i-dimensional simplex of X and by α < β the fact that α is a
face of β. A function f : X → R is called a discrete Morse function on X if for every
α(i) ∈ X, ]{β(i+1) > α | f(β) ≤ f(α)} ≤ 1 and ]{γ(i−1) < α | f(γ) ≥ f(α)} ≤ 1.

Let f : X → R be a discrete Morse function on X. We call a simplex α(i) of X
critical if ]{β(i+1) > α | f(β) ≤ f(α)} = 0 and ]{γ(i−1) < α | f(γ) ≥ f(α)} = 0.
For c ∈ R, we define the level subcomplex X(c) =

⋃
α∈X,f(α)≤c

⋃
β≤α β. If a < b are

real numbers such that [a, b] contains no critical values of f , then X(a) collapses to
X(b) (for the proof see [7], chapter 3, page 104). If there exists a critical 3-simplex β
and a critical 2-simplex α with a unique gradient path from the boundary of β to α,
then X admits a new discrete Morse function g with the same critical simplices as f ,
except that β and α are no longer critical (for the proof we refer to [7], chapter 11,
page 140).

It is often easier to work with the gradient vector field associated to a discrete
Morse function rather than the function itself. Associated to a discrete Morse function
f : X → R is a gradient vector field W : X → X

⋃{0}. We define W (α) = β, if
α(i) < β(i+1) such that f(α) ≥ f(β). We define W (α) = 0 for all simplices α for
which there is no such β. A sequence α

(i)
0 , β

(i+1)
0 , α

(i)
1 , β

(i+1)
1 , α

(i)
2 , β

(i+1)
2 , ..., β

(i+1)
r ,

α
(i)
r+1 of simplices is a W -path if W (αj) = βj for 0 ≤ j ≤ r and βj > αj+1 6= αj . Such

a path is nontrivial if r ≥ 0 and closed if α0 = αr+1. A discrete vector field on X is a
map W : X → X

⋃{0} such that for each α(i):

1. there is at most one simplex γ in X with W (γ) = α (if W (γ) = α then γ must
be in the boundary of α);

2. W (α) = 0 or α is a codimension-one face of W (α);

3. if α ∈ ImageW then W (α) = 0.

A discrete vector field W defined on X is the gradient vector field of the discrete
Morse function f if and only if it has no nontrivial closed W -paths (for the proof see
[7], chapter 9, page 131).

Let X be an n-dimensional simplicial complex containing exactly mi simplices of
dimension i, 0 ≤ i ≤ n. Let F be any coefficient field. We denote by Ci(X,F) the
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space Fmi , i.e. Ci(X,F) denotes the free abelian group generated by the i-simplices of
X. Then there are boundary maps ∂i : Ci(X,F) −→ Ci−1(X,F), 0 ≤ i ≤ n, such that
∂i−1 ◦ ∂i = 0 and such that the resulting differential complex C : 0 −→ Cn(X,F) ∂n−→
Cn−1(X,F)

∂n−1−→ ...
∂1−→ C0(X,F) −→ 0 calculates the homology of X. That is, if

we define Hi(C, ∂) = Ker(∂i)
Im(∂i+1)

then for each i we have Hi(C, ∂) ∼= Hi(X,F), where
Hi(X,F) denotes the singular homology of X (for the proof we refer to [7], chapter
3, page 122). We call the differential complex C the Morse complex of X. Let Mi

denote the span of the critical i-simplices of X, i.e. Mi = {∑σ∈X aσσ | aσ ∈ F, if
aσ 6= 0 then σ is a critical simplex of X}. The Morse complex of X is isomorphic

to M : 0 → Mn
∂→ Mn−1

∂→ ...
∂→ M0 → 0 (for the proof see [7], chapter 8, page

124). Let χ(X) denote the Euler characteristic of X. Then the so called weak Morse
inequalities hold: m0−m1 +m2− ...+(−1)nmn = χ(X) (for the proof see [7], chapter
8, page 124).
Lemma 1.5. Let X be an n-dimensional simplicial complex satisfying the property
that every (n− 1)-simplex is a face of at most two n-simplices in the complex. Then
there exist at most two gradient paths from any critical n-simplex in X to any critical
(n− 1)-simplex in X. (For the proof we refer to [5], section 6.)

2 The geometry of systolic triangulated disks
The proof of the paper’s main result relies on a certain result shown on a systolic
triangulated disk whose boundary is mapped by an isomorphism into a cycle of a
systolic 3-complex. It is therefore necessary to understand the geometry of systolic
triangulated disks first. We will show that any systolic triangulated disk possesses a
good direction of flow along the edges of its triangulation. Because systolic triangu-
lated disks are endowed with the standard piecewise Euclidian metric, such disks are
CAT(0) spaces. The results of this section are therefore similar to the ones obtained
by K. Crowley on CAT(0) triangulated disks (see [5], section 3).

The following lemma presents an important inequality that holds in any triangu-
lated disk whose interior vertices have degree at least 6.
Lemma 2.1. Let D be a triangulated disk whose interior vertices have degree at least
6. Then:

∑
v∈∂D

(4− deg v) ≥ 6, summing over the boundary vertices of D.

Proof. We denote by V , Vint, Vext, E, Eext and F the number of vertices, interior
vertices, exterior vertices, edges, exterior edges and 2-simplices of D, respectively.
The following relations hold in any triangulated disk: 1 = V − E + F (Euler’s char-
acteristic), 2E − Eext = 3F , Vext = Eext,

∑
v deg v = 2E. Using these relations, we

obtain: 6 = 6(V −E+F ) = 6V −6E+6( 2
3E− 1

3Eext) = 6V −2Eext−2E = = 6Vint +
4Vext − (

∑
v∈int(D)

deg v +
∑

v∈∂D

deg v) = (6Vint −
∑

v∈int(D)

degv) + (4Vext −
∑

v∈∂D

degv).

Thus 6 =
∑

v∈int(D)

(6 − deg v) +
∑

v∈∂D

(4 − deg v). Because D is a disk whose interior

vertices have degree at least 6, the above relation implies
∑

v∈∂D

(4− deg v) ≥ 6. ¤ ¤

A geodesic disk is a triangulated disk D whose interior vertices have degree at least
6, and whose exterior vertices lie on the combinatorial geodesics [vn, vn−1, ..., v1, v0]



64 Ioana-Claudia Lazăr

and [vn, vn−1, ..., v1, v0]. If vn = vn then D is called a geodesic disk of type I. If
dc(vn, vn) = 1 then D is called a geodesic disk of type II.

We note that a geodesic disk is in fact a finite locally 6-large triangulated disk
with given exterior vertices.
Lemma 2.2. Let D be a geodesic disk whose exterior vertices lie on the combinatorial
geodesics [vn, vn−1, ..., v1, v0] and [vn, vn−1, ..., v1, v0]. Then D has an exterior vertex
v ∈ {v1, v1, ..., vn−1, vn−1, vn} such that deg v = 3.

Proof. For 1 ≤ k ≤ n − 1, the degree of vk must be at least 3. Otherwise the
vertices vk−1, vk, vk+1 would span a 2-simplex in D, contradicting the fact that
[vn, ..., vk−1, vk, vk+1, ..., v0] is a combinatorial geodesic in D. Similarly, deg vk ≥ 3,
1 ≤ k ≤ n− 1.

In a geodesic disk of type I, the vertices v0 and vn have each at least two distinct
neighbors. Thus (4 − deg v0) + (4 − deg vn) ≤ 4. In a geodesic disk of type II, at
least one of of the vertices vn and vn has degree at least 3. In a geodesic disk of
type I or II, we have: (4 − deg v0) + (4 − deg vn) + (4 − degvn) ≤ 5. Lemma 2.1
therefore implies: 6 ≤ (4−deg v0)+(4−deg vn)+(4−degvn)+

∑
v∈∂D,v/∈{v0,vn,vn}

(4−
deg v) ≤ 5 +

∑
v∈∂D,v/∈{v0,vn,vn}

(4 − deg v). So there exists an exterior vertex v ∈
{v1, v1, ..., vn−1, vn−1} such that deg v ≤ 3. This guarantees that D has an exterior
vertex v ∈ {v1, v1, ..., vn−1, vn−1} with deg v = 3. ¤ ¤

We introduce further a notion which generalizes the one of geodesic disk. Let J
be a simplicial complex whose underlying space is homeomorphic to R2 and whose
interior vertices have degree at least 6. A finite connected, simply connected subcom-
plex S of J is called a string of pearls if its exterior vertices lie on the combinatorial
geodesics [vn, vn−1, ..., v1, v0] and [vn, vn−1, ..., v1, v0] in J . If vn = vn then S is called
a string of pearls of type I. If dc(vn, vn) = 1 then S is called a string of pearls of type
II.

So every exterior vertex of S lies on a combinatorial geodesic either from vn to
v0 or from vn to v0. We show further that every vertex of S lies on a combinatorial
geodesic either from vn to v0 or from vn to v0, not only its boundary vertices. A string
of pearls has therefore a good direction of flow along the edges of its triangulation.

We note that a string of pearls is in fact a finite systolic triangulated disk with
given exterior vertices.

Theorem 2.3. Let S be a string of pearls whose exterior vertices lie on the combi-
natorial geodesics [vn, vn−1, ..., v1, v0] and [vn, vn−1, ..., v1, v0]. Then every vertex of
S lies on a combinatorial geodesic either from vn to v0 or from vn to v0.

Proof. According to Lemma 2.2, S has an exterior vertex vk1 , 1 ≤ k1 ≤ n − 1, such
that degvk1 = 3. So the closed star of vk1 in S contains two 2-simplices and their
faces. We consider the subcomplex S1 = S − Stvk1 of S. Because S is a string of
pearls, it is simply connected. Since S deformation retracts to S1, S1 remains simply
connected. Because every interior vertex of S1 is also an interior vertex of S, its
degree is at least 6. So S1 is also a string of pearls. Every exterior vertex of S1 lies
therefore on a combinatorial geodesic either from vn to v0 or from vn to v0.

Because S1 is a string of pearls, Lemma 2.2 guarantees that there exists an exterior
vertex vk2 , 1 ≤ k2 ≤ n − 1, such that degvk2 = 3. So the closed star of vk2 in S1
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contains two 2-simplices and their faces. Because the subcomplex S2 = S1 \ Stvk2

remains a string of pearls, every exterior vertex of S2 lies on a combinatorial geodesic
either from vn to v0 or from vn to v0.

We retract further and obtain each time a string of pearls. Because S is finite, we
reach, after a finite number of steps, a string of pearls S′ with no interior vertices.
Its exterior vertices lie therefore on a combinatorial geodesic either from vn to v0 or
from vn to v0.

So every vertex of S lies on a combinatorial geodesic either from vn to v0 or from
vn to v0. ¤ ¤

Corollary 2.4. Let S be a string of pearls whose exterior vertices lie on the combi-
natorial geodesics [vn, vn−1, ..., v1, v0] and [vn, vn−1, ..., v1, v0]. Then dc(v, v0) < n for
every interior vertex v of S.

Proof. By Theorem 2.3, every vertex of S lies on a combinatorial geodesic either from
vn to v0 or from vn to v0. Hence dc(v, v0) < dc(vn, v0) = n. ¤ ¤

3 Collapsing a systolic simplicial complex of di-
mension 2 and 3

In this section we prove that finite systolic standard piecewise Euclidean simplicial
complexes of dimension 3 or less are collapsible. Our main tool is discrete Morse
theory. Similarly, K. Crowley showed in [5] (section 6), also by applying discrete Morse
theory, that finite CAT(0) simplicial complexes of dimension 3 or less, collapse to a
point, when endowed with the standard piecewise Euclidean metric. Our approach is
based on her considerations. Applying discrete Morse theory on systolic complexes,
however, turns out to be easier due to certain results regarding systolic geometry (see
[10], chapter 9).

We start by investigating the geometry of systolic complexes. Our investigation
relies on T. Januszkiewicz and J. Swiatkowski’s results (see [10], Lemma 1.6, Lemma
1.7). Namely, Theorem 1.2 and Theorem 1.3 ensure that there exists, for each cycle
in a systolic simplicial complex, a simplicial nondegenerate van Kampen diagram of
minimal area whose disk is itself systolic. This fact will allow us to use a result
obtained in section 3 on systolic triangulated disks in order to obtain a similar one
on systolic 3-complexes.

Lemma 3.1. Let X be a systolic simplicial complex of dimension three or less
endowed with the standard piecewise Euclidian metric. Let α = [w0, w1][w1, w2]
...[wn−1, wn][wn, wm][wm, wm−1]...[w2, w1][w1, w0] be a cycle in X, m ∈ {n, n − 1}
such that the distinct vertices wn, ..., w1, w0, w1, ..., wm−1, wm lie on the combinato-
rial geodesics [wn, wn−1, ..., w1, w0] and [wm, wm−1, ..., w1, w0] in X. Let (D,φ) be
a nondegenerate simplicial van Kampen diagram for α of minimal area such that
the boundary vertices of D lie on the cycle β = [v0, v1][v1, v2] ...[vn−1, vn][vn, vm]
[vm, vm−1]...[v2, v1][v1, v0] in D. Let β denote the unique 2-simplex of D containing
the edge [vn, vm]. Let w denote the third vertex of φ(β) opposite [wn, wm]. Then
dc(w,w0) = n− 1.
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Proof. Let v denote the vertex of β opposite the edge [vn, vm]. Because X is systolic
and D has minimal area, Theorem 1.3 guarantees that D is a systolic triangulated disk.
Since the exterior vertices of D lie on the combinatorial geodesics [vn, vn−1, ..., v1, v0]
and [vm, vm−1, ..., v1, v0], D is a string of pearls. So, by Theorem 2.3, each vertex
of D lies on a combinatorial geodesic either from vn to v0 or from vm to v0. So
dc(v, v0) = n − 1. Let [v, v′n−2, ..., v

′
1, v0] be a combinatorial geodesic in D from v

to v0. Because D has minimal area, according to Theorem 1.4, the combinatorial
map φ preserves the dimension of simplices. So [φ(v), φ(v′n−2), ..., φ(v′1), φ(v0)] is a
combinatorial path in X from w to w0. Since this combinatorial path has length n−1,
the combinatorial distance between w and w0 is at most n− 1. So dc(w, w0) ≤ n− 1.
Because w is a neighbor of wn and [wn, wn−1, ..., w1, w0] is a combinatorial geodesic,
dc(w,w0) ≥ n− 1. So dc(w,w0) = n− 1. ¤ ¤

We prove further that any systolic standard piecewise Euclidean simplicial complex
of dimension 3 or less, admits a discrete Morse function with no critical edges and a
single critical vertex.
Theorem 3.2. Let X be a finite systolic simplicial complex of dimension 3 or less
endowed with the standard piecewise Euclidian metric. Then X admits a discrete
Morse function with no critical edges and a single critical vertex.

Proof. Let W : X → X ∪ {0} be a vector field defined on X. We fix a vertex w0

of X and we define W (w0) = 0. For each vertex w different from w0, there exists,
according to Theorem 1.1, a unique directed geodesic δ = σnσn−1...σ0 from w to w0.
Recall that there exists another directed geodesic from w0 to w which is also unique
and differs from δ. Any sequence of vertices w = wn, ..., w0 with wi ∈ σi, 0 ≤ i ≤ n
is, by Theorem 1.1, a combinatorial geodesic in X. Let ei = [wi, wi−1], 1 ≤ i ≤ n.
We define W (wi) = ei, 1 ≤ i ≤ n. We note that for each edge ei = [wi, wi−1] such
that W (wi) = ei, the vertex wi is unique. For such edges ei, we define W (ei) = 0.

Let e be an edge of X for which there does not exist a vertex w such that W (w) = e.
We denote the endpoints of e by wn and wm, m ∈ {n, n− 1}. There exists a unique
directed geodesic σnσn−1...σ0 (σmσm−1...σ0) from wn (wm) to w0. Any sequence
of vertices wn, wn−1, ..., w0 (wm, wm−1, ..., w0) with wi ∈ σi (wi ∈ σi), 0 ≤ i ≤ n,
(0 ≤ i ≤ m) is a combinatorial geodesic in X. We consider the cycle α = [wn, wn−1]
[wn−1, wn−2]...[w1, w0][w0, w1][w1, w2]...[wm−1, wm][wm, wn] in X. We note that α is
a full subcomplex of X. Because X is simply connected, there exists, according to
Theorem 1.2, a simplicial nondegenerate van Kampen diagram (D, φ) for α such that
φ maps the boundary of D isomorphically on α. So there exists an edge f ∈ ∂D
such that φ(f) = e. Choose D to be of minimal area. X being systolic, Theorem 1.3
implies that D is itself systolic and it has at least one interior vertex. So there exists
a 2-simplex β of D such that f < β. Since f belongs to the boundary of D, β is
unique. Theorem 1.4 ensures that the combinatorial map φ preserves the dimension
of simplices. So φ(β) = τ is a 2-simplex of X. We define W (e) = τ . There exists a
unique directed geodesic θ joining one endpoint of e, say wn, with w0. The 2-simplex
τ is therefore either the first simplex of θ or it belongs to the star of the first simplex
of θ. We note that the directed geodesic from wn to w0 is unique and differs from the
one from w0 to wn. Lemma 3.1 guarantees that the third vertex of τ , the one that
differs from wn and wm, say w, satisfies dc(w,w0) = n− 1. So for any 2-simplex τ of
X for which there exists an edge e such that W (e) = τ , such edge is unique.
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For all simplices γ of X of dimension at least 2, we define W (γ) = 0. So the vector
field W : X → X ∪ {0} is defined on X such that it has a single critical vertex and
no critical edges. We show further that W is the gradient vector field of a discrete
Morse function defined on X with no critical edges and a single critical vertex.

As shown above, for each simplex β ∈ ImW there exists a unique simplex γ in X
such that W (γ) = β. According to the definition of W , if β ∈ Im(W ), then W (β) = 0
for all simplices β ∈ X. The definition of W also ensures that either W (β) = 0 or
W (β) is a codimension-one face of β for all β ∈ X. So W is a discrete vector field
defined on X.

We show next that W contains no non-trivial closed W -paths, neither of vertices
and edges nor of edges and 2-simplices.

Suppose, on the contrary, that there exists a nontrivial closed W -path of vertices
and edges in X: u

(0)
0 , e

(1)
0 , u

(0)
1 , e

(1)
1 , ..., u

(0)
r , e

(1)
r , u

(0)
r+1 = u

(0)
0 . Because this W -path is

non-trivial, r ≥ 0. Since W -paths of vertices and edges in X point along geodesic
paths, dc(ui, w0) = dc(ui+1, w0) + 1 for 0 ≤ i ≤ r. Hence dc(u0, w0) = dc(ur+1, w0) +
(r + 1). Thus dc(ur+1, w0) = dc(u0, w0) − (r + 1) < dc(u0, w0) = dc(ur+1, w0) which
is a contradiction. So W contains no nontrivial closed W -paths of vertices and edges.

Let e
(1)
0 , σ

(2)
0 , e

(1)
1 , σ

(2)
1 , ..., e

(1)
r , σ

(2)
r , e

(1)
r+1 be a W -path of edges and 2-simplices in

X. We denote by ai and bi the endpoints of the edge ei and by ci the opposite vertex
of ei in σi, 0 ≤ i ≤ r + 1.

In case dc(ai, w0) = k and dc(bi, w0) = k− 1, Lemma 3.1 implies that dc(ci, w0) =
k−1. According to the definition of W , W (ai) = [ai, ci] and W (ei) = σi. Hence [bi, ci]
is the only edge of σi that is neither in Im(W ) nor is it mapped by W to a 2-simplex.
So ei+1 = [bi, ci] and W (ei+1) = σi+1. According to Lemma 3.1, dc(ci+1, w0) = k− 2
and dc(ci+2, w0) = k − 2.

In case dc(ai, w0) = dc(bi, w0) = k, Lemma 3.1 implies that dc(ci, w0) = k− 1. As
shown above, due to the definition of W , we have ei+1 = [bi, ci] and W (ei+1) = σi+1.
Lemma 3.1 further implies that dc(ci+1, w0) = k − 2 and dc(ci+2, w0) = k − 2.

We note that in both cases {dc(ci, w0)}r
i=0 is a non-increasing sequence and that

dc(ci, w0) = dc(ci+2, w0) + 1.
Suppose that there exists a nontrivial closed W -path of edges and 2-simplices in

X: e
(1)
0 , σ

(2)
0 , e

(1)
1 , σ

(2)
1 , ..., e

(1)
r , σ

(2)
r , e

(1)
r+1 = e

(1)
0 . Because this W -path is nontrivial, the

intersection of any two of its 2-simplices is a face of each of them. Thus r ≥ 2. Because
dc(ao, w0) = k − 1 and dc(bo, w0) = k, Lemma 3.1 ensures that dc(co, w0) = k − 1.
Because er+1 = e0, cr coincides either with a0 or with b0. So dc(cr, w0) ≥ k − 1.
Hence

k − 1 = dc(c0, w0) ≥ dc(cr−2, w0) = dc(cr, w0) + 1 > dc(cr, w0) ≥ k − 1
which is a contradiction. So there exist no nontrivial closed W -paths of edges and
2-simplices in X.

In conclusion W is the gradient vector field of a discrete Morse function defined
on X with no critical edges and a single critical vertex. ¤ ¤

We present the main result of the paper.
Corollary 3.3. Let X be a finite systolic simplicial complex of dimension 3 or less
endowed with the standard piecewise Euclidian metric. If X satisfies the property that
every 2-simplex is a face of at most two 3-simplices in the complex, then X simplicially
collapses to a point.
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Proof. The previous theorem implies that X admits a discrete Morse function with
no critical edges and a single critical vertex w0. If X is 2-dimensional, because it is
contractible, the weak Morse inequalities imply that the number of critical simplices
of dimension 2 equals zero. So X simplicially collapses to the critical vertex w0.

If X is 3-dimensional, by the weak Morse inequalities we have χ(X) = m0−m1 +
m2−m3 = 1+m2−m3, where mi denotes the number of critical simplices of dimension
i. Because X is contractible, the above relation implies that the number of critical
simplices of dimension 2 equals the number of critical simplices of dimension 3. So,
once we have shown that there exists a unique W -path from each critical 2-simplex
to each critical 3-simplex in X, these critical simplices can be canceled out in pairs.

We consider the Morse complex of the function f with coefficients in any field F:
... → M3

∂3→ M2
∂2→ 0 →< w0 >→ 0. Because X is contractible, 0 = H2(K,F) =

Ker∂2
Im∂3

= M2
Im∂3

. The boundary map ∂3 is therefore surjective. So there exists a
gradient path from any critical 2-simplex to any critical 3-simplex in X.

Let F = Z2. Because the map ∂3 is surjective, there exists, for any critical 2-
simplex α, a critical 3-simplex β such that < ∂3β, α >= 1mod 2. Hence, mod2, there
exists a unique gradient path from β to α. Computing with coefficients in Z, we
notice that there exists an odd number of gradient paths from β to α. Because X
satisfies the property that every 2-simplex in X is the face of at most two 3-simplices
in X, Lemma 1.5 guarantees that there exists a unique gradient path from β to α. X
admits therefore a new discrete Morse function with no critical simplices of dimension
1, 2 or 3 and a single critical vertex w0. So X simplicially collapses to w0. ¤
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