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Abstract. Let (M, g) be an n-dimensional (n ≥ 2) without boundary
compact simply connected Finsler manifold. Then it admits a non-trivial
solution for a certain second order differential equation, if and only if it
is conformally homeomorphic to the standard n-sphere in the Euclidean
space Rn+1. This result generalizes the Obata theorem on compact Finsler
spaces.
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1 Introduction

In 1960s Y. Tashiro studied a second order differential equation on Riemannian spaces,
cf. [10]. Intuitively, the existence of non-trivial solutions for this differential equation
describes the existence of certain coordinate system on the Riemannian manifold M ,
called adapted coordinates. Geometrically, the existence of a solution for this SODE,
is equivalent to the existence of circle-preserving transformations on the Riemannian
manifold M .

Recently, the circle-preserving transformations are studied in Finsler geometry by
the present author and Z. Shen, cf. [5]. Previously, inspired by Tashiro’s work, the
present author in a joint paper, specialized adapted coordinates to the Finsler setting
and proved (cf. [1, 3, 4]):

Theorem 1.1. Let (M, g) be a complete connected Finsler manifold of dimension
n ≥ 2. If M admits a non-trivial solution of

(1.1) ∇i∇jρ = φgij ,

where ∇ is the Cartan h-covariant derivative then, depending on the number of critical
points of ρ - i.e. zero, one or two respectively - it is conformal to
(a) A direct product J × M of an open interval J of the real line and an (n − 1)-
dimensional complete Finsler manifold M .
(b) An n-dimensional Euclidean space.
(c) An n-dimensional unit sphere in an Euclidean space.
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In the present work we show that the converse is also true when (M, g) is compact.
More precisely, we prove the following theorem.

Theorem 1.2. Let (M, g) be an n-dimensional (n ≥ 2) without boundary compact
simply connected Finsler manifold. Then it admits a non-trivial solution ρ of the
equation (1.1), if and only if it is conformally homeomorphic to the standard n-sphere
in the Euclidean space Rn+1.

This theorem is an extension of the Obata theorem to compact Finsler spaces,
cf. [8]. The second order differential equation (1.1) is closely related to the concept
of Hessian metrics, which has applications in the geometric approach to black hole
thermodynamics, cf. [11].

2 Preliminaries

Let M be a real n-dimensional differentiable manifold and let (x,U) be a local chart
on M . We denote by TM → M the tangent bundle and by π : TM0 → M the slit
tangent bundle. An element of TM is denoted by the pair (x, y), where x ∈ M and
y ∈ TxM .

A Finsler structure on M is provided by a function F : TM → [0,∞), with the
following properties: F is differentiable (C∞) on TM0; F is positively homogeneous
of degree one in y, i.e. F (x, λy) = λF (x, y),∀λ > 0; the Hessian matrix of F 2 is
positive definite on TM0, that is, (gij) :=

(
1
2

[
∂2

∂yi∂yj F 2
])

.

A Finsler manifold (M, g) is a pair consisting of a differentiable manifold M and
the tensor field g = (gij). We denote here by Gi

j the coefficients of nonlinear connec-

tion on TM , where Gi
j = ∂Gi

∂yj and Gi = 1/4gih( ∂2F 2

∂yh∂xj yj − ∂F 2

∂xh ).
By means of this nonlinear connection, the tangent space of TM0 can be split

into the direct sum of the horizontal and vertical subspaces with the corresponding
bases { δ

δxi ,
∂

∂yi }. This basis is related to { ∂
∂xi ,

∂
∂yi }, the typical basis of TM , by

δ
δxi := ∂

∂xi −Gj
i

∂
∂yj . The dual basis is denoted by {dxi, δyi}, where δyi := dyi+Gi

jdxj .
The coefficients of horizontal and vertical covariant derivatives with respect to

the Cartan connection are denoted by Γi
jk = 1/2gih

(
δjghk + δkgjh − δhgjk

)
and

Ci
jk = 1/2gih∂̇hgjk, where δk = δ

δxk and ∂̇k = ∂
∂yk . The 1−form of the Cartan

connection in this basis is given by ωi
j = Γi

jkdxk +Ci
jkδyk. Rewriting ωi

j with respect

to the basis { ∂
∂xi ,

∂
∂yi } with dual basis {dxi, dyi}, we have ωi

j =
∗
Γ

i

jkdxk + Ci
jkdyk,

where
∗
Γ

i

jk = Γi
jk + Ga

kCi
aj .

By homogeneity, we have ykΓi
jk = Gi

j , and yjGi
j = 2Gi, cf. [2, 9, 12]. The Cartan

connection is metric compatible, that is, ∇
l
gjk = 0 and ∇̇

l
gjk = 0.

The components of the Cartan horizontal and vertical covariant derivatives of a
tensor field S with the components (Si

jk(x, y)) on TM are respectively given by

∇
l
Si

jk := δlS
i
jk − Si

akΓa
jl − Si

jaΓa
kl + Sa

jkΓi
al,(2.1)

∇̇
l
Si

jk := ∂̇lS
i
jk − Si

akCa
jl − Si

jaCa
kl + Sa

jkCi
al,(2.2)
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where ∇
l

:= ∇ δ

δxl
and ∇̇

l
= ∇ ∂

∂yl
. Let c be a curve on TM given by c : t ∈ I ⊂

R −→ (xi(t), yi(t)) ∈ TM . We say that c is a geodesic of a Finsler connection ∇, if
∇ċċ = 0. Here,

ċ(t) =
dxi

dt

∂

∂xi
+

dyi

dt

∂

∂yi
=

dxi

dt

δ

δxi
+

δyi

dt

∂

∂yi
,

is the tangent vector along c and δyi

dt := dyi

dt + Gi
j

(
x(t), dx

dt

)
dxj

dt . From these equations

we can see that a horizontal curve, that is, a curve for which we have δyi

dt = 0, is a
geodesic of the Finsler connection if and only if, cf. [6].

(2.3)
d2xi

dt2
+ Γi

jk

dxj

dt

dxk

dt
= 0.

Consider a curve γ on (M, g) given by γ : t ∈ I ⊂ R −→ γ(t) = (xi(t)) ∈ M .
We say that γ is a geodesic of the Finsler space (M, g), if its natural lift γ̃(t) =
(xi(t), dxi(t)/dt) to TM , is a geodesic of∇, or equivalently it is parallel (or horizontal)
that is, ∇ dγ̃

dt

dγ̃
dt = 0. This implies the equation (2.3).

Two points p and q are said to be conjugate points along a geodesic γ if there
exists a non-zero Jacobi field along γ that vanishes at p and q, cf. [2].

Throughout this paper, all manifolds are supposed to be connected.

Let ρ : M → [0,∞) be a scalar function on M and let ∇i∇jρ = φgij , be a second
order differential equation, where ∇i is the Cartan horizontal covariant derivative
and φ is a function of x alone; then we say that the equation (1.1) has a solution ρ.
The solution ρ is said to be trivial if it is constant. The existence of a solution of
the equation (1.1) is equivalent to the existence of some special conformal change of
metric on M . We denote by gradρ = ρi∂/∂xi the gradient vector field of ρ, where
ρi = gijρj , ρj = ∂ρ/∂xj and i, j, ... run over the range 1, ..., n.

We say that the point o of (M, g) is a critical point of ρ if the vector field gradρ
vanishes at o, or equivalently if ρ′(o) = 0, where ρ′ = dρ/dt. All the other points are
called ordinary points of ρ on M .

It’s noteworthy to recall that the partial derivatives ρj are defined on the manifold
M , while ρi - the components of gradρ - are defined on the slit tangent bundle TM0.
Hence, gradρ can be considered as a section of π∗TM → TM0, the pulled-back
tangent bundle over TM0, and its trajectories lie in TM0.

Let the Finsler manifold (M, g) admit a non-trivial solution ρ of (1.1); then for any
ordinary point p ∈ M there exists a coordinate neighborhood U of p which contains
no critical point, and where we can choose a system of coordinates (u1 = t, u2, ..., un)
having the following properties, cf. [1]:

- the function ρ depends only on the first variable u1 = t on U ;
- the integral curve of gradρ is a geodesic; any geodesic containing such a curve

is called a ρ-curve or a t-geodesic of ρ;
- the connected component of a regular hyper-surface defined by ρ = constant, is

called a level set of ρ or simply a t-level. Given a solution ρ and a point q ∈ U , there
exists one and only one t-level set of ρ passing through q. The t-geodesics form the
normal congruence to the family of t-level sets of ρ;
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- the curves defined by uα =const are t-geodesics of ρ, and the parameter u1 = t
may be regarded as the arc-length parameter of t-geodesics;

- the components gij of the Finsler metric tensor g satisfy gα1 = g1α = 0, where
the Greek indices α, run over the range 2, 3, ..., n and the Latin indices i, j, run over
the range 1, 2, ..., n;

- in adapted coordinates the first fundamental form of (M, g) is given by

(2.4) ds2 = (dt)2 + ρ′2fγβduγduβ ,

where fγβ given by gγβ = ρ′2fγβ are the components of the metric tensor on a t-level
of ρ and gγβ is the induced metric tensor of this t-level.

For more details about our purpose in adapted coordinates, we refer to [1, 3, 10].

3 Proof of Theorem 1

Let (M, g) be a an n-dimensional n ≥ 2 Finsler manifold which admits a non trivial
C∞ solution ρ of the equation(1.1). Consider the so called t-geodesic which is integral
curve of the gradient vector field gradρ on M . It is well known that every t-geodesic
is a geodesic on M .

Since M is compact, by the extension of Extreme Value Theorem to differen-
tiable manifolds, every solution ρ of the equation (1.1) is bounded and attains its
extremum values on M . Once the assumption is made that M is without boundary,
the differentiability of ρ requires that these extremal values are critical points.

Let O be a critical point for a t-geodesic on M . By compactness, M must have
finite diameter D and no t-geodesic longer than D may remain minimizing. Thus
every t-geodesic longer than D emerging from O contains at least two critical points.

Before proceeding further, we shall recall that on a Finsler manifold there exist
no more than two critical points of ρ on every t-geodesic emanating from O, cf. [1].
Therefore, every t-geodesic on (M, g) contains exactly two critical points.

Thus, by means of Theorem A, (M, g) is conformal to an n-dimensional sphere
in the Euclidean space Rn+1, with the first fundamental form (2.4). Moreover, M is
assumed to be simply connected and an extension of the Milnor theorem to Finslerian
category, cf. [7], implies that M is topologically homeomorphic to the sphere Sn.

Conversely, let (M, g) be compact and conformally homeomorphic to the n-sphere
Sn ⊂ Rn+1. The first fundamental form of Sn is given by

(3.1) g
Sn = dt2 + sin2 tg

Sn−1 ,

where g
Sn−1 is the first fundamental form of the hypersphere Sn−1, cf. [9]. Let

γ := xi(t) be a geodesic on (M, g), by definition its differential equation is given by

(3.2)
d2xi

dt2
+ Γi

jk

dxj

dt

dxk

dt
= ϕ

dxi

dt
,

where t is an arbitrary parameter and ϕ is a function of t. If we consider the vector
fields on TM for which the projection of their integral curves on M is γ, then we can
put dxj

dt = γj , and by virtue of the equation (3.2) we have

(3.3) γk dγl

dxk
+ Γl

jkγjγk = ϕγl.
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This is equivalent to γk(∇kγl) = ϕγl, where ∇k is the Cartan h-covariant derivative.
Denoting γi := gilγ

l and contracting with gil, we get γk(∇kγi) = ϕγi, which leads to

(3.4) γk(∇kγi − ϕgik) = 0.

The conformality assumption of (M, g) to the standard sphere (Sn, g
Sn ) implies that

the Finsler metric g is positively proportional to g
Sn , that is g = e2ψg

Sn where, by the
Knebelman theorem, ψ is a function on M . Therefore, g is also a function on M and
hence a Riemannian metric. By compactness of M , the vector field γk is complete
and the equation (3.4) leads to ∇kγi = ϕgik, which is equivalent to the equation (1.1).
This completes the proof of Theorem. ¤
Acknowledgements. The author wishes to thank Iranian National Science Foun-
dation (INSF) for its partial support of this work.
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