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1 Introduction

Our analysis is focussed on higher order hyperbolic equations generated by a finite set
of derivations for which the corresponding first order system of PDEs can be solved
using the characteristic system method. The problem (see Problem C) and its solution
(see Theorem 4.1.) are presented in Sections 3 and 4, where integral equations and
first order systems of PDEs are the main part of this construction. In Lemma 3.1.
and Remark 3.2. of Section 3 the algorithm of finding a solution is explained.

The main result (see Theorem 4.1. of Section 4) is related to the paper [6], where
only one derivation was considered. It has much in common with the papers [1] and [5]
regarding gradient systems associated with an orbit solution. Higher order hyperbolic
equations are also treated in [4], [5] and [8] by Y. Shoukaku, Y. H. Zhong and Y.H.
Yuan, using continuous deviating arguments and forced oscillations.

The final part of this work, including Comment 4.2. and Theorem 4.3. of Section 4,
introduces solutions with bounded jumps satisfying a higher order hyperbolic equation
with jumps generated by a single smooth vector field.

Starting with a finite set of noncommutative derivations { ~X1, ..., ~Xm} ⊆ Der(Rn)
we may and do associate the corresponding composition of the global flows G(p)[λ] =
G1(t1) ◦ · · · ◦ Gm(tm)[λ] ∈ Rn, λ ∈ Rn, p = (t1, ..., tm) ∈ Rm, where {Gi(ti)[λ] :
ti ∈ R, λ ∈ Rn} is the flow generated by the complete smooth vector field Xi ∈(C1

b ∩ Cm
)
(Rn;Rn) , i ∈ {1, ..., m} (see the index b of C1

b as bounded). Though the
smooth mapping {G(p)[λ] ∈ Rn : p ∈ Rm} does not share a group property with
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respect to p ∈ Rm, there is an inverse mapping λ
.= ψ(p, x) = [G(p)]−1[x], p ∈

Rm, x ∈ Rn, of G(p)[λ] which satisfies a first order system of PDEs

∂ti
ψ(p, x) + [∂xψ(p, x)]Yi(pi, x) = 0, i ∈ {1, ..., m}, ψ(0, x) = x ∈ Rn.

Here the smooth vector fields with parameters Yi(pi, x) ∈ Rn, pi = (t1, ..., ti−1),
Y1(x) = X1(x), i ∈ {1, ...,m}, generate a gradient system (see ∂tiYj(pj , x) =
[Yi(pi), Yj(pj)] (x), 1 ≤ i ≤ j − 1, 1 ≤ j ≤ m) and λ = ψ(p, x) stands for a funda-
mental system of solutions associated with the following first order system of PDEs

∂ti
ϕ(p, x) + ∂xϕ(p, x)Yi(pi, x) = 0, i ∈ {1, ...,m}, x ∈ Rn, p ∈ Rm

ϕ(0, x) = ϕ0(x), ϕ0 ∈ C2(Rn).

The last system of PDEs allow us to introduce an extended system of commuta-
tive derivations {~Z1, ..., ~Zm} ⊆ Der

(
Rn+m;Rn+m

)
, Zi(z) = col(ei, Yi(pi, x)), z =

(p, x) ∈ Rn+m, such that it can be rewritten as ~Zi(ϕ)(z) = 0, i ∈ {1, ...,m}, ϕ(0, x) =
ϕ0(x), x ∈ Rn. The analysis of higher order hyperbolic equations (see Theorems
4.1. and 4.3. of Section 4) involves the enlarged system of commutative derivations
{~Z1, ..., ~Zm} ⊆ Der

(
Rn+m;Rn+m

)
introduced as above. In addition, there is a nice

connection between the characteristic system method (usually used for Hamilton-
Jacobi equations) and solutions for higher order hyperbolic equations analyzed here.

We mention also that the characteristic system method has been proved useful
for treating nonlinear Hamilton-Jacobi equations with nonregular perturbations as it
appears in [2] and [3].

2 Background and notation

Let Cm(Rn,Rn) be the space consisting of all nonlinear and smooth vector fields
X(x) : Rn → Rn, which are continuously differentiable to order m ≥ 2. A smooth
derivation ~X ∈ Der(Rn) is defined as a linear mapping

(2.1) ~X : C∞(Rn) → Cm(Rn), ~X(ϕ)(x) = 〈∇ϕ(x), X(x)〉
with x ∈ Rn, ∇ = (∂1, . . . , ∂n) - gradient, where the vector field X ∈ Cm (Rn,Rn) is
fixed and ϕ ∈ C∞ (Rn). Let us denote a complete smooth vector field X ∈ C1 (Rn,Rn)
by X ∈ C1

b (Rn,Rn).
Consider a finite set of smooth and complete vector fields satisfying

(2.2) {X1, . . . , Xm} ⊆
(C1

b ∩ Cm
)
(Rn,Rn).

Each vector field Xi generates a global flow {Gi(t, λ) : t ∈ R, λ ∈ Rn}, satisfying the
following ODEs

(2.3)
d

dt
[Gi(t, λ)] = Xi (Gi(t, λ)) , Gi(0, λ) = λ, t ∈ R, λ ∈ Rn.

The corresponding m-sheet

(2.4) G(p, λ) = G1(t1) ◦ . . . ◦Gm(tm)[λ], p = (t1, . . . , tm) ∈ Rm, λ ∈ Rn
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is generated as a composition of the global flows {Gi(ti, λ) : ti ∈ R, λ ∈ Rn, i ∈
{1, . . . , m}}.

Generally, the mapping {G(p, λ) ∈ Rn : p ∈ Rm} does not share a group property
with respect to p ∈ Rm, but the inverse mapping λ = ψ(p, x) can be computed as a
m-sheet verifying

(2.5) G(p, ψ(p, x)) = x, ψ(p, x) = Gm(−tm) ◦ . . . ◦G1(−t
1
)[x],

ψ(p, G(p, λ)) = λ,

for any p ∈ Rm and each λ, x ∈ Rn.

Remark 2.1. There is a strong connection between a solution of first order
systems of PDEs and the m-sheet y = G(p, λ) in (2.4), as the solution of the corre-
sponding gradient system. We shall mention two such problems:

Problem A. (overdetermined systems of first order)

Find sufficient conditions on {X1, . . . , Xm} ⊆ C∞(Rn,Rn) (including Lie algebra
L(X1, . . . , Xm) ⊆ C∞(Rn,Rn) generated by them) such that a non-trivial first integral
ϕ ∈ C∞(B(x0, ρ) ⊆ Rn,R) exists satisfying

ϕ(G(p, x0)) = ϕ(x0),

for any p ∈ P =
m∏

i=1

[−ai, ai]. This problem is solved in [7] assuming

dimL(X1, . . . , Xm)(x0) = k < n (see overdetermined first order systems in [7]).

Problem B. (Gradient systems of linear first order PDEs)
For the given {X1, . . . , Xm} ⊆ (C1

b ∩ C2)(Rn,Rn):
(a) Find (if possible) a gradient system of vector fields

(2.6) Y1(x) = X1(x), Y2(p2, x), . . . , Ym(pm, x)

with pi = (t1, . . . , ti−1), 1 ≤ i ≤ m, p0 = 0, (satisfying ∂tiYj(pj , x) = [Yi(pi), Yj(pj)](x),
1 ≤ i ≤ j − 1, 1 ≤ j ≤ m) such that {y = G(p, λ) : p = (t1, . . . , tm) ∈ Rm} given in
(2.4) is the unique solution of the corresponding gradient system ∂tiy = Yi(pi, y), i =
1, . . . , m, with initial condition y(0) = λ.

(b) Consider the inverse mapping λ = ψ(p, x), verifying (2.5). Prove that the
following system of first order PDEs is fulfilled

(2.7) ∂tiψ(p, x) + ∂xψ(p, x)Yi(pi, x) = 0, i = 1, . . . ,m, ψ(0, x) = x ∈ Rn,

where Yi(pi, x), i = 1, . . . ,m, are the vector fields in (2.6). This problem is solved in
[7] (see Frobenius theorem).

Remark 2.2. The smooth mapping ψ(p, x) = (ψ1(p, x), . . . , ψn(p, x)) in Problem
B, satisfying (2.7), stands for a fundamental system of solutions associated with the
following first order system of PDEs

(2.8) ∂tiϕ(p, x) + ∂xϕ(p, x)Yi(pi, x) = 0, i = 1, . . . ,m, x ∈ Rn, p ∈ Rm



Higher order hyperbolic equations involving a finite set of derivations 25

ϕ(0, x) = ϕ0(x), ϕ0 ∈ C1(Rn)

In addition, the solution of the Cauchy problem (2.8) will be represented by

(2.9) ϕ(p, x) = ϕ0(ψ(p, x)), p ∈ Rm, x ∈ Rn.

Denote z = (p, x) ∈ Rn+m and consider the extended vector fields

{Z1, . . . , Zm} ⊆ C1(Rn+m,Rn+m)

defined by

(2.10) Z1(z) = col(e1, X1(x)), Z2(z) = col(e2, Y2(p2, x)), . . . ,

Zm(z) = col(em, Ym(pm, x)).

Here {e1, . . . , em} ⊆ Rm is the canonical basis and relying on

∂tiYj(pj , y) = [Yi(pi), Yj(pj)](y), 1 ≤ i ≤ j − 1, j ∈ {2, . . . ,m}

we get that [Zi, Zj ](z) = 0, z ∈ Rn+m, i, j ∈ {1, . . . , m}, i.e. {Z1, . . . , Zm} mutually
commute using Lie bracket.

Remark 2.3. Consider the corresponding derivations

{ ~Z1, . . . , ~Zm} ⊆ Der(Rn+m)

and write the first order system of PDE in (2.8) as follows

(2.11) ~Zi(ϕ)(p, x) = 0, p ∈ Rm, x ∈ Rn, 1 ≤ i ≤ m

ϕ(0, x) = ϕ0(x)

for which ϕ(p, x) = ϕ0(ψ(p, x)), p ∈ Rm, x ∈ Rn is its solution.
Let {Fi(t)[z] : t ∈ R, z ∈ Rn+m} be the global flow generated by Zi, for

1 ≤ i ≤ m. It shows that starting with some smooth vector fields

{X1, . . . , Xm} ⊆ (C1
b ∩ C∞)(Rn,Rn)

(see (2.2)) and its corresponding m-sheet {y = G(p, λ) ∈ Rn : p ∈ Rm, λ ∈ Rn} (see
(2.4)) we can associate a sheet in Rn+m,

(2.12) F (p, λ) = col(p,G(p, λ)) = F1(t1) ◦ . . . ◦ Fm(tm)[z0(λ)]

z0(λ) = (0, λ) ∈ Rn+m,

such that each solution in (2.11) is a first integral on the sheet

{F (p, λ) ∈ Rn+m}

in (2.12) (see ϕ(F (p, λ)) = ϕ(z0(λ))). It can be done without imposing any spe-
cial properties on the Lie algebra L(X1, . . . , Xm) ⊆ C∞(Rn,Rn) (see [7], Frobenius
theorem).
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In addition, there is an analytic connection between each component {Yi(pi, x) ∈
Rn, x ∈ Rn} of Zi(z) = col(ei, Yi(pi, x)), 1 ≤ i ≤ m, and the original vector fields
{X1, . . . , Xm} ⊆ (C1

b ∩ C∞)(Rn,Rn) expressed by

(2.13) Yi(pi, x)) =
m∑

j=1

αi
j(pi)Xj(x), x ∈ Rn, 1 ≤ i ≤ m,

using some analytic functions {αi
1, . . . , α

i
m} ⊆ Cω(Rm,R) and Y1(x) = X1(x). Here

we assume that {X1, . . . , Xm} ⊆ C∞(Rn,Rn) are in involution over R, i.e. any Lie
bracket can be expressed as a linear combination

[Xi, Xj ] =
m∑

k=1

αi,j
k Xk,

using some constants αi,j
k ∈ R.

The algebraic representation (2.13), under the hypothesis that {X1, . . . , Xm} are in
involution over R, can be deduced from [6] (see gradient systems in a finite dimensional
Lie algebra).

Problem C. With the same notations as above, we consider the following higher
order hyperbolic equation

(2.14) Am(ϕ)(z) = f(z) +
m−1∑

i=0

ai(z)Ai(ϕ)(z), z = (p, x) ∈ Rn+m,

where {f, ai : i ∈ {0, 1, 2, . . . , m − 1} ⊆ (Cb ∩ C1
b )(Rn+m,R). Each linear operator

Ai : Cm(Rn+m,R) → C(Rn+m,R) is given by

(2.15) Ai(ϕ)(z) = ( ~Zi ◦ . . . ◦ ~Z1 ◦ ~Z0)(ϕ)(z), 0 ≤ i ≤ m, ( ~Z0(ϕ) = ϕ),

where { ~Z1, . . . , ~Zm} are the derivations generated by {Z1, . . . , Zm} (see (2.10)).
Find (if possible) a solution ϕ ∈ Cm(P × Rn,R) of (2.14), where

(2.16) P =
m∏

i=1

[−ai, ai] ⊆ Rm.

3 An algorithm for solving Problem C

A solution ϕ ∈ Cm(P ×Rn,R) of (2.14) will be found provided the corresponding first
order system of PDEs

(3.1) z0 = ϕ, ~Zi(zi−1) = zi, (Ai(ϕ) = zi), 1 ≤ i ≤ m− 1,

~Zm(zm−1)(p, x) = f(p, x) +
m−1∑

i=0

ai(p, x)zi(p, x),
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with p ∈ P, x ∈ Rn, is solved. On the other hand, a solution of (3.1) relies on the
solution ẑ(p, λ) = (ẑ0(p, λ), . . . , ẑm−1(p, λ)) (see ẑi(p, λ) = zi(p,G(p, λ))) fulfilling the
following characteristic system

(3.2) ∂ti ẑi−1(p, λ) = ẑi(p, λ), 1 ≤ i ≤ m− 1

∂tm ẑm−1(p, λ) = f̂(p, λ) +
m−1∑

i=0

âi(p, λ)ẑi(p, λ), p ∈ P, λ ∈ Rn,

where f̂(p, λ) = f(p,G(p, λ)) and âi(p, λ) = ai(p,G(p, λ)). Here x = G(p, λ) is the
m-sheet defined in (2.4) and a solution of (3.1) is constructed by

z(p, x) = ẑ(p, ψ(p, x)),

replacing λ = ψ(p, x) (see (3.1)) into a solution {ẑ(p, λ) : p ∈ P, λ ∈ Rn} of (3.2).
For solving (3.2), associate the following system of integral equations (1 ≤ i ≤ m− 1)

(3.3) ẑi−1(p, λ) = ẑ0
i−1(pi−1, λ) +

∫ ti

0

ẑi(pi−1, σ;λ)dσ, p = (pi−1, t
i),

ẑm−1(p, λ) =

ẑ0
m−1(pm−1, λ) +

∫ tm

0

[f̂(pm−1, σ; λ) +
m−1∑

i=0

âi(pm−1, σ;λ)ẑi(pm−1, σ;λ)]dσ

where the fixed Cauchy conditions ẑ0
j (pj , λ), 0 ≤ j ≤ m − 1, are taken in the space

(Cb ∩ C1)(Rm−1 × Rn;R).

Lemma 3.1. Assume that {f, ai : 0 ≤ i ≤ m − 1} ⊆ (Cb ∩ C1
b )(Rn+m;R) and

consider the integral equations (3.3). Then there exist P =
m∏

i=1

[−ai, ai] and a smooth

mapping ẑ(p, λ) : P × Rn → Rm such that

(3.4) ẑ(p, λ) = (ẑ0(p, λ), . . . , ẑm−1(p, λ)) : P × Rn → Rm

satisfies (3.3).

Proof. The standard Picard’s method will be used and construct a convergent se-
quence {ẑk(p, λ) : p ∈ P, λ ∈ Rn}k≥0 ⊆ C(P × Rn;Rm) such that

ẑk
i−1(p, λ) = ẑ0

i−1(pi−1, λ) +
∫ ti

0

ẑk−1
i (pi−1, σ; λ)dσ, where

p ∈ P, 1 ≤ i ≤ m− 1, k ≥ 1, λ ∈ Rn

ẑk
m−1(p, λ) =

ẑ0
m−1(pm−1, λ) +

∫ tm

0

[f̂(pm−1, σ; λ) +
m−1∑

i=0

âi(pm−1, σ; λ)ẑk−1
i (pm−1, σ; λ)]dσ

and ẑ(p, λ) = lim ẑk(p, λ) (for k →∞) will be a solution of (3.3). ¤
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Remark 3.2. A smooth solution satisfying (3.1) is defined as follows

(3.5) z(p, x) = ẑ(p, ψ(p, x)),

where {ẑ(p, λ)} fulfils (3.3) and λ = ψ(p, x) is given in (2.5). By definition,
ψ(p,G(p, λ)) = λ, p ∈ P , which implies that the following equations

(3.6) zi(p,G(p, λ)) = ẑi(p, λ), 0 ≤ i ≤ m− 1, p ∈ P, λ ∈ Rn

are valid. By a direct computation, from (3.2) and (3.6), we get

(3.7) ~Zi(zi−1)(p,G(p, λ)) = ∂ti ẑi−1(p, λ) = ẑi(p, λ), 1 ≤ i ≤ m− 1,

~Zm(zm−1)(p,G(p, λ)) = ∂tm ẑm−1(p, λ) = f̂(p, λ) +
m−1∑

i=0

âi(p, λ)ẑi(p, λ)

for any p ∈ P =
m∏

i=1

[−ai, ai] ⊆ Rm and λ ∈ Rn, where f̂(p, λ) = f(p,G(p, λ)) and

âi(p, λ) = ai(p,G(p, λ)), 0 ≤ i ≤ m − 1. Particularly, take λ = ψ(p, x) in (3.7) and
notice that

(3.8) ~Zi(zi−1)(p, x) = zi(p, x), 1 ≤ i ≤ m− 1,

~Zm(zm−1)(p, x) = f(p, x) +
m−1∑

i=0

ai(p, x)zi(p, x),

for any p ∈ P and x ∈ Rn.
The last equation leads us to the conclusion that the smooth mapping z(p, x) =

(z0(p, x), . . . , zm−1(p, x)) ∈ Rm, p ∈ P, x ∈ Rn, defined in (3.5), is a solution of the
first order system of PDEs given in (3.1). In addition, {z0(p, x) : p ∈ P, x ∈ Rn} is a
solution of the higher order hyperbolic equation (2.14), i.e. ϕ(p, x) = z0(p, x), p ∈ P ,
x ∈ Rn, fulfils the following higher order equation

(3.9) Am(ϕ)(p, x) = f(p, x) +
m−1∑

i=0

ai(p, x)Ai(ϕ)(p, x), p ∈ P, x ∈ Rn,

where Ai(ϕ)(p, x) = ( ~Zi ◦ . . . ◦ ~Z1 ◦ ~Z0)(ϕ)(p, x), 0 ≤ i ≤ m, ~Z0(ϕ) = ϕ. Here
{Z1, . . . , Zm} ⊆ C1(Rn+m,Rn+m) are given in (2.10).

4 Solution for Problem C

Under the same notations and definitions as above, the analysis performed in Lemma
3.1. and Remark 2.3. is the main ingredient for solving both the first order system
of PDE’s (3.1) and its higher order hyperbolic equation (2.14).

Theorem 4.1. Consider a finite set of complete vector fields

{X1, . . . , Xm} ⊆ (C1
b ∩ Cm)(Rn,Rn), m ≥ 2,
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and associate the m-sheet {y = G(p, λ) ∈ Rn : p ∈ Rm, λ ∈ Rn} defined in (2.4).
There are given {f, ai : 0 ≤ i ≤ m − 1} ⊆ (Cb ∩ C1

b )(Rn+m,R) and consider the
corresponding higher order hyperbolic equation (2.14) associated with its first order
system of PDEs in (3.1). Let

{ẑ(p, λ) = (ẑ0(p, λ), . . . , ẑm−1(p, λ)) : p ∈ P, λ ∈ Rn}
be the solution of integral equations (3.3) given in Lemma 3.1. and define

(4.1) z(p, x) = ẑ(p, ψ(p, x)), p ∈ P, x ∈ Rn,

where λ = ψ(p, x) is given in (2.5) and fulfils PDEs (2.7). Then

{z(p, x) = (z0(p, x), . . . , zm−1(p, x)) : p ∈ P, x ∈ Rn}
is a solution of the system (3.1) and {ϕ(p, x) = z0(p, x) : p ∈ P, x ∈ Rn} verifies the
higher order hyperbolic equation (2.14).

Proof. By hypothesis, the conclusions of Lemma 3.1. and Remark 2.3. are valid.
Using the unique smooth solution

{ẑ(p, λ) = (ẑ0(p, λ), . . . , ẑm−1(p, λ)) : p ∈ P, λ ∈ Rn}
of integral equations (3.3) given in Lemma 3.1., define

(4.2) zi(p, x) = ẑi(p, ψ(p, x)), 0 ≤ i ≤ m− 1, p ∈ P, x ∈ Rn,

where λ = ψ(p, x) ∈ Rn fulfils (2.5) and (2.7). The computations presented in Remark
3.2. (see (3.6)-(3.9)) show us that the smooth mapping defined in (4.2) (see (4.1)) is
a solution of the first order system of PDEs in (3.1) and

{z0(p, x) : p ∈ P, x ∈ Rn}
fulfils the higher order hyperbolic equation (2.14). The proof is complete. ¤

Comment 4.2. A higher order hyperbolic equation generated by one vector field
Z ∈ (C1

b ∩ Cm)(Rn+1,Rn+1) can be described as follows

(4.3) (~Z)m(ϕ)(z) = f(z) +
m−1∑

i=0

ai(z)(~Z)i(ϕ)(z), z = (t, x) ∈ R× Rn,

where {f, ai : 0 ≤ i ≤ m − 1} ⊆ (Cb ∩ C1
b )(Rn+1,R). Here the derivation (liniar

application) ~Z ∈ Der(Rn+1) associated to the vector field Z is defined by
~Z(ϕ)(z) = 〈∂zϕ(z), Z(z)〉, ϕ ∈ C∞(Rn+1,R) and any power (~Z)i, for 1 ≤ i ≤ m,
makes sense as a linear application.

For the sake of simplicity, consider that the vector field Z has the following struc-
ture Z(z) = col(1, X(x)), z = (t, x) ∈ R × Rn, where X ∈ (C1

b ∩ Cm)(Rn,Rn). Let
{G(t, λ) : t ∈ R, λ ∈ Rn} be the solution of the following ODEs

(4.4)
dx

dt
(t) = X(x(t)), t ∈ R,

with initial condition x(0) = λ ∈ Rn. Then, the flow equation, G(t, λ) = x, has a
global solution {λ = ψ(t, x) = G(−t, x) : t ∈ R, x ∈ Rn} satisfying ψ(0, x) = x and

(4.5) ψ(t, G(t, λ)) = λ, G(t, ψ(t, x)) = x, t ∈ R, λ, x ∈ Rn,
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~Z(ψ)(t, x) = ∂tψ(t, x) + [∂xψ(t, x)]X(x) = 0, t ∈ R, x ∈ Rn.

A solution of the higher order hyperbolic equation (4.3) is constructed using the same
algorithm as in Theorem 4.1. In this respect, associate the corresponding system of
linear first order PDEs
(4.6)

ϕ = y0, ~Z(y0) = y1, . . . , ~Z(ym−2) = ym−1,
(
(~Z)i(y0) = yi, 0 ≤ i ≤ m− 1

)

~Z(ym−1) = f(z) +
m−1∑

i=0

ai(z)yi(z), z = (t, x) ∈ R× Rn.

A Cauchy problem for (4.6) means to find a solution of (4.6) satisfying the initial
condition y(0, x) = y0(x), x ∈ Rn, where y(t, x) = (y0(t, x), . . . , ym−1(t, x)) and
y0 ∈ (Cb ∩ C1

b )(Rn,Rm) are given. A Cauchy problem solution for (4.6) is found
relying on the corresponding characteristic system of ODE written for {ŷ(t, λ) =
y (t, G(t, λ)) ∈ Rm : t ∈ R, λ ∈ Rn}. We get (see [6])

(4.7)
dŷ

dt
(t, λ) = A0ŷ(t, λ) +

m−1∑

i=0

âi(t, λ)Biŷ(t, λ) + f̂(t, λ)em, t ∈ R,

ŷ(0, λ) = y0(λ), λ ∈ Rn.

Here
âi(t, λ) = ai (t, G(t, λ)) , f̂ (t, λ) = f (t, G(t, λ)) ,

for em = col(0, 0, . . . , 0, 1) ∈ Rm and the (m ×m) constant matrices A0, Bi have a
special structure including commutative properties of Bi,

(4.8) A0 = [0 e0 . . . em−2], Bi = [0 0 0 . . . ei . . . 0 0 0], 0 ≤ i ≤ m− 1,

for {e0, . . . , em−1} ⊆ Rm and [Bi, Bj ] = BjBi −BiBj = 0 (null matrix),
i, j ∈ {0, 1, . . . , m−1}. Using {B0, . . . , Bm−1}, define an (m×m) nonsingular matrix

(4.9) M(τ) = [exp τ0B0] . . . [exp τm−1Bm−1], τ = (τ0, . . . , τm−1) ∈ Rm

and a constant variation type formula lead us to the following representation of
{ŷ(t, λ)} in (4.7)

(4.10) ŷ(t, λ) = M(τ(t, λ))b(t, λ), t ∈ R, λ ∈ Rn.

Here τi(t, λ) =
∫ t

0

âi(s, λ)ds, 0 ≤ i ≤ m − 1, are the components of τ(t, λ) and the

vector function {b(t, λ) ∈ Rm : t ∈ R, λ ∈ Rn} is the initial value solution of ODE

(4.11)
db

dt
(t, λ) = [M(τ(t, λ))]−1A0[M(τ(t, λ))]b(t, λ)+

+f̂(t, λ)[M(τ(t, λ))]−1em

b(0, λ) = y0(λ), λ ∈ Rn, t ∈ R.
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Finally, a solution for the Cauchy problem with initial value y(0, x) = y0(x), x ∈ Rn,
is obtained as a composition

(4.12) y(t, x) = ŷ (t, ψ(t, x)) ,

for ψ(t, x) = G(−t, x), where ŷ(t, λ) ∈ Rm is represented in (4.10).
In addition, y(t, x) = (y0(t, x), . . . , ym−1(t, x)) satisfies (4.6) and the first com-

ponent {y0(t, x) : t ∈ R, x ∈ Rn} is a solution of the higher hyperbolic equation
(4.3). In particular, when the coefficients ai, 0 ≤ i ≤ m− 1, in (4.3), are scalar func-
tions depending only on t ∈ R, the integral representation (4.10) and (4.12) change
accordingly and we get

(4.13) (y0(t, x), . . . , ym−1(t, x)) = y(t, x) = M (τ(t))b(t, ψ(t, x)) ,

where τ(t) = (τ0(t), . . . , τm−1(t)) , τi(t) =
∫ t

0

ai(s)ds, 0 ≤ i ≤ m − 1, and the

smooth mapping b(t, λ) ∈ Rm verifies ODE (4.11). Starting with the integral repre-
sentation (4.13), notice that not only smooth scalar functions but piecewise smooth
scalar functions {τi(t) : t ∈ [0, T ], 0 ≤ i ≤ m − 1}, can be used also leading us
to a bounded solution {y(t, x) ∈ Rm : t ∈ [0, T ]} with jumps. Consider a partition
0 = t0 < t1 < . . . < tN = T of the fixed interval [0, T ] and define bounded piecewise
smooth scalar functions τ̃i(t) : [0, T ] → R, 0 ≤ i ≤ m− 1 such that

(4.14)
dτ̃i

dt
(t) = ak

i (t), t ∈ [tk, tk+1),

for some ak
i ∈ C ([tk, tk+1], R) , k = 0, 1, . . . , N − 1 and 0 ≤ i ≤ m− 1. Consider the

corresponding bounded and piecewise smooth mapping (see (4.13) and τ̃(0) = 0)

(4.15) ỹ(t, x) = M (τ̃(t)) b (t, ψ(t, x)) , t ∈ [0, T ], x ∈ Rn.

Then ỹ(t, x) = (ỹ0(t, x), . . . , ỹm−1(t, x)) , t ∈ [tk, tk+1), x ∈ Rn is a smooth solution
of PDEs (4.6) and {ỹ0(t, x) : t ∈ [tk, tk+1), x ∈ Rn} is a smooth solution of the
hyperbolic equation (4.3), for each k ∈ {0, 1, . . . , N − 1}. The above given remarks
and computations will be restated as a Problem D and its solution.

Consider a vector field Z ∈ (C1
b ∩ Cm)(Rn+1,Rn+1) satisfying

Z(z) = col(1, X(x)), z = (t, x) ∈ R× Rn,

for X ∈ (C1
b ∩ Cm)(Rn,Rn). There are given right continuous scalar functions of

bounded variation {τ̃i(t), f̃(t) : 0 ≤ i ≤ m− 1, t ∈ [0, T ]} verifying

(4.16)
dτ̃i

dt
(t) = ak

i (t),
df̃

dt
(t) = fk(t), t ∈ [tk, tk+1),

for some {ak
i , fk} ⊆ C([tk, tk+1],R), for 0 ≤ k ≤ N − 1, where

0 = t0 < t1 < . . . < tN = T is a partition of [0, T ]. Consider the higher order
hyperbolic equation

(4.17) (~Z)m(ϕ)(t, x) = fk(t) +
m−1∑

i=0

ak
i (t)(~Z)i(ϕ)(t, x), t ∈ [tk, tk+1), x ∈ Rn,
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for 0 ≤ i ≤ m − 1, 0 ≤ k ≤ N − 1, where {ak
i , fk} are given in (4.16), with Cauchy

condition (~Z)i(ϕ)(0, x) = y0
i (x), 0 ≤ i ≤ m − 1, and bounded jumps 4yi(tk, x) =

(~Z)i(ϕ)(tk, x)− (~Z)i(ϕ)(tk−, x), 0 ≤ k ≤ N , where

{y0(x) = (y0
0(x), . . . , y0

m−1(x)) : x ∈ Rn} ⊆ (Cb ∩ C1
b )(Rn,Rm).

Problem D. a) Find (if possible) a piecewise smooth and bounded solution
ϕ(t, x) : [0, T ]× Rn → R satisfying (4.17);

b) Find a piecewise smooth and bounded solution

ỹ(t, x) = (ỹ0(t, x), . . . , ỹm−1(t, x))

on [0, T ]× Rn, satisfying the first order system of PDEs with bounded jumps

(4.18) ϕ = ỹ0,

~Z(ỹ0)(t, x) = ỹ1(t, x), . . . , ~Z(ỹm−2)(t, x) = ỹm−1(t, x),
(
(~Z)i(ỹ0) = ỹi

)

~Z(ỹm−1)(t, x) = fk(t) +
m−1∑

i=0

ak
i (t)ỹi(t, x), t ∈ [tk, tk+1), x ∈ Rn, 0 ≤ k ≤ N − 1,

verifying the initial conditions ỹ(0, x) = y0(x), x ∈ Rn;
c) Notice that the first component ỹ0(t, x) : [0, T ] × Rn → R of the solution in

(4.18) stands for a solution in (4.17);

Theorem 4.3. (Solution for Problem D.) Consider the higher order hy-
perbolic equation (4.17), where ~Z(ϕ)(t, x) = ∂tϕ(t, x) + 〈∂xϕ(t, x), X(x)〉 for X ∈
(C1

b ∩ Cm)(Rn,Rn) and {ak
i , fk} ⊆ C([tk, tk+1],R) are used in (4.16).

Associate the first order system of PDEs with bounded jumps in (4.18). Then there
exists a piecewise smooth and bounded solution,

ỹ(t, x) = (ỹ0(t, x), . . . , ỹm−1(t, x)) : [0, T ]× Rn → Rm,

satisfying the first order system of PDEs with jumps (4.18) such that the first compo-
nent ỹ0(t, x) : [0, T ]×Rn → R stands for a solution of the hyperbolic equation (4.17).
In addition, {ỹ(t, x) ∈ Rm : t ∈ [0, T ], x ∈ Rn} can be represented by (see (4.15))

(4.19) ỹ(t, x) = M (τ̃(t)) b (t, ψ(t, x)) , t ∈ [0, T ], x ∈ Rn,

where τ̃(t) = (τ̃0(t), . . . , τ̃m(t)), t ∈ [0, T ], is given in (4.16), the (m × m) matrix
M(τ) is defined in (4.9) and b(t, λ), t ∈ [tk, tk+1], λ ∈ Rn satisfies (4.11), 0 ≤ k ≤
N − 1.
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[6] S. Treanţă, Higher Order Differential Equations and Associated Gradient Struc-
tures, Master Thesis, ”Simion Stoilow” Institute of Mathematics of the Romanian
Academy, 2011.
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