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Abstract. The characterization of Finsler spaces of constant curvature is
an old and cumbersome one. In the present paper we obtain the conditions
for a Kropina space to be of constant curvature improving in this way the
characterization given by Matsumoto ([6]) as well as our past results ([13]).
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1 Introduction

Randers spaces (M,F = α + β) of constant flag curvature have been studied by [2],
[7] and [12]. Remarkably, these spaces can be characterized by means of Zermelo
navigation on Riemannian manifolds using a new Riemannian metric h and a vector
field W satisfying h(W,W ) < 1 ([3]). In the present paper, we investigate a similar
characterization for Kropina spaces.

C. Shibata started the study of Kropina spaces as Finsler spaces ([11]) being
followed by Makoto Matsumoto who obtained the necessary and sufficient conditions
for a Kropina space to be of constant curvature and gave a characterization theorem
of these spaces in terms of five conditions ([8], [9]).

In [13], we have characterized Kropina spaces by means of some Riemannian met-
ric h and a unit vector field W on the same manifold M , and have represented
Matsumoto’s conditions using h and W . However, a few years after we noticed that
our results in [13] can be improved, therefore we reformulate the problem in a different
way.

We point out that by Legendre duality a Kropina spaces (M, F = α2/β) on TM
corresponds to a Randers space (M, F = α + β) on T ∗M only in the case b2 = 1,
where b2 is the Riemannian length of β. Moreover, for regular Lagrangians, a Finsler
space is of constant flag curvature K if and only if its dual space is also of constant
flag curvature K ([4], [5]).

However, the results about Randers metrics of constant flag curvature in [2] are
about strongly convex Randers metrics while the Randers metric corresponding to a
Kropina one through the Legendre duality is not strongly convex. Moreover, in the
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case of Kropina metrics, the Lagrangian L = F 2 is not a regular one and therefore
the Legendre transformation is not a local diffeomorphism in all TM , so the results in
([4], [5]) must be used with precaution. Using the Legendre duality between Randers
and Kropina spaces, certainly some formulas from the theory of Randers spaces can
be transformed and used in the study of the present topic. We prefer however to take
another way.

In the present paper, we express the conditions for a Kropina space to be of
constant curvature using a Riemannian metric h and a vector field W and obtain
the minimal necessary and sufficient conditions for a Kropina space to be of constant
curvature.

In section 2, we shall describe a Kropina space in terms of some Riemannian metric
h and a unit vector field W , and in section 3, we shall express the coefficients of the
geodesic spray in a Kropina space using the Riemannian metric h and the unit vector
field W .

Indeed, the necessary and sufficient condition for a Kropina space to be of constant
curvature is not new ([8]). We express this condition by h and W , and obtain the
necessary and sufficient conditions for a Kropina space to be of constant curvature by
straightforward calculations. Our main results are Theorem 4.9 and Theorem 4.10.
The former is the improved version of Theorem 2 in [13] and the latter is an important
result which is used in considering the geodesics in Kropina spaces. Therefore, this
paper is the improved version of [8] and [13]. Since the calculations are quite long and
complicated, we give here only the outline of the proofs. The detailed computations
can be found in [14].

2 The description of a Kropina metric

Let (M, α) be an n(≥ 2)-dimensional differential manifold endowed with a Riemannian
metric α. A Kropina space (M,α2/β) is a Finsler space whose fundamental function
is given by F = α2/β, where α =

√
aij(x)yiyj and β = bi(x)yi. Even though Kropina

spaces can be studied in more general case ([8], [10]), in this paper, we suppose that
the matrix (aij) is positive definite.

Let us remark that for a Kropina space (M, α2/β) the Kropina metric F = α2/β
can be rewritten as follows:

(2.1) eκ(x)aij
yi

F

yj

F
− eκ(x)aij

yi

F
bj +

1
4
eκ(x)aijb

ibj =
1
4
eκ(x)b2,

where κ(x) is a function of (xi) alone, b2 = aij(x)bibj , bi = aijbj and the matrix
(aij(x)) is the inverse one of (aij(x)).

Define a new Riemannian metric h =
√

hij(x)yiyj and a vector field W =
W i(∂/∂xi) on M by

(2.2) hij = eκ(x)aij and 2Wi = eκ(x)bi,

where Wi = hijW
j , then the equation (2.1) reduces to | y

F − W | = |W |. In the
previous equation, the notation | · | denotes the length of a vector with respect to the
Riemannian metric h.
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We notice that the equation |W | = 1 holds if and only if the function κ(x) satisfies
the condition

(2.3) eκ(x)b2 = 4.

Suppose that the function κ(x) satisfies (2.3), then we have |W | = 1 and

(2.4)
∣∣∣∣
y

F
−W

∣∣∣∣ = 1.

Therefore, in each tangent space TxM , the indicatrix of the Kropina metric necessarily
goes through the origin.

Conversely, consider a Riemannian space (M, h), where h =
√

hij(x)yiyj , and a
unit vector field W = W i(∂/∂xi) on it. If we consider the metric F characterized by
(2.4), then by solving (2.4) for F , we get F = |y|2/{√2h(y, W )}2.

Comparing the above equality with a Kropina metric F = α2/β, we obtain (2.2)
and from the assumption |W | = 1 we get (2.3).

Summarizing the above discussion, we obtain

Theorem 2.1. Let (M,α) be an n(≥ 2)-dimensional Riemannian space with the
metric α =

√
aij(x)yiyj. For a Kropina space (M, F = α2/β), where β = bi(x)yi,

we define a new Riemannian metric h =
√

hij(x)yiyj and a unit vector field W =
W i(∂/∂xi) by (2.2) and (2.3). Then, the Kropina metric F satisfies the equation
(2.4).

Conversely, suppose that h =
√

hij(x)yiyj is a Riemannian metric and W =
W i(∂/∂xi) is a unit vector field on (M, h). Consider the metric F defined by (2.4).
Then, defining aij(x) := e−κ(x)hij(x) and bi(x) := 2e−κ(x)Wi by (2.2) using some
function κ(x) of (xi) alone, we get F = α2/β and it follows the function κ(x) satisfies
(2.3).

3 The coefficients of the geodesic spray

From the theory of Riemannian spaces, we have the following:

Theorem 3.1. Let (M, g) and (M, g∗ = eρg), where g =
√

gij(x)yiyj and g∗ =√
g∗ij(x)yiyj respectively, be two n-dimensional Riemannian spaces which are confor-

mal to each other. Furthermore, let γj
i
k and γ∗j

i

k
be the coefficients of Levi-Civita

connection of (M, g) and (M, g∗), respectively. Then, we have
g∗ij = e2ρgij, g∗ij = e−2ρgij and γ∗j

i

k
= γj

i
k + ρjδ

i
k + ρkδi

j − ρigjk,
where ρi = ∂ρ/∂xi and ρi = gijρj.

From (2.2), we have hij = eκaij . Applying Theorem 3.1, we get

(3.1) hγj
i

k = αγj
i
k +

1
2
κjδ

i
k +

1
2
κkδi

j − 1
2
κiajk,

where hγj
i

k and αγj
i
k are the coefficients of Levi-Civita connection of (M,h) and

(M, α) respectively, κi = ∂κ/∂xi and κi = aijκj . Transvecting (3.1) by yjyk, we get

(3.2) hγ0
i

0 = αγ0
i
0 + κ0y

i − 1
2
h00κ

i,
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where κi = hijκj and the index 0 means the transvection by yi .
We denote the covariant derivative in the Riemannian space (M, α) by (;i) and

introduce the following notations: sij := bi;j−bj;i
2 , rij := bi;j+bj;i

2 , sj := bisij , rj :=
birij .

In [1], the authors have shown that the coefficients Gi of the geodesic spray in a
Finsler space (M, F = αφ(s)), where s = β/α and φ is a differential function of s
alone, are given by

(3.3) 2Gi = αγ0
i
0 + 2ωαsi

0 + 2Θ(r00 − 2αωs0)
(

yi

α
+

ω′

ω − sω′
bi

)
,

where ω := φ′

φ−sφ′ , and Θ := ω−sω′
2{1+sω+(b2−s2)ω′} .

For a Kropina space, we have φ(s) = 1/s, hence by straightforward computation
we obtain

2Gi = hγ0
i

0 − κ0y
i +

1
2
h00κ

i − Fsi
0 − 1

b2
(r00 + Fs0)(

2
F

yi − bi).

From Theorem 2.1, for a Kropina space (M,α2/β), a new Riemannian metric
h =

√
hij(x)yiyj and a vector field W = W i(∂/∂xi) are defined by (2.2) and (2.3).

So, the vector field W satisfies the condition |W | = 1 and we have F = h00/2W0.
Therefore, we get

(3.4) 2Gi = hγ0
i

0 + 2Φi,

where

(3.5) 2Φi := −κ0y
i +

1
2
h00κ

i − h00

2W0
si

0 − 1
b2

(r00 +
h00s0

2W0
)(

4W0

h00
yi − bi).

Using (3.1), we have bi;j = 2e−κWi||j + e−κ(κiWj − κjWi −Wrκ
rhij), where the

notation (||i) stands for the h-covariant derivative in the Riemannian space (M,h).

Remark 3.1. We can introduce a Finsler connection Γ∗ = (hγj
i
k(x), Nj

i := hγj
i
k(x)yk,

Cj
i
k) associated with the linear connection hγj

i
k(x) of the Riemannian space (M, h).

The h-covariant derivative are defined as follows ([6]):
For a vector field W i(x) on M ,
(1) W i(x)||j = ∂W i

∂xj − ∂W i

∂ys Nj
s +h γj

i
sW

s = ∂W i

∂xj +h γj
i
sW

s.

For a reference vector yi,
(2) yi

||j = ∂yi

∂xj − ∂yi

∂ys Nj
s +h γj

i
sy

s = −Nj
i + Nj

i = 0.

We put

Rij :=
Wi||j + Wj||i

2
, Sij :=

Wi||j −Wj||i
2

, Ri
j := hirRrj , Si

j := hirSrj ,

Ri := W rRri, Si := W rSri, Ri := hirRr, Si := hirSr.

It follows rij = 2e−κ

(
Rij − 1

2Wrκ
rhij

)
, sij = 2e−κ

(
Sij + κiWj−κjWi

2

)
.
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rij = 2e−κ

(
Rij − 1

2
Wrκ

rhij

)
, sij = 2e−κ

(
Sij +

κiWj − κjWi

2

)
.

Furthermore, we get

si
j = 2Si

j + κiWj − κjW
i, si

0 = 2Si
0 + W0κ

i − κ0W
i,

si = 2e−κ

(
2Si + Wrκ

rWi − κi

)
, s0 = 2e−κ

(
2S0 + Wrκ

rW0 − κ0

)
,

r00 = 2e−κ

(
R00 − 1

2
Wrκ

rh00

)
, bi = airbr = eκhir 2Wr

eκ
= 2W i.

Substituting the above equalities in (3.5), we have

(3.6) 2Φi =
h00

W0
(S0W

i − Si
0) + (R00W

i − 2S0y
i)− 2W0

h00
R00y

i.

Multiplying now the above equalities by 2h00W0, we get

(3.7) 4h00W0Φi = (h00)2Ai
(1) + h00W0A

i
(2) + (W0)2Ai

(3),

where Ai
(1) := 2(S0W

i − Si
0), Ai

(2) := 2(R00W
i − 2S0y

i), Ai
(3) := −4R00y

i.

4 The necessary and sufficient conditions
for constant curvature

In this section, we consider a Kropina space (M,F = α2/β) of constant curvature K,
where α =

√
aij(x)yiyj and β = bi(x)yi. Furthermore, we suppose that the matrix

(aij) is always positive definite and that the dimension n is greater than or equal
two. Hence, it follows that α2 is not divisible by β. This is an important relation
and is equivalent to that h00 is not divisible by W0. Using these, we shall obtain the
necessary and sufficient conditions for a Kropina space to be of constant curvature.

4.1 The curvature tensor of a Kropina space

Let Rj
i
kl be the h-curvature tensor of Cartan connection in Finsler space. The

Berwald spray curvature tensor is

(4.1) (b)Rj
i
kl = A(kl)

{
∂Gj

i
k

∂xl
+ Gj

r
kGr

i
l

}
,

where the symbol A(kl) denotes the interchange of indices k and l and subtraction. It
is well-known that the equality R0

i
kl =(b) R0

i
kl holds good ([6]).

From 2Gi = hγ0
i
0 + 2Φi, it follows Gi

j = hγ0
i
j + Φi

j and Gj
i
k = hγj

i

k + Φj
i
k,

where Φi
j := ∂Φi

∂yj and Φi
jk := ∂Φi

j

∂yk . Substituting the above equalities in (4.1), we get
(b)Rj

i
kl = hRj

i

kl + A(kl){Φj
i
k||l + Φj

r
kΦr

i
l}.

The following result is well-known ([6]):
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Proposition 4.1. The necessary and sufficient condition for a Finsler space (M,F )
to be of scalar curvature K is that the equality

(4.2) R0
i
0l = KF 2(δi

l − lill),

where li = yi/F and ll = ∂F/∂yl, holds.

If the equality (4.2) holds and K is constant, then the Finsler space is called of
constant curvature K.

For a Kropina space of constant curvature K, since F = h00/(2W0), we have

δi
l − lill = δi

l − 2W0h0l − h00Wl

h00W0
yi.

Using the curvature we obtained above, we have R0
i
0l = hR0

i
0l + 2Φi||l −Φi

l||0 +
2ΦrΦr

i
l − Φr

lΦi
r.

Substituting the above equalities in (4.2), we get

(4.3) KF 2

(
δi

l− 2W0h0l − h00Wl

h00W0
yi

)
= hR0

i
0l + 2Φi||l−Φi

l||0 + 2ΦrΦr
i
l−Φr

lΦi
r.

Multiplying (4.3) by 16(h00)4(W0)4 and using F 2 = (h00)2/{4(W0)2}, we have the
equality

4K(h00)6(W0)2hi
l = 16(h00)4(W0)4 · hR0

i
0l + 8(h00)3(W0)2 · 4h00(W0)2Φi||l

− 4(h00)2W0 · 4(h00)2(W0)3Φi
l||0 + 32(h00)4(W0)4ΦrΦr

i
l − 16(h00)4(W0)4Φr

lΦi
r,

where hi
l = δi

l − lill. Computing the quantities Φi||l, Φi
l, Φi

l||0, ΦrΦr
i
l, Φr

lΦi
r (see

[14] for detailed computations) in the above equality, by straightforward computation
we finally obtain

(4.4) (h00)4P i
(5)l

+ (h00)2Qi
(9)l

+ (W0)4Ri
(9)l

= 0,

where P i
(5)l

, Qi
(9)l

and Ri
(9)l

are homogeneous polynomials of degrees 5, 9, and 9 in
yi, respectively (see [14] for concrete expressions). They are called the curvature part,
the vanishing part and the Killing part, respectively.

We conclude:

Proposition 4.2. The necessary and sufficient condition for a Kropina space (M,F )
with F = α2/β = h00/(2W0) to be of constant curvature K is that (4.4) holds good.

4.2 The Killing part

We consider the Killing part Ri
(9)l

and obtain the conclusion that the vector field W

is Killing. By computation we have

Ri
(9)l

= −32h00R00{W0(2R00h00δ
i
l+2h00R0ly

i+7R00h0ly
i)−8S0h00h0ly

i+R00h00Wly
i}.

Substituting the above equality in (4.4) and dividing it by W0h00, we get

(h00)3P i
(5)l

+ h00Q
i
(9)−32(W0)4R00{W0(2R00h00δ

i
l + 2h00R0ly

i + 7R00h0ly
i)l

− 8S0h00h0ly
i + R00h00Wly

i} = 0.
(4.5)
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Lemma 4.3. In the equation (4.5), it follows that R00 is divisible by h00.

Proof. Suppose that R00 is not divisible by h00 and since (hij) is positive definite, it
follows that (R00)2 is not divisible by h00.

Taking into account that P i
(5)l

and Qi
(9)l

are homogeneous polynomials of yi and
that (W0)2 is not divisible by h00, it follows that the equation h0ly

i = h00η
i
l(x),

where ηl
i(x) is a function of (xi) alone. Transvecting the above equation by W l, we

get W0y
i = h00ηl

i(x)W l. Since h00 is not divisible by W0, the above equation is
impossible. ¤

Therefore, it follows that R00 is divisible by h00 and that R00 = c(x)h00, where
c(x) is a function of (xi) alone. Derivating the above equation by yi and yj , we
get Wi||j + Wj||i = 2c(x)hij . Transvecting the previous relation by W iW j , we get
Wi||jW iW j = c(x)hijW

iW j and using hijW
iW j = |W |2 = 1 and Wi||rW i = 0, we

obtain c(x) = 0. Therefore, it follows that the equality Rij = 0 holds good. Hence,
we have that W is a Killing vector field. Therefore, we can state

Lemma 4.4. If a Kropina space (M, α2/β) is of constant curvature K, then

1. W (x) is a Killing vector field,

2. the Killing part Ri
(9)l = 0.

The equation (4.5) reduces now to (h00)2P i
(5)l

+ Qi
(9)l

= 0 and we have following
equalities:

(4.6) Wi||j = Sij , Sj = Wi||jW i = 0, W0||j = S0j , Wi||0 = Si0, W0||0 = 0.

4.3 The vanishing part

We obtain further that the equality Qi
(9)l = 0 holds from the relation R00 = 0 obtained

in the previous subsection. Indeed, one can easily see that all coefficients (h00)i,
(i = 1, 2, 3) and (W0)j , j = 3, 4, 5 of Qi

(9)l vanish respectively and hence Lemma 4.4
implies

Lemma 4.5. If a Kropina space (M, α2/β) is of constant curvature K, then we have
Qi

(9)l = 0 and P i
(5)l = 0.

4.4 The curvature part

In this subsection, we shall see that Lemma 4.5 implies that (M, h) is a Riemannian
space of constant curvature K. Indeed, by Lemma 4.5 and some further computations,
we have

− 1
4
P i

(5)l
= (h00)2W0(W i||rW r ||l + Kδi

l) + (h00)2(W i||rW r ||0Wl + KWly
i)

+ 2h00(W0)2(2W i||0||l −W i||l||0) + 2h00W0(W i||0||0Wl −W i||rW r ||0h0l −Kh0ly
i)

− 4(W0)3 · hR0
i
0l − 4(W0)2W i||0||0h0l = 0,

(4.7)
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First, we consider the term (h00)2(W i||rW r ||0Wl +KWly
i) which does not contain

W0. Taking into account that (h00)2 is not divisible by W0, we get the equality

(4.8) W i||rW r ||0Wl + KWly
i = W0cl

i(x),

where cl
i(x) are functions of (xi) alone.

Some computations shall lead to the relation (for details see [14]) hRk
i
jl = K(hjkδi

l−
hklδ

i
j), that is, the Riemannian space (M,h) is of constant curvature K.

Therefore, we obtain

Theorem 4.6. Let M be an n(≥ 2)-dimensional Riemannian manifold. Put α =√
aij(x)yiyj and β = bi(x)yi. Let (M, α2/β) be a Kropina space and define a new

Riemannian metric h =
√

hij(x)yiyj and a unit vector field W by (2.2) and (2.3).
If the Kropina space (M, α2/β) is of constant curvature K, then the vector field

W is a Killing one and the Riemannian space (M,h) is of constant curvature K .

4.5 The converse of Theorem 4.6

Let (M, α2/β) be a Kropina space and let us define a new Riemannian metric h =√
hij(x)yiyj and a unit vector field W by (2.2) and (2.3). Suppose that the vector

field W is a Killing one and that the Riemannian space (M, h) is of constant curvature
K. To prove that the Kropina space (M,α2/β) is of constant curvature K, we have
only to show that the equality (4.4) holds. Since the vector field W is a Killing one,
we have R00 = 0. Taking into account 2 of Lemma 4.4 and the first equation of Lemma
4.5, the Killing part R and the vanishing part Q vanishes respectively, so we have
only to show that the curvature part P i

(5)l defined in (4.7) vanishes and we are going
to prove it in the following.

First, we give the following result of Riemannian geometry (see [14] for a proof):

Lemma 4.7. For a unit Killing vector field W = W i(∂/∂xi), the equality

(4.9) Wi||j||k = Wr
hRk

r
ij

holds good.

From the assumption that the Riemannian space (M, h) is of constant curvature
K, we have

(4.10) hRk
r
ji = K(hkjδ

r
i − hkiδ

r
j).

Using the above equality we get

(4.11) W i||j||k = K(δi
kWj − hkjW

i)

and from here and yi
||j = 0 (See Remark 3.1), it follows

W i||0||l = K(δi
lW0 − hl0W

i), W i||0||0 = K(yiW0 − h00W
i),

W i||l||0 = K(yiWl − h0lW
i).

(4.12)

From (4.10), we have

(4.13) hR0
i
0l = K(h00δ

i
l − h0ly

i)
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and applying the h-covariant derivative ||i to the equality |W |2 = WrWsh
rs = 1, we

get Wr||iW r = −Wi||rW r = 0. Furthermore, applying the h-covariant derivative ||l
to the above equality, we obtain Wi||rW r ||l +Wi||r||lW r = 0. From the above equality
and (4.11), we have

Wi||rW r ||l = −Wi||r||lW r = K(hlrWi − hliWr)W r = K(WlWi − hli).(4.14)

Substituting the equalities (4.12)-(4.14) in the first equality in (4.9), we can easily
recognize the curvature part P i

(5)l
= 0. Therefore, Proposition 4.1 holds good. Hence,

we get

Theorem 4.8. Let (M,α2/β) be an n(≥ 2)-dimensional Kropina space, where α2 =
aij(x)yiyj, β = bi(x)yi and the matrix (aij) is positive definite. For this Kropina
space, we define a new Riemannian metric h =

√
hij(x)yiyj and a unit vector field

W = W i(∂/∂xi) on (M, h) by (2.2) and (2.3).
If the vector field W = W i(∂/∂xi) is a Killing one and the Riemannian space

(M, h) is of constant curvature K, the Kropina space (M, α2/β) is of constant cur-
vature K.

From Theorems 4.6 and 4.8, we have

Theorem 4.9. Let (M,α2/β) be an n(≥ 2)-dimensional Kropina space, where α2 =
aij(x)yiyj, β = bi(x)yi and the matrix (aij) is positive definite. For this Kropina
space, we define a new Riemannian metric h =

√
hij(x)yiyj and a unit vector field

W = W i(∂/∂xi) on (M, h) by (2.2) and (2.3).
Then, the Kropina space (M, α2/β) is of constant curvature K if and only if the

following conditions hold:
1. Wi||j + Wj||i = 0, that is, W = W i(∂/∂xi) is a Killing vector field.
2. The Riemannian space (M, h) is of constant curvature K.

Remark 4.1. Randers metrics of constant flag curvature are characterized by three
conditions: the Basic Equation, the CC Equation and the Curvature Equation [2].
By some supplementary computations we can find the correspondence between these
three conditions and our formulas, but it takes too much space to write them down
here.

Let (M, F = α2/β) be an n(≥ 2)-dimensional Kropina space. From Theorem
2.1, for this Kropina metric F = α2/β, we can define a Riemannian metric h =√

hij(x)yiyj and a unit vector field W = W i(∂/∂xi) on (M, h) by (2.2) and (2.3).
We suppose that the vector field W is a Killing one. Then, we have R00 = 0. From
this assumption, we get the second equation of (4.6), that is, S0 = 0. Substituting
R00 = 0, S0 = 0 and F = h00/(2W0) in (3.6), we obtain the equation Φi = −FSi

0.
Substituting this in (3.4), we get

Theorem 4.10. Let (M, α2/β) be an n(≥ 2)-dimensional Kropina space, where α2 =
aij(x)yiyj, β = bi(x)yi and the matrix (aij) is positive definite. For this Kropina
space, we define a new Riemannian metric h =

√
hij(x)yiyj and a unit vector field

W = W i(∂/∂xi) on (M, h) by (2.2) and (2.3).
Suppose that the vector field W is a Killing one, then the coefficients Gi of the

geodesic spray of the Kropina space (M, α2/β) is written as 2Gi = hγ0
i
0 − 2FSi

0,
where hγj

i

k are Christoffel symbols of the Riemannian space (M, h).
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