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Abstract. Using symplectic chain complex, a formula for the Reidemeis-
ter torsion of product of oriented closed connected even dimensional man-
ifolds is presented. In applications, the formula is applied to Riemann
surfaces, Grassmannians, projective spaces and these results will be ap-
plied to manifolds of pure bipartite states with Schmidt ranks.
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1 Introduction

Reidemeister torsion was first introduced by Reidemeister in 1935 [12]. This is a
topological invariant which is not homotopy invariant. With the help of Reidemeister
torsion, he classified (up to PL equivalence) 3-dimensional lens spaces i.e. S3/Γ,
where Γ is a finite cyclic group of fixed point free orthogonal transformations [12].
Franz extended Reidemeister torsion in 1935 and classified the higher dimensional
lens spaces S2n+1/Γ, where Γ is a cyclic group acting freely and isometrically on the
sphere S2n+1 [6].
In [5], de Rham extended the results of Reidemeister and Franz to spaces of constant
curvature +1. Kirby and Siebenmann in 1969 proved the topological invariance of
Reidemeister torsion for manifolds [7]. Chapman proved the topological invariance
of Reidemeister torsion for arbitrary simplicial complexes [3, 4]. Hence, Reidemeister
and Franz’s classification of lens spaces was actually topological i.e. up to homeomor-
phism.
By using Reidemeister torsion, Milnor disproved Hauptvermutung in 1961. To be
more precise, he constructed two combinatorially distinct but homeomorphic finite
simplicial complexes. He, in 1962, identified Reidemeister torsion with Alexander
polynomial which plays an important role in knot theory and links [8, 10].
In [17], Witten introduced symplectic chain complex. Let S be a compact 2-dimensional
manifold, G be a compact gauge group, E be a G−bundle over S, with a connection
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A and curvature F. F is a two form with values in the adjoint bundle ad(E). Let
M be the moduli space of flat connections on E, upto gauge transformations. For
orientable S, M has a natural symplectic form ω [1], and hence there exits a natural
volume form θ = ωn/n! on M, where 2n = dimM.

In [17], by using the symplectic chain complex and the Reidemeister torsion, Witten
defined a volume element on M, where S is orientable or not. In the orientable case,
this volume form and θ coincide. Moreover, using this volume element, he computes
the volume of M in [17].

By using sympletic chain complex and Thurston’s geodesic lamination theory, we [13]
presented a volume element on the moduli space of representation % : π1(S) → PSL2(R)
of the fundamental group of compact oriented Riemann surface of genus ≥ 2 into
PSL2(R). Also, we explained in [14] the relation between Reidemeister torsion and
Fubuni-Study form ωFS of the complex projective n−space CPn by using symplectic
chain complex. Furthermore, this technique enabled us to prove the connection of
Reidemeister torsion of compact oriented Riemann surface S of genus ≥ 1 and its
period matrix [15].

In [16], we consider even dimensional oriented closed connected manifolds. With the
help of symplectic chain complex, we proved a formula for computing the Reidemeis-
ter torsion of them. Moreover, we presented applications to Riemann surfaces and
Grasmannians in [16]. In the present article, we prove a formula of Reidemeister tor-
sion of product of oriented closed connected manifolds. We also present applications
of this formula to Riemann surfaces and Grasmannians.

2 The Reidemeister torsion

In this section, the required definitions and the basic facts about the Reidemeister
torsion are given. For more information and the detailed proof, we refer the reader
to [11, 13, 17], and the references therein.

Throughout the paper, F is the field of real R or complex C numbers. Let (C∗, ∂∗) =
(Cn

∂n→ Cn−1 → · · · → C1
∂1→ C0 → 0) be a chain complex of finite dimensional vector

spaces over F. Let Hp(C∗) = Zp(C∗)/Bp(C∗) be the p−th homology of C∗, where
Bp(C∗) = Im{∂p+1 : Cp+1 → Cp} and Zp(C∗) = ker{∂p : Cp → Cp−1}.
There are the following short-exact sequences: 0 → Zp(C∗) → Cp → Bp−1(C∗) → 0
and 0 → Bp(C∗) → Zp(C∗) → Hp(C∗) → 0. Let bp, hp be bases of Bp(C∗), Hp(C∗),
respectively. Also, let `p : Hp(C∗) → Zp(C∗), sp : Bp−1(C∗) → Cp be sections of
Zp(C∗) → Hp(C∗), Cp → Bp−1(C∗), respectively. Then, one gets a new basis of Cp,
more precisely, bp ⊕ `p(hp)⊕ sp(bp−1).

The Reidemeister torsion of C∗ with respect to bases {cp}n
p=0, {hp}n

p=0 is the alter-
nating product

T(C∗, {cp}n
0 , {hp}n

0 ) =
n∏

p=0

[bp ⊕ `p(hp)⊕ sp(bp−1), cp]
(−1)(p+1)

,

where [ep, fp] is the determinant of the change-base-matrix from basis fp to ep of Cp.
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It is proved by Milnor that the Reidemeister torsion is independent of bases bp,
sections sp, `p [9]. If c′p,h

′
p are other bases respectively for Cp, Hp(C∗), then an easy

computation gives the following change-base-formula:

(2.1) T(C∗, {c′p}n
0 , {h′p}n

0 ) =
n∏

p=0

(
[c′p, cp]
[h′p,hp]

)(−1)p

T(C∗, {cp}n
0 , {hp}n

0 ).

Formula (2.1) follows easily from the independence of the Reidemeister torsion from
bp and sections sp, `p.

From Snake Lemma it follows that for the short-exact sequence (2.2) of chain com-
plexes

(2.2) 0 → A∗
i→ B∗

π→ D∗ → 0,

there is also the long-exact sequence of vector spaces C∗ of length 3n + 2. More
precisely,

(2.3) C∗ : · · · → Hp(A∗)
ip→ Hp(B∗)

πp→ Hp(D∗)
δp→ Hp−1(A∗) → · · · ,

where C3p = Hp(D∗), C3p+1 = Hp(A∗), and C3p+2 = Hp(B∗).
The bases hD

p , hA
p , and hB

p clearly serve as bases for C3p, C3p+1, and C3p+2, re-
spectively. The following result of Milnor states that the alternating product of the
torsions of the chain complexes in (2.2) is equal to the torsion of (2.3) in [9]. Using
this statement we have the following sum-lemma:

Lemma 2.1. Let A∗, D∗ be two chain complexes. Let cA
p , cD

p , hA
p , and hD

p be bases
of Ap, Dp, Hp(A∗), and Hp(D∗), respectively. Then,

T(A∗ ⊕D∗, {cA
p ⊕ cD

p }n
0 , {hA

p ⊕ hD
p }n

0 ) = T(A∗, {cA
p }n

0 , {hA
p }n

0 )T(D∗, {cD
p }n

0 , {hD
p }n

0 ).

For detailed proof and further information, we may refer the readers to [16].
It is independently explained in [2, 13] that a general chain complex can (unnaturally)
be splitted as a direct sum of an acyclic and ∂−zero chain complexes. Furthermore,
it is showed independently in [2, Proposition 1.5] and [13, Theorem 2.0.4] that the
Reidemeister torsion T(C∗) of a general complex C∗ can be interpreted as an element
of ⊗n

p=0(det(Hp(C∗)))(−1)p+1
, where det(Hp(M)) =

∧dimRHp(C∗) Hp(C∗) is the top
exterior power of Hp(C∗), and where det(Hp(C∗))−1 is the dual of det(Hp(C∗)). See
[2, 13] for details.

A symplectic chain complex of length q is (C∗, ∂∗, {ω∗,q−∗}), where C∗ : 0 → Cq
∂q→

Cq−1 → · · · → Cq/2 → · · · → C1
∂1→ C0 → 0 is a chain complex with q ≡

2(mod 4), and for p = 0, . . . , q/2, ωp,q−p : Cp × Cq−p → R is a ∂−compatible
anti-symmetric non-degenerate bilinear form. More precisely, ωp,q−p(∂p+1a, b) =
(−1)p+1ωp+1,q−(p+1)(a, ∂q−pb) and ωp,q−p(a, b) = (−1)p(q−p)ωq−p,p(b, a).
From q ≡ 2(mod 4) it follows easily that ωp,q−p(a, b) = (−1)pωq−p,p(b, a). By the
∂−compatibility of the non-degenerate anti-symmetric bilinear maps ωp,q−p : Cp ×
Cq−p → R, we can easily extend these to homologies [13].
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Let C∗ be a symplectic chain complex. Let cp and cq−p be bases of Cp and Cq−p,
respectively. These bases are said to be ω−compatible if the matrix of ωp,q−p in bases

cp, cq−p equals to the k × k identity matrix Ik×k when p 6= q/2 and
[

0l×l Il×l

−Il×l 0l×l

]

when p = q/2, where k = dim Cp = dim Cq−p and 2l = dim Cq/2.

By considering [ωp,q−p] : Hp(C∗) × Hq−p(C∗) → R, one can also define the [ω]-
compatibility of bases hp of Hp(C∗) and hq−p of Hq−p(C∗).

By using the existence of ω−compatible bases, we were able to prove in [13] that
a symplectic chain complex C∗ can be splitted ω−orthogonally as a direct sum of
an exact and ∂−zero symplectic complexes. We already calculated the Reidemeister
torsion of C∗ with respect to {cp}q

0, {hp}q
0, in [13]. Then we have

T(C∗, {cp}q
0, {hp}q

0) =
(q/2)−1∏

p=0

(det[ωp,q−p])
(−1)p

√
det[ω

q/2,q/2 ]
(−1)q/2

.

Here, det[ωp,q−p] is the determinant of the matrix of the non-degenerate pairing
[ωp,q−p] : Hp(C∗)×Hq−p(C∗) → R in bases hp, hq−p.

For further applications of this result, we refer the reader to [14, 15, 16].

Let us define the Reidemeister torsion of a manifold. Let M be an m−manifold with
a cell decomposition K. Let cp = {cp

1, . . . , c
p
np
} be the geometric basis for the p−cells

Cp(K;Z), p = 0, . . . ,m. Then, there is the following chain complex associated to M

0 → Cm(K) ∂m→ Cm−1(K) → · · · → C1(K) ∂1→ C0(K) → 0,

where Z is the set of integers and ∂p is the usual boundary operator.

Let M be an m−manifold with a cell decomposition K. For p = 0, . . . ,m, let cp

and bp be bases of Cp(K;Z) and Hp(M ;Z), respectively. T(C∗(K), {cp}m
0 , {hp}m

0 )
is called the Reidemeister torsion of M. From ([14]) we know that the Reidemeister
torsion of M is independent of cell decomposition. Thus, the Reidemeister torsion
T(C∗(K), {cp}m

0 , {hp}m
0 ) of M is well-defined.

From [2, Proposition 1.5] and [13, Theorem 2.0.4] we can conclude that the Rei-
demeister torsion of M is an element of the dual of 1−dimensional vector space
⊗n

p=0(det(Hp(M))(−1)p

.

3 Main Result

Let us introduce the following notation used throughout the paper. Let M be a closed
connected oriented manifold of dimension m. For p = 0, . . . , m, let hM

p and hM
m−p

be bases of Hp(M) and Hm−p(M), respectively. Let Hp,m−p(M) be the matrix of
intersection pairing (·, ·)p,m−p : Hp(M)×Hm−p(M) → R in the bases hM

p and hM
d−p. If

Hp(M) = Hm−p(M) = 0, then we define Hp,m−p(M) = 1. Hence, we let T(M, {hp}m
0 )

denote the Reidemeister torsion of M in the bases hp of Hp(M), p = 0, . . . , m. So we
are ready to prove the main result of this paper.
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Theorem 3.1. Let M, N be oriented closed connected 2m, 2n−manifold (m,n ≥ 1)
respectively. Let hM

p (p = 0, . . . , 2m), hN
q (q = 0, . . . , 2n) be bases of Hp(M), Hq(N),

respectively. Then,
∣∣T(M ×N, {⊕p+q=2m+2nhM

p ⊗ hN
q })

∣∣ =
∣∣T(M, {hM

p }2m
p=0)

∣∣χ(N) ∣∣T(N, {hN
p }2n

q=0)
∣∣χ(M)

,

where χ is the Euler characteristic.

Proof. Let us assume m ≤ n. We consider the cases: n ≤ 3m + 2 and n > 3m + 2,
separately. The proof of each case is similar, thus we shall completely give the proof
of one case only.
Let us consider the case: n > 3m + 2. From the Künneth formula it follows that for
p = 0, . . . , 2m

|detHp,2m+2n−p(M ×N)| =
p∏

i=0

|det Hi,2m−i(M)|dim Hp−i(N)

×
p∏

i=0

|det Hi,2n−i(N)|dim Hp−i(M)
,(3.1)

and for p = 2m + 1, . . . , m + n− 1,

|detHp,2m+2n−p(M ×N)| =
2m∏

i=0

|det Hi,2m−i(M)|dim Hp−i(N)

×
p∏

i=p−2m

|det Hi,2n−i(N)|dim Hp−i(M)
.(3.2)

Finally,

|detHm+n,m+n(M ×N)| =
2m∏

i=0

|detHi,2m−i(M)|dim Hm+n−i(N)

×
n+m∏

i=n−m

|detHi,2n−i(N)|dim Hn+m−i(M)
.(3.3)

It follows from (3.1) that
2m∏
p=0

|detHp,2m+2n−p(M ×N)|(−1)p

=
2m∏
p=0

p∏

i=0

|detHi,2m−i(M)|(−1)p dim Hp−i(N)

×
2m∏
p=0

p∏

i=0

|detHi,2n−i(N)|(−1)p dim Hp−i(M)
.

By changing the order of the products, we obtain
2m∏
p=0

p∏

i=0

|detHi,2m−i(M)|(−1)p dim Hp−i(N)

=
2m∏

i=0

|det Hi,2m−i(M)|
(−1)i

2m−i∑
j=0

(−1)j dim Hj(N)

,(3.4)
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2m∏
p=0

p∏

i=0

|detHi,2n−i(N)|(−1)p dim Hp−i(M)

=
2m∏

i=0

|det Hi,2n−i(N)|
(−1)i

2m−i∑
j=0

(−1)j dim Hj(M)

.(3.5)

From (3.2) it follows that
m+n−1∏
p=2m+1

|detHp,2m+2n−p(M ×N)|(−1)p

=
m+n−1∏
p=2m+1

2m∏

i=0

|detHi,2m−i(M)|(−1)p dim Hp−i(N)

×
m+n−1∏
p=2m+1

p∏

i=p−2m

|detHi,2n−i(N)|(−1)p dim Hp−i(M)
.

Change of the order of products results that
m+n−1∏
p=2m+1

2m∏

i=0

|detHi,2m−i(M)|(−1)p dim Hp−i(N)

=
2m∏

i=0

|detHi,2m−i(M)|
(−1)i

m+n−i−1∑
j=2m−i+1

(−1)j dim Hj(N)

.(3.6)

By changing the order of the products and using n > 3m + 2, we get
m+n−1∏
p=2m+1

p∏

i=p−2m

|det Hi,2n−i(N)|(−1)p dim Hp−i(M)

=
2m∏

i=1

|detHi,2n−i(N)|
(−1)i

2m∑
j=2m−i+1

(−1)j dim Hj(M)

×
n−m−1∏

i=2m+1

|detHi,2n−i(N)|
(−1)i

2m∑
j=0

(−1)j dim Hj(M)

×
m+n−1∏

i=n−m

|detHi,2n−i(N)|
(−1)i

m+n−i−1∑
j=0

(−1)j dim Hj(M)

.(3.7)

Finally, it follows from (3.3) that
√
|detHm+n,m+n(M ×N)|

(−1)m+n

=

(
2m∏

i=0

|detHi,2m−i(M)|(−1)m+n dim Hm+n−i(N)

)1/2

×
(

m+n∏

i=n−m

|det Hi,2n−i(N)|(−1)m+n dim Hm+n−i(M)

)1/2

.
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An easy computation gives us that

(
2m∏

i=0

|det Hi,2m−i(M)|(−1)m+n dim Hm+n−i(N)

)1/2

=
m−1∏

i=0

|detHi,2m−i(M)|(−1)m+n dim Hm+n−i(N)

×
√
|det Hm,m(M)|

(−1)m+n dim Hn(N)

(3.8)

and
(

m+n∏

i=n−m

|det Hi,2n−i(N)|(−1)m+n dim Hm+n−i(M)

)1/2

=
n−1∏

i=n−m

|det Hi,2n−i(N)|(−1)m+n dim Hi−n+m(N)

×
√
|detHn,n(N)|

(−1)m+n dim Hm(M)

(3.9)

Finally, the product of (3.4), (3.6), and (3.8) yield that

∣∣T(M, {hM
p }2m

p=0)
∣∣χ(N)

.(3.10)

Note also that the product of (3.5), (3.7), and (3.9) is

∣∣T(N, {hN
p }2n

p=0)
∣∣χ(M)

.(3.11)

This is the end of proof of Theorem 3.1. ¤

Clearly, by Theorem 3.1, we have

Theorem 3.2. For i = 1, . . . , n, let Mi be oriented closed connected 2mi−manifold
(mi ≥ 1) and let M = ×n

i=1Mi be the product manifold. For i = 1, . . . , n, and
p = 0, . . . , 2mi, let hp,i be a basis of Hp(Mi). Then,

∣∣∣T(M,
{⊕|α|=phα1,1 ⊗ · · · ⊗ hαn,n

}2m

p=0
)
∣∣∣ =

n∏

i=1

∣∣T(Mi, {hp,i}2mi
p=0)

∣∣χ(M)/χ(Mi)

where m =
∑n

i=1 mi and |α| = ∑n
i=1 αi is the length of the multi-index α = (α1, . . . , αn).

¤

4 Application

4.1 Compact Riemann surfaces

Using the symplectic chain complex, in [16] we proved the formula relating the
Reidemeister torsion of closed Riemann surfaces with their period matrices. More
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precisely, let Σg be a closed oriented Riemann surface of genus g ≥ 2. Let Γg =
{γ1, . . . , γg, γ1+g, . . . , γ2g} be a canonical basis for H1(Σg), i.e. γr intersects γr+g

once positively and does not intersect others. By applying Theorem 3.2, we have the
following result as an application.

Theorem 4.1. For i = 1, . . . , n, let Σgi
be a closed oriented Riemann surface of

genus gi ≥ 2, and let Γgi be a canonical basis for H1(Σgi
). Let Σ = ×n

i=1Σgi
. For

p = 0, 1, 2, and i = 1, . . . , n, let hp,i be a basis of Hp(Σgi
). Then,

∣∣T(Σ, {⊕|α|=phα1,1 ⊗ · · · ⊗ hαn,n}2n
p=0)

∣∣ =
n∏

i=1

∣∣∣∣
detH0,2(Σgi

)
det℘(h1,i,Γgi)

∣∣∣∣
χ(Σ)/χ(Σi)

,

where h1,i is the Poincaré dual basis of H1(Σgi) corresponding to the basis h1,i of
H1(Σgi

). ¤

4.1.1 Grassmannian G(d,N)

Let G(d,N) be the Grassmannian of d−dimensional linear subspaces of CN . As is
well known that G(d,N) is a smooth algebraic variety of complex dimension dn(with
n = N − d), and that the Schubert cells stratify G(d,N). The Schubert varieties are
the closures of these cells. To be more precise, let F• : 0 = F0 ⊂ F1 ⊂ · · · ⊂ FN = CN

be a complete flag of subspaces of CN with dim Fi = i, i = 0, . . . , N. Let λ = (λ1 ≥
λ2 ≥ · · · ≥ λd ≥ 0) be a decreasing sequence of non-negative integers with λ1 ≤ n.
Then, the Young diagram of the partition λ fits inside a d × n rectangle and this is
denoted as λ ⊂ (nd).

The Schubert variety Xλ(F•) associated to the complete flag F• and the partition
λ is

Xλ(F•) = {Λ ∈ G(d,N) : dim(Λ ∩ Fn+i−λi) ≥ i, i = 1, . . . , d}.
Xλ(F•) is a codimension |λ| closed subvariety of G(d,N), where |λ| =

∑
λi is the

weight of λ. From Poincaré duality it follows that Xλ(F•) is associated to the Schubert
class σλ = [Xλ(F•)] ∈ H2|λ|(G(d,N); Z). By the transitive action of GLN (C) on
G(d, N) and on the flags in CN , σλ does not depend on the flag F• used to define Xλ.

H∗(G(d, N);Z) =
⊕

λ⊂(nd) Z · σλ is a free abelian group generated by the Schu-
bert classes. All odd dimensional cohomologies are zero and the Euler characteristic
χ(G(d,N)) =

(
Nd

)
. It follows from Schubert Duality theorem that for any λ and µ

with |λ|+ |µ| = dn, we have
∫

G(d,N)
σλσµ = δλ̂,µ, where λ̂ = (λN−d−λd

, . . . , λN−d−λ1)
is the dual partition of λ.

In [16], we proved the formula for computing the Riedemeister torsion of Gras-
mannians.

Theorem 4.2. Let M = G(d,N) be the Grassmannian of d-dimensional linear sub-
spaces of CN . For p = 0, . . . , 2m, let hp be a basis of Hp(M), where m = d(N − d).
Then,

(i)
∣∣T(M, {hp}2m

0 )
∣∣ =

∏
p∈Em−1

|det Hp,2m−p(M)| for m odd,

(ii)
∣∣T(M, {hp}2m

0 )
∣∣ =

∏
p∈Em−1

|det Hp,2m−p(M)|√|det Hm,m(M)| for m even,
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where Em−1 is the set of even numbers in {0, . . . ,m− 1}. ¤

Consider the complex projective space CPm. It is well known that for p even Hp(CPm)
is generated by ωp

FS, where ωFS is the Fubini-Study metric of CPm and ωp
FS is the p

times wedge product of ωFS. By applying Theorem 3.1, we have the following result
for product of complex projective spaces.

Theorem 4.3. Let M = ×n
i=1CP

mi be the cartesian product of CPmi , i = 1, . . . , n.
For i = 1, . . . , n, and p = 0, . . . , 2mi, let hp,i be a basis of Hp(CPmi). Then,

∣∣T(M, {⊕|α|=phα1,1 ⊗ · · · ⊗ hαn,n}2m
p=0)

∣∣

=
n∏

i=1

∣∣T(CPmi , {hp,i}2mi
p=0)

∣∣(1+m1)···(1+mn)/(1+mi)

where m =
∑n

i=1 mi. ¤

4.2 Quantum entanglement and Reidemeister torsion of man-
ifolds of pure states

For this section the fundamental reference is [18].
Quantum entanglement constitutes the most important resource in quantum in-

formation processing such as quantum teleportation, dense coding, quantum cryp-
tography, quantum error correction and quantum repeater. In this section we will
discuss the geometry of quantum states and we will calculate Reidemeister torsion of
manifolds of pure bipartite states with Schmidt ranks.

Let H be an n-dimensional complex Hilbert space. The space of density matrices
on H, D(H), is naturally stratified manifold with the stratification induced by the
rank of state. The space of all density matrices with rank r, Dr(H), r = 1, 2, . . . , n,
is a smooth and connected manifold of real dimension 2nr − r2 − 1. In particular,
D1(H) is the set of pure states. Every element of D(H) is a convex combination of
points from D1(H) which is a complex manifold. It is diffeomorphic to the (n − 1)-
dimensional complex projective space CPn−1 with a metric g determined by the inner
product 〈M, N〉 = 1

2 Tr MN for density matrices M and N . So we can define the
Hermitian structure h on D1(H) by means of g. By straightforward calculation, we
have

h(α) =
∑

k,j

hkj
(α)dzk ⊗ dzj , h(α) = h|Dα

, α = 1, 2, . . . , n,

where

hkj
(α) =

(1 +
∑n

l=1,l 6=α |zl|2)δkj − zjzk

(1 +
∑n

l=1,l 6=α |zl|2) ,

Dα is the α-th coordinate chart with local complex coordinates z and z̄. Hence it is
clear that h differs from the Fubini-Study form on CPn−1 by a constant multiple.

The quantum entanglement concerns composite systems. Now we will give man-
ifold structures and classification of pure bipartite states. Let H = H1 ⊗ H2 be the
product Hilbert space, where H1 and H2 are respectively n and m (n ≤ m) dimen-
sional complex Hilbert spaces. We present the manifold constituted by the states
with certain Schmidt ranks or with given Schmidt coefficients.
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For any state |x >= x ∈ H, x can be written as the sum of tensor products,

x = (x1 ⊗ y1) + (x2 ⊗ y2) + · · ·+ (xk ⊗ yk), k ∈ N,

where xi ∈ H1, yi ∈ H2.
The last expression is linear independent if x1, x2, . . . , xk; y1, y2, . . . , yk are linearly

independent vectors, respectively.

Definition 4.1. We say that length of x is k if the expansion of x above is linearly
independent.

The length is just the Schmidt rank because the Schmidt decomposition is a special
expression of a linearly independent one. So the length of x in all linear independent
expansions is the same. Let Dk

1(H), a submanifold of D1(H), be the set of all
mormalized pure states with length k,

Dk
1(H) = {x ∈ H : the length of x is k, ‖x‖2 = 1}.

Then we have the following diffeomorphism from [18].

Dk
1(H) ' G(n, k)× (CPk2−1\M)×G(m, k),

where M is a hypersurface of CPk2−1, G(n, k) is the Grassmannian manifold.

Definition 4.2. For any pure state [e] ∈ Dk
1(H), in the Schmidt representation e =

µ1a1⊗ b1 + · · ·µkak⊗ bk, where ai, bi are orthonormal vectors in H1,H2, respectively,
µi are called Schmidt coefficients of e.

We have another result from [18]. Let Dk
1(µ1, . . . , µk) of Dk

1(H) of pure states
with the Schmidt coefficients µ1 ≥ µ2 ≥ · · · ≥ µk is a submanifold of real dimension
2k(m + n− k)− k − 1, which is diffeomorphically equivalent to a manifold

(CPn−1 × CPm−1)× · · · × (CPn−k × CPm−k)× Tk−1,

where Tk−1 is a torus of real dimension k − 1. Let S = (CPn−1 × CPm−1) × · · · ×
(CPn−k × CPm−k)× Tk−1 and S′ = G(n, k)× (CPk2−1\M)×G(m, k).

Then we can give our result.

Theorem 4.4. The Reidemeister torsion of the product manifolds S and S′ is equal
to 1 with respect to any homological bases.

Proof. Since χ(Tk−1) = 0 then the Reidemeister torsion of S is 1 for any homological
basis. On the other hand (CPk2−1\M) is one dimensional and its Euler characteristics
is 0 so the Reidemeister torsion of S′ is 1. ¤

The manifolds S and S′ represent separable cases of pure states. We know that
entanglement measure of separable cases is zero. We claim that there is a relation
between Reidemeister torsion and entanglement measure of bi-partite states. So the
Reidemeister torsion of manifolds S and S′ is equal to exponential of minus multiple
of entanglement measure of states.
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[14] Y. Sözen, On Fubini-Study form and Reidemeister torsion, Topology and its

Applications, 156 (2009), 951–955.
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