
On space-like surfaces in Minkowski 4-space with

pointwise 1-type Gauss map of the second kind

U. Dursun and N. C. Turgay

Abstract. In this work, we study space-like surfaces in the Minkowski
space E4

1 with pointwise 1-type Gauss map. We prove that a maximal
surface in E4

1 has pointwise 1-type Gauss map of the second kind if and
only if it is an open part of a space-like plane. We also give a classification
of surfaces in E4

1 with flat normal bundle, non-zero constant curvature and
pointwise 1-type Gauss map of the second kind.
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1 Introduction

The notion of finite type submanifolds of Euclidean spaces was introduced by B.Y
Chen in late 1970’s, [6]. Since then many works have been done to characterize
or classify submanifolds of Euclidean spaces or pseudo-Euclidean spaces in terms of
finite type. Also, B. Y. Chen and P. Piccinni extended the notion of finite type to
differentiable maps, in particular, to Gauss map of submanifolds in [9]. A smooth
map φ on a submanifold M of a Euclidean space or a pseudo-Euclidean space is said
to be of finite type if φ can be expressed as a finite sum of eigenfunctions of the
Laplacian ∆ of M , that is, φ = φ0 +

∑k
i=1 φi, where φ0 is a constant map, φ1, . . . , φk

non-constant maps such that ∆φi = λiφi, λi ∈ R, i = 1, . . . , k.
If a submanifold M of a Euclidean space or a pseudo-Euclidean space has 1-type

Gauss map ν, then ν satisfies ∆ν = λ(ν+C) for some λ ∈ R and some constant vector
C. In [9], B. Y. Chen and P. Piccinni studied compact submanifolds of Euclidean
spaces with finite type Gauss map. Several articles also appeared on submanifolds
with finite type Gauss map (cf. [2, 3, 4, 5, 23, 24]).

However, the Laplacian of the Gauss map of several surfaces and hypersurfaces
such as helicoids of the 1st, 2nd, and 3rd kind, conjugate Enneper’s surface of the sec-
ond kind and B-scrolls in a 3-dimensional Minkowski space E3

1, generalized catenoids,
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spherical n-cones, hyperbolical n-cones and Enneper’s hypersurfaces in En+1
1 take the

form

(1.1) ∆ν = f(ν + C)

for some smooth function f on M and some constant vector C ([13, 20]). A sub-
manifold of a pseudo-Euclidean space is said to have pointwise 1-type Gauss map if
its Gauss map satisfies (1.1) for some smooth function f on M and some constant
vector C. In particular, if C is zero, it is said to be of the first kind. Otherwise, it is
said to be of the second kind (cf. [1, 7, 10, 12, 14, 19, 21]).

The complete classification of ruled surfaces in E3
1 with pointwise 1-type Gauss

map of the first kind was obtained in [20]. Recently, ruled surfaces in E3
1 with pointwise

1-type Gauss map of the second kind were studied in [11, 16]. Also, a complete
classification of rational surfaces of revolution in E3

1 satisfying (1.1) was given in [19],
and it was proved that a right circular cone and a hyperbolic cone in E3

1 are the only
rational surfaces of revolution in E3

1 with pointwise 1-type Gauss map of the second
kind. The first author studied rotational hypersurfaces in Lorentz-Minkowski space
with pointwise 1-type Gauss map, [13]. Moreover, in [22] a complete classification of
cylindrical and non-cylindrical surfaces in Em

1 with pointwise 1-type Gauss map of
the first kind was obtained.

In [1], the first author and G. G. Arsan gave some classification and characteri-
zation theorems on surfaces of the Euclidean 4-space satisfying (1.1). Recently, the
authors extended this study to Minkowski space and obtained some results on space-
like surfaces in the Minkowski space E4

1 with pointwise 1-type Gauss map of the first
kind, [18].

In this paper, we present some results on space-like surfaces in E4
1 with pointwise

1-type Gauss map of the second kind. We focus on maximal surfaces and surfaces
with constant mean curvature in E4

1. First, we show that a maximal surface in E4
1 has

pointwise 1-type Gauss map of the second kind if and only if it is an open portion
of a space-like plane. Then, we give a complete classification of maximal surfaces
in E4

1 with 1-type Gauss map. Finally, we classify all space-like surfaces in E4
1 with

flat normal bundle, constant mean curvature and pointwise 1-type Gauss map of the
second kind.

2 Prelimineries

Let Em
s denote the pseudo-Euclidean m-space with the canonical pseudo-Euclidean

metric tensor of index s given by

g = −
s∑

i=1

dx2
i +

m∑

j=s+1

dx2
j ,

where (x1, x2, . . . , xm) is a rectangular coordinate system in Em
s .

A vector ζ 6= 0 ∈ Tp(Em
s ) ≡ Em

s is called space-like (resp., time-like or light-like) if
〈ζ, ζ〉 > 0 (resp., 〈ζ, ζ〉 < 0 or 〈ζ, ζ〉 = 0), where Tp(Em

s ) denotes the tangent space of
Em

s at p. A submanifold M of Em
s is said to be space-like if every non-zero tangent

vector on M is space-like.
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Let M be an n-dimensional pseudo-Riemannian submanifold of a pseudo-Euclid-
ean space Em

s . We denote Levi-Civita connections of Em
s and M by ∇̃ and ∇, respec-

tively. In this section, we shall use letters X, Y, Z, W (resp., ξ, η) to denote vectors
fields tangent(resp., normal) to M . The Gauss and Weingarten formulas are given,
respectively, by

∇̃XY = ∇XY + h(X, Y )(2.1)

∇̃Xξ = −Aξ(X) + DXξ,(2.2)

where h, D and A are the second fundamental form, the normal connection and the
shape operator of M , respectively.

The Gauss and Ricci equations are given, respectively, by

〈R(X,Y, )Z, W 〉 = 〈h(Y, Z), h(X, W )〉 − 〈h(X, Z), h(Y, W )〉,(2.3)
〈RD(X, Y )ξ, η〉 = 〈[Aξ, Aη]X,Y 〉,(2.4)

where R, RD are the curvature tensors associated with connections ∇ and D respec-
tively.

Now, we assume M is a space-like surface in E4
1. Let {e1, e2, e3, e4} with εA =

〈eA, eA〉 = ∓1 be a given local, orthonormal frame field on M and {ωAB} with
ωAB + ωBA = 0 be the connection 1-forms associated to this frame field. Then we
have

∇̃ek
ei =

2∑

j=1

εjωij(ek)ej +
4∑

β=3

εβhβ
ikeβ

and

∇̃ek
eβ = −

2∑

j=1

εjh
β
kjej +

4∑
ν=3

ενωβν(ek)eν

for i, k = 1, 2 and β = 3, 4, where hβ
ij ’s are the coefficients of the second fundamental

form h. If {ω1, ω2} denotes the dual basis corresponding to {e1, e2}, then the first
structural equations of M become

dw1 = w12 ∧ w2, dw2 = w21 ∧ w1.(2.5)

The Codazzi equation of M is given by

hβ
ij,k = hβ

jk,i, i, j, k = 1, 2, β = 3, 4

hβ
jk,i = ei(h

β
jk) +

4∑
γ=3

εγhγ
jkωγβ(ei)−

2∑

`=1

(
ωj`(ei)h

β
`k + ωk`(ei)h

β
j`

)
.

(2.6)

On the other hand, a space-like surface M in E4
1 is said to have flat normal bundle

if its normal curvature tensor RD vanishes identically. Note that the Ricci equation
(2.4) implies that if M has flat normal bundle, then the shape operators Ae3 = A3

and Ae4 = A4 can be simultaneously diagonalized.
For a surface M in E4

1 , the squared length ‖h‖2 of the second fundamental form
h is defined by ‖h‖2 =

∑
i,j,β

εiεjεβhβ
ijh

β
ji. Gradient of a smooth function f on M
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is defined by ∇f =
2∑

i=1

εiei(f)ei, and the Laplace operator acting on M is ∆ =

2∑
i=1

εi(∇ei
ei − eiei).

Let G(m−n,m) be the Grassmannian manifold consisting of all oriented (m−n)-
planes through the origin of Em

t and
∧m−n Em

t the vector space obtained by the
exterior product of m−n vectors in Em

t . Let fi1∧· · ·∧fim−n
and gi1∧· · ·∧gim−n

be two
vectors in

∧m−n Em
t , where {f1, f2, . . . , fm} and {g1, g2, . . . , gm} are two orthonormal

bases of Em
t . Define an indefinite inner product 〈, 〉 on

∧m−n Em
t by

(2.7)
〈
fi1 ∧ · · · ∧ fim−n , gi1 ∧ · · · ∧ gim−n

〉
= det(〈fi`

, gjk
〉).

Therefore, for some positive integer s, we may identify
∧m−n Em

t with some pseudo-
Euclidean space EN

s , where N =
(

m
m−n

)
. Let e1, . . . , en, en+1, . . . , em be an oriented

local orthonormal frame on an n-dimensional pseudo-Riemannian submanifold M in
Em

t with εB = 〈eB , eB〉 = ±1 such that e1, . . . , en are tangent to M and en+1, . . . , em

are normal to M . The map ν : M → G(m − n, m) ⊂ EN
s from an oriented pseudo-

Riemannian submanifold M into G(m− n,m) defined by

(2.8) ν(p) = (en+1 ∧ en+2 ∧ · · · ∧ em)(p)

is called the Gauss map of M that is a smooth map which assigns to a point p in M
the oriented (m−n)-plane through the origin of Em

t and parallel to the normal space
of M at p, [21].

We put ε = 〈ν, ν〉 = εn+1εn+2 · · · εm = ±1 and

M̃N−1
s (ε) =

{
SN−1

s (1) in EN
s if ε = 1

HN−1
s−1 (−1) in EN

s if ε = −1.

Then the Gauss image ν(M) can be viewed as ν(M) ⊂ M̃N−1
s (ε).

In [18], the authors gave the following Lemma

Lemma 2.1. [18] Let M be an n-dimensional oriented submanifold of a pseudo-
Euclidean space En+2

t . Then the Laplacian of Gauss map ν = en+1 ∧ en+2 is given
by

∆ν = ‖h‖2ν + 2
∑

1≤j<k≤n

εjεkRD(ej , ek; en+1, en+2)ej ∧ ek +∇(trAn+1) ∧ en+2

+en+1 ∧∇(trAn+2) + n

n∑

j=1

εjω(n+1)(n+2)(ej)H ∧ ej ,(2.9)

where ‖h‖2 is the squared length of the second fundamental form, RD the normal
curvature tensor and ∇trAr the gradient of trAr.

We will also use the following theorems, proposition and remark:

Theorem 2.2. [18] Let M be an oriented non-maximal space-like surface in E4
1. Then

M has pointwise 1-type Gauss map of the first kind if and only if M has parallel mean
curvature vector.
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Theorem 2.3. [18] An oriented maximal surface with harmonic Gauss map in the
Minkowski space E4

1 is either an open part of a space-like plane or congruent to a
surface given by

x(u, v) = (φ(u, v), u, v, φ(u, v)).(2.10)

for a smooth harmonic function φ : Ω ⊂ R2 → R, where Ω is an open set in R2.

Proposition 2.4. [18] Let M be an oriented maximal surface in the Minkowski space
E4

1. Then M has (global) 1-type Gauss map of the first kind if and only if the Gauss
map ν of M is harmonic.

Remark 2.1. [18] The Gauss map ν of a plane M in E4
1 is a constant vector in E6

3

and ∆ν = 0, i.e., it is harmonic. For f = 0 if we write ∆ν = 0 · ν, then M has
pointwise 1-type Gauss map of the first kind. If we choose C = −ν, then (1.1) holds
for any non-zero smooth function f . In this case M has pointwise 1-type Gauss map
of the second kind. Therefore, a plane in E4

1 is a trivial surface with pointwise 1-type
Gauss map of both the first kind and the second kind.

3 Space-like surfaces with pointwise 1-type Gauss
map of the second kind

In this section, we study space-like surfaces in the Minkowski space E4
1 with pointwise

1-type Gauss map of the second kind.
Let M be a space-like surface in E4

1. We choose a local orthonormal frame field
{e1, e2, e3, e4} defined on M such that e1, e2 are tangent to M , and e3, e4 are normal
to M . Let C be a vector field in Λ2E4

1 ≡ E6
3. Since the set {eA ∧ eB |1 ≤ A < B ≤ 4}

is an orthonormal basis for E6
3, C can be expressed as

(3.1) C =
∑

1≤A<B≤4

εAεBCAB eA ∧ eB ,

where CAB = 〈C, eA ∧ eB〉. As e1, e2 are space-like, we have ε1 = ε2 = 1 and
ε4 = −ε3.

By a direct calculation using the Gauss and Weingarten formulas, we obtain that

ei(C) =
∑

1≤A<B≤4

εAεBei(CABeA ∧ eB)

=
(
ei (C12)− ε3h

3
i2C13 + ε3h

4
i2C14 + ε3h

3
i1C23 − ε3h

4
i1C24

)
e1 ∧ e2

+
(
ei (C13) + h3

i2C12 + ε3ω34(ei)C14 − ω12(ei)C23 − ε3h
4
i1C34

)
e1 ∧ e3

+
(
ei (C14) + h4

i2C12 + ε3ω34(ei)C13 − ω12(ei)C24 − ε3h
3
i1C34

)
e1 ∧ e4

+
(
ei (C23)− h3

i1C12 + ω12(ei)C13 + ε3ω34(ei)C24 − ε3h
4
i2C34

)
e2 ∧ e3

+
(
ei (C24)− h4

i1C12 + ω12(ei)C14 + ε3ω34(ei)C23 − ε3h
3
i2C34

)
e2 ∧ e4

+
(
ei (C34)− h4

i1C13 + h3
i1C14 − h4

i2C23 + h3
i2C24

)
e3 ∧ e4.

Hence we state
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Lemma 3.1. A vector C in Λ2E4
1 ≡ E6

3 written by (3.1) is constant if and only if the
following equations are satisfied for i = 1, 2

ei (C12) = ε3h
3
i2C13 − ε3h

4
i2C14 − ε3h

3
i1C23 + ε3h

4
i1C24,(3.2)

ei (C13) = −h3
i2C12 − ε3ω34(ei)C14 + ω12(ei)C23 + ε3h

4
i1C34,(3.3)

ei (C14) = −h4
i2C12 − ε3ω34(ei)C13 + ω12(ei)C24 + ε3h

3
i1C34,(3.4)

ei (C23) = h3
i1C12 − ω12(ei)C13 − ε3ω34(ei)C24 + ε3h

4
i2C34,(3.5)

ei (C24) = h4
i1C12 − ω12(ei)C14 − ε3ω34(ei)C23 + ε3h

3
i2C34,(3.6)

ei (C34) = h4
i1C13 − h3

i1C14 + h4
i2C23 − h3

i2C24.(3.7)

Now, we focus on maximal surfaces in E4
1. In the Euclidean space E4, there exist

non-planar minimal surfaces with pointwise 1-type Gauss map of the second kind (cf.
[15, 17]). However, in the Minkowski space E4

1 we obtain the following theorem:

Theorem 3.2. Let M be an oriented maximal surface in the Minkowski space E4
1.

Then M has pointwise 1-type Gauss map of the second kind if and only if it is an
open portion of a space-like plane.

Proof. Let M be an oriented maximal surface in E4
1, i.e., H ≡ 0. Then there exists a

frame field {e1, e2, e3, e4} defined on M such that ε3 = −ε4 = 1 and the corresponding
shape operators are of the form

A3 =
(

h3
11 0
0 −h3

11

)
and A4 =

(
h4

11 h4
12

h4
12 −h4

11

)
.(3.8)

Thus, (2.9) implies

∆ν = ‖h‖2ν + 2RD(e1, e2; e3, e4)e1 ∧ e2.(3.9)

Now, we assume M has pointwise 1-type Gauss map of the second kind. Then there
exist a smooth function f and a non-zero constant vector C ∈ E6

3 such that (1.1) is
satisfied. From (1.1), (3.1) and (3.9), we get f(ν+C) = ‖h‖2ν+2RD(e1, e2; e3, e4)e1∧
e2 which implies

C13 = C14 = C23 = C24 = 0.(3.10)

Since C is a constant vector, the functions CAB , A, B = 1, 2, 3, 4. satisfy (3.2)-(3.7)
because of Lemma 3.1. By using (3.8) and (3.10) in equations (3.3) and (3.6) for
i = 1, 2, we obtain

C12h
4
11 = C34h

4
11 = 0,(3.11)

C12h
3
11 + C34h

4
12 = C12h

4
12 − C34h

3
11 = 0.(3.12)

Since C is non-zero, one of the functions C12 and C34 is non-zero. Therefore, (3.11)
and (3.12) imply h3

11 = h4
11 = h4

12 = 0. Hence, we have A3 = A4 = 0 which yields M
is an open portion of a space-like plane in E4

1.
The converse follows from Remark 2.1. ¤

Considering Proposition 2.3, Proposition 2.4 and Theorem 3.2, we state following
classification theorem:
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Theorem 3.3. Let M be an oriented maximal surface in the Minkowski space E4
1.

Then M has (global) 1-type Gauss map if and only if M is either an open part of an
space-like plane or congruent to the surface given by (2.10).

Next, we study space-like surfaces in E4
1 with constant mean curvature. First, we

have some examples of space-like surfaces with pointwise 1-type Gauss map of the
second kind.

Example 1. Let M be a helical cylinder in E4
1 given by

x1(s, t) = (a1s, b1 cos s, b1 sin s, t),(3.13)

where a1 and b1 are some non-zero constants with b2
1−a2

1 > 0. Then M is a space-like
surface with constant mean curvature and flat normal bundle. Moreover, its Gauss
map ν satisfies (1.1) for the smooth function f = 1

b21−a2
1

and the constant vector

C = a2
1

b21−a2
1
ν + a1b1

b21−a2
1
e1 ∧ e3. Therefore, M has pointwise 1-type Gauss map of the

second kind.

Example 2. The same arguments hold for the helical cylinders given by

x2(s, t) = (b2 cosh s, b2 sinh s, a2s, t)(3.14)

and

x3(s, t) = (b3 sinh s, b3 cosh s, a3s, t),(3.15)

for some non-zero constants a2, a3, b2, b3 with a2
3 − b2

3 > 0.

We need the following lemma for later use:

Lemma 3.4. Let M be an oriented space-like surface in the Minkowski space E4
1.

If there exists an orthonormal frame field {e1, e2, e3, e4} defined on M such that the
corresponding connections forms satisfy

ω13 = −αω1, ω34 = βω1, ω12 = ω14 = ω23 = ω24 = 0(3.16)

for some constants α 6= 0 and β 6= 0 with ε3α
2 − β2 6= 0, then M is congruent to one

of the helical cylinders given by (3.13), (3.14) and (3.15).

Proof. Let the connection forms of M relative to an orthonormal frame field {e1, e2, e3, e4}
be given by (3.16). Then, we have ω34(e1) = β, ω34(e2) = 0, A3 = diag(α, 0) and
A4 = 0. The first structural equation (2.5) implies dω1 = dω2 = 0 as ω12 = 0. Thus,
the dual forms ω1 and ω2 are exact, i.e., there exists a local coordinate system {u, v}
such that ω1 = du and ω2 = dv which imply e1 = ∂u and e2 = ∂v

Let x = x(u, v) be the position vector of M in E4
1 defined on an open set Ω of R2.

Since ω12 = 0, we have ∇̃e1e1 = xuu = h(e1, e1), ∇̃e1e2 = ∇̃e2e1 = xuv = h(e1, e2)
and ∇̃e2e2 = xvv = h(e2, e2). From these equations, (2.1) and (2.2) we obtain

xuu = ε3αe3, xuv = 0, xvv = 0,(3.17)

∇̃e1e3 = (e3)u = −αxu − ε3βe4, ∇̃e2e4 = (e3)v = 0,(3.18)

∇̃e1e4 = (e4)u = −ε3βe3, ∇̃e2e4 = (e4)v = 0.(3.19)
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The second and third equations in (3.17) imply

x = vL1 + B(u),(3.20)

where L1 ∈ E4
1 is a constant vector and B is a vector-valued function into E4

1. Note
that (3.18) and (3.19) show that the vector fields e3 and e4 depend only on u. In
addition, from the first equation in (3.17) we obtain that

〈xuu, xuu〉 = ε3α
2(3.21)

and

B′′ = ε3αe3(3.22)

where ′ denotes derivative with respect to u.
By differentiating the first equation in (3.18) and using (3.19), (3.20) we obtain

e′′3 + (ε3α
2 − β2)e3 = 0.(3.23)

Considering the sign of the constant ε3α
2 − β2, the general solution of (3.23) can be

written in terms of hyperbolic or trigonometric functions. Therefore, we have two
cases:

Case 1. ε3α
2 − β2 = −a2 < 0. By solving (3.23) we obtain e3 = cosh (au) L̃2 +

sinh (au) L̃3 for some constant vectors L̃2, L̃3 ∈ E4
1. Thus, (3.22) becomes

B′′(u) = ε3α
(
cosh (au) L̃2 + sinh (au) L̃3

)

from which we have

B(u) = cosh (au)L2 + sinh (au) L3 + uL4 + L5(3.24)

for some constant vectors L2, L3, L4, L5 ∈ E4
1. Without loss of generality, we may

take L5 = 0. Thus, from (3.20) and (3.24) we get

x = L1v + cosh (au) L2 + sinh (au)L3 + uL4.(3.25)

From 〈xu, xu〉 = 1, 〈xu, xv〉 = 0, 〈xv, xv〉 = 1 and (3.21) we obtain that L1, L2, L3

and L4 are mutually perpendicular and that

〈L1, L1〉 = 1, 〈L2, L2〉 = −〈L3, L3〉 = ε3α2

(ε3α2−β2)2
, 〈L4, L4〉 = β2

β2−ε3α2 .

Considering ε3 = 1 or ε3 = −1, we see that there are exactly two different choice of
L2, L3 and L4, up to linear isometries of E4

1. Thus, we have two subcases:
Case 1a. ε3 = 1. After a suitable isometry of E4

1, we may assume that L1 =
(0, 0, 0, 1), L2 = α

α2−β2 (0, 1, 0, 0), L3 = α
α2−β2 (1, 0, 0, 0), L4 = β√

β2−α2
(0, 0, 1, 0).

Hence, by choosing suitable coordinates, putting
√

β2 − α2u = s,
β

β2 − α2
= a3 and

α

α2 − β2
= b3 and replacing v by t, we obtain (3.15).
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Case 1b. ε3 = −1. Up to isometries of E4
1, we may choose L1 = (0, 0, 0, 1),

L2 = α
α2+β2 (1, 0, 0, 0), L3 = α

α2+β2 (0, 1, 0, 0), L4 = β√
α2+β2

(0, 0, 1, 0). After a suitable

choice of Minkowskian coordinate system {s, t} and constants a2, b2, we can see that
M is congruent to the surface given by (3.14).

Case 2. ε3α
2 − β2 = a2 > 0. In this case, the general solution of (3.23) is

e3 = cos (au) L̃2 + sin (au) L̃3

for some constant vectors L̃2, L̃3 ∈ E4
1 and we have only ε3 = 1. By a similar way to

Case 1a, we can see that M is congruent to the surface given by (3.13). ¤

Theorem 3.5. Let M be an oriented space-like surface in the Minkowski space E4
1 with

flat normal bundle and non-zero constant mean curvature. Then, M has pointwise
1-type Gauss map of the second kind if and only if it is congruent to one of the helical
cylinders given by (3.13), (3.14) and (3.15).

Proof. Since M has non-zero constant mean curvature, there exists a local orthonor-
mal frame field {e3, e4} of normal bundle of M such that the mean curvature vector
H of M is proportional to e3. Moreover, since M has flat normal bundle, shape
operators can be simultaneously diagonalized by choosing a proper basis {e1, e2} of
tangent bundle of M . Therefore, the shape operators are of the form

A3 = diag(h3
11, h

3
22), A4 = diag(h4

11,−h4
11).(3.26)

Let α = h3
11 + h3

22 6= 0 which is a constant. From (2.9) and (3.26) we obtain that

∆ν = ‖h‖2ν − ε3αω34(e1)e1 ∧ e3 − ε3αω34(e2)e2 ∧ e3.(3.27)

We assume M has pointwise 1-type Gauss map of the second kind. Now, we are
going to determine the connection forms of M . According to the assumption, (1.1) is
satisfied for some function f 6= 0 and non-zero constant vector C ∈ E6

3. From (1.1),
(3.1) and (3.27) we have

f(1− C34) = ‖h‖2,(3.28)
fC13 = −αω34(e1),(3.29)
fC23 = −αω34(e2),(3.30)

C12 = C14 = C24 = 0.(3.31)

Since C is a non-zero constant vector, its components satisfy (3.2)-(3.7) for i = 1, 2
because of Lemma 3.1. From (3.4) and (3.6) for i = 1, 2, we obtain that

−ω34(e1)C13 + h3
11C34 = 0.(3.32)

ω34(e2)C13 = 0,(3.33)
ω34(e1)C23 = 0,(3.34)

−ω34(e2)C23 + h3
22C34 = 0.(3.35)

Note that if ω34(e1) = ω34(e2) = 0, then M has parallel mean curvature vector
which is a contradiction because of Theorem 2.2. Therefore, without loss of generality,
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we may assume ω34(e1) 6= 0. So, (3.29) implies that C13 6= 0. From (3.33) we get
ω34(e2) = 0. Thus, (3.30) implies C23 = 0. Hence, C becomes

C = ε3C13e1 ∧ e3 − C34e3 ∧ e4.(3.36)

On the other hand, (3.35) gives C34h
3
22 = 0 as C23 = 0. Note that if C34 = 0,

then (3.32) implies ω34(e1)C13 = 0 which is a contradiction. So, we have h3
22 = 0.

Therefore, from (3.26) we have

A3 = diag(α, 0), A4 = diag(h4
11,−h4

11).(3.37)

Thus, the Codazzi equations h3
11,2 = h3

12,1, h3
22,1 = h3

12,2 and h4
22,1 = h4

12,2 become,
respectively,

αω12(e1) = 0,(3.38)
ε4h

4
11ω34(e1) = αω12(e2),(3.39)
e1(−h4

11) = 2h4
11ω12(e2).(3.40)

In addition, the Gauss equation 〈R(e1, e2)e1, e2〉 = ε3(det A3 − detA4) implies

e1

(
ω12(e2)

)
= ε3

(
h4

11

)2 − (
ω12(e2)

)2
.(3.41)

From (3.38) we obtain ω12(e1) = 0 as α 6= 0.
Now, we will show that h4

11 = 0. Suppose that h4
11 6= 0. Multiplying (3.29) by

ω34(e1) and using (3.32), we obtain that

(3.42) fC34 = − (ω34(e1))
2

as h3
11 = α 6= 0. Thus, (3.28) implies

(3.43) f = ε3(α2 − 2(h4
11)

2)− (ω34(e1))2.

From (3.29), (3.36) and (3.42) we obtain that

C =
−ω34(e1)

f
(ε3αe1 ∧ e3 − ω34(e1)e3 ∧ e4) .(3.44)

Next, we define a vector field Ĉ = ε3αe1 ∧ e3 − ω34(e1)e3 ∧ e4 and a function f̂ =
−ω34(e1)/f . Then (3.44) infers C = f̂ Ĉ. Since C is a constant vector, we get

e1(C) = e1(f̂)Ĉ + f̂ e1(Ĉ) = 0.(3.45)

Note that if Ĉ and e1(Ĉ) linearly independent, (3.45) implies f̂ = 0 which is a con-
tradiction. In addition, by a direct calculation using Gauss and Weingarten formulas
(2.1) and (2.2), we obtain that

e1(Ĉ) = −h4
11ω34(e1)e1 ∧ e3 +

(
αh4

11 − e1

(
ω34(e1)

))
e3 ∧ e4(3.46)

which implies e1(Ĉ) 6= 0 as h4
11 6= 0 and ω34(e1) 6= 0. Thus, Ĉ and e1(Ĉ) are linearly

dependent. By differentiating (3.39), we obtain

ε4e1(h4
11)ω34(e1) + ε4h

4
11e1

(
ω34(e1)

)
= αe1(ω12(e2))
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from which and (3.39)-(3.41) we get

h4
11

(
e1

(
ω34(e1)

)
+ αh4

11 − ω12(e2)ω34(e1)
)

= 0.(3.47)

As h4
11 6= 0, (3.47) implies

e1

(
ω34(e1)

)
= −αh4

11 + ω12(e2)ω34(e1).(3.48)

From (3.39), (3.46) and (3.48) we obtain

e1(Ĉ) = ω12(e2)Ĉ + 2αh4
11e3 ∧ e4.(3.49)

Since e1(Ĉ) and Ĉ linearly dependent, (3.49) implies h4
11 = 0 which is a contradiction.

Therefore, we proved h4
11 = 0. As h4

11 = 0, (3.39) implies ω12(e2) = 0. On the other
hand, from (3.43) and (3.44) we have ε3α

2〈C,C〉 = (1+ 〈C, C〉)ω34(e1) which implies
ω34(e1) = β, where

β =
ε3α

2〈C,C〉
1 + 〈C, C〉 6= 0.

Moreover, (3.43) implies f = ε3α
2 − β2 6= 0.

Consequently, we have the connection forms of M in E4
1 as

ω13 = −αω1, ω34 = βω1, ω12 = ω14 = ω23 = ω24 = 0.

Considering Lemma 3.4, the connection forms of M and helical cylinders given by
(3.13), (3.14) and (3.15) coincides. Therefore, considering the fundemental theorem
of submanifolds, M is congruent to one of the helical cylinders given by (3.13), (3.14)
and (3.15). ¤
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